
1

Plan-based Object Search and Exploration Using
Semantic Spatial Knowledge in the Real World

Alper Aydemir∗ Moritz Göbelbecker† Andrzej Pronobis∗ Kristoffer Sjöö ∗ Patric Jensfelt∗
∗Centre for Autonomous Systems, Royal Institute of Technology, Stockholm, Sweden

†Institut für Informatik, Albert-Ludwigs-Universität Freiburg, Germany

Abstract— In this paper we present a principled planner based
approach to the active visual object search problem in unknown
environments. We make use of a hierarchical planner that com-
bines the strength of decision theory and heuristics. Furthermore,
our object search approach leverages on the conceptual spatial
knowledge in the form of object cooccurences and semantic
place categorisation. A hierarchical model for representing object
locations is presented with which the planner is able to perform
indirect search. Finally we present real world experiments to
show the feasibility of the approach.

Index Terms— Active Sensing, Object Search, Semantic Map-
ping, Planning

I. INTRODUCTION

Objects play an important role when building a seman-
tic representation and an understanding of the function of
space [14]. Key tasks for service robots, such as fetch-and-
carry, require a robot to successfully find objects. It is evident
that such a system cannot rely on the assumption that all object
relevant to the current task are already present in its sensory
range. It has to actively change its sensor parameters to bring
the target object in its field of view. We call this problem
active visual search (AVS).

Although researchers began working on the problem of
visually finding a relatively small sized object in a large
environment as early as 1976 at SRI [4], the issue is often
overlooked in the field. A common stated reason for this is that
the underlying problems such as reliable object recognition
and mapping are posing hard enough challenges. However as
the field furthers in its aim to build robots acting in realistic
environments, this assumption need to be relaxed. The main
contribution of this work a method to relinquish the above
mentioned assumption.

A. Problem Statement

We define the active visual object search problem as an
agent localizing an object in a known or unknown 3D envi-
ronment by executing a series of actions with the lowest total
cost. The cost function is often defined as the time it takes to
complete the task or distance traveled.

Let the environment be Ω and Ψ being the search space
with Ψ ⊆ Ω. Also let Po(Ψ) be the probability distribution
for the position of the center of the target object o defined as
a function over Ψ. The agent can execute a sensing action s in

This work was supported by the SSF through its Centre for Autonomous
Systems (CAS), and by the EU FP7 project CogX.

the reachable space of Ψ. In the case of a camera as the sensor,
s is characterised by the camera position, (xc, yc, zc), pan-tilt
angles (p, t), focal length f and a recognition algorithm a;
s = s(xc, yc, zc, p, t, f, a). The part of Ψ covered by s is
called a viewcone. In practice, a has an effective region in
which reliable recognition or detection is achieved. For the
ith viewcone we call this region Vi.

Depending on the agent’s level of a priori knowledge of Ψ
and Po(Ψ) there are three extreme cases of the AVS problem.
If both Ψ and Po(Ψ) is fully known then the problem is that
of sensor placement and coverage maximization given limited
field of view and cost constraints.

If both Ψ and Po(Ψ) is unknown then the agent has an
additional explore action as well. An exhaustive exploration
strategy is not always optimal, i.e. the agent needs to select
which parts of the environment to explore first depending on
the target object’s properties. Furthermore the agent needs to
trade-off between executing a sensing action and exploration
at any given point. That is, should the robot search for the
object o in the partially known Ψ or explore further. This is
classically known as the exploration vs. exploitation problem.

When Po(Ψ) is unknown (i.e. uniformly distributed) but Ψ
is known (i.e. acquired a priori), the agent needs to gather
information about the environment similar to the above case.
However in this case, the exploration is for learning about
the target object specific characteristics of the environment.
Knowing Ψ also means that the robot can reason whether or
not to execute a costly search action at the current position,
or move to another more promising region of space. The rare
case where Po(Ψ) is fully known but Ψ is unknown is not
practically interesting to the scope of this paper.

So far, we have examined the case where the target object
is an instance. The implication of this is that Po(Ψ) +Po(Ω \
Ψ) = 1, therefore observing Vi has an effect on Po(Ψ \ Vi).
However this is not necessarily true if instead the agent is
searching for any member of an object category and the
number of them is not known in advance. Therefore knowing
whether the target object is a unique instance or a member of
an object category is an important factor in search behavior.

Recently there’s an increasing amount of work on acquiring
semantic maps. Semantic maps have parts of the environ-
ment labeled representing various high level concepts and
functions of space. Exploring and building a semantic map
while performing AVS contributes to the estimation of Po(Ψ).
The semantic map provides information that can be exploited
by leveraging on common-sense conceptual knowledge about

2

indoor environments. This knowledge describes, for example,
how likely it is that plates are found in kitchens, that a mouse
and a computer keyboard occur in the same scene and that
corridors typically connect multiple rooms. Such information
offers valuable information in limiting the search space. The
sources for those can be from online common-sense databases
or world wide web among others. Acknowledging the need
to limit the search space and integrate various cues to guide
the search, [4] proposed indirect search. Indirect search as
a search strategy is a simple and powerful idea: it’s to find
another object first and then use it to facilitate finding the target
object, e.g. finding a table first while looking for a landline
phone. Tsotsos [13] approached the problem by analyzing the
complexity of the AVS problem and showed that it is NP-hard.
Therefore we must adhere to a heuristics based solution. Ye
[15] formulated the problem in probabilistic framework.

In this work we consider the case where Ψ and Po(Ψ)
are both unknown. However, the robot is given probabilistic
default knowledge about the relation betweeen objects and the
occurences of objects in difference room category following
our previous work [1, 6].

B. Contributions

The contributions of this work are four fold. First we pro-
vide the domain adaptation of a hierarchical planner to address
the AVS problem. Second we show how to combine semantic
cues to guide the object search process in a more complex and
larger environment than found in previous work. Third, we
start with an unknown map of the environment and provide
an exploration strategy which takes into account the object
search task. Four, we present real world experiments searching
for multiple objects in a large office environment, and show
how the planner adapts the search behavior depending of the
current conditions.

C. Outline

The outline of this paper is as follows. First we present
how the AVS problem can be formulated in a principled way
using a planning approach (Section II). Section III provides
the motivation for and structure of various aspects of our
spatial representation. Finally we showcase the feasibility of
our approach in real world experiments (Section IV).

II. PLANNING

For a problem like AVS which entails probabilistic action
outcomes and world state, the robot needs to employ a planner
to generate flexible and intelligent search behavior that trade
off exploitation versus exploration. In order to guarantee
optimality a POMDP planner can be used in, i.e. a decision
theoretic planner that can accurately trade different costs
against each other and generate the optimal policy. However,
this is only tractable when a complex problem like AVS is
applied to very small environments. Another type of planner
are the classical AI planners which requires perfect knowledge
about the environment. This is not the case since both Ψ and
Po(Ψ) are unknown.
A variation of the classical planners are the so called continual
planners that interleave planning and plan monitoring in order
to deal with uncertain or dynamic environments[3]. The basic

idea behind the approach is to create an plan that might reach
the goal and to start executing that plan. This initial plan takes
into account success probabilities and action costs however
it is optimistic in nature. A monitoring component keeps
track of the execution outcome and notifies the planner in the
event of the current plan becoming invalid (either because the
preconditions of an action are no longer satisfied or the plan
does not reach the goal anymore). In this case, a new plan
is created with the updated current state as the initial state
and execution starts again. This will continue until either the
monitoring component detects that the goal has been reached
or no plan can be found anymore.

In this paper we will make use of a so called switching plan-
ner. It combines two different domain independent planners
for different parts of the task: A classical continual planner
to decide the overall strategy of the search (for which objects
to search in which location) and a decision theoretic planner to
schedule the low level observation actions using a probabilistic
sensing model. Both planners use the same planning model
and are tightly integrated.

We first give a brief description of the switching planner.
We focus on the use of the planner in this paper and instead
refer the reader to [5] for a more detailed description. We will
also present the domain modeling for the planner, and give
further details on various aspects of knowledge that planner
makes use of.

A. Switching Planner

1) Continual Planner (CP): We build our planning frame-
work on an extended SAS+[2] formalism. As a base for
the continual planner, we use Fast Downward[7]. Because
our knowledge of the world and the effects of our actions
are uncertain we associate a success probability p(a) with
every action a. In contrast to more expressive models like
MDPs or even POMDPs, actions don’t have multiple possible
outcomes, they just can succeed with probability p(a) or fail
with probability of 1− p(a).

The goal of the planner is then to find a plan π that reaches
the goal with a low cost. In classical planning the cost function
is usually either the number of actions in a plan or the sum
of all action’s costs. Here we chose a function that resembles
the expected reward adjusted to our restricted planning model.
With p(π) =

∏
a∈π p(a) as the plans total success probability

and cost(π) =
∑
a∈π cost(a) as the total costs, we get for the

optimal plan π∗:

π∗ = argmin
π

cost(π) +R(1− p(π))

where a is an action and the constant R is the reward the
planner is given for achieving the goal. For small values of R
the planner will prefer cheaper but more unlikely plans, for
larger values more expensive plans will be considered.
Assumptions The defining feature of an exploration problem
is that the world’s state is uncertain. Some planning frame-
works such as MDPs allow the specification of an initial
state distribution. We choose not to do this for two different
reasons: a) having state distributions would be a too strong
departure from the classical planning model and b) the typical
exploration problems we deal with have too many possible

3

states to express explicitly. We therefore use an approach we
call assumptive actions that allow the planner to construct parts
of the initial state on the fly, and which allows us to map the
spatial concepts to the planning problem in an easy way.

2) Decision Theoretic (DT) Planner: When the continual
planner reaches a sensing action (e.g. search location1 for a
object2), we create a POMDP that only contains the parts
of the state that are relevant for that subproblem with. This
planner can only use MOVE and PROCESSVIEWCONE actions
explained in Section II-B.2. The DT planner operates in
a closed-loop manner, sending actions to be executed and
receiving observations from the system. Once the DT planner
either confirms or rejects a hypothesis, it returns control back
to the continual planner, which treats the outcome of the DT
session like the outcome of any other action.
B. Domain Modeling

We need to discretize the involved spaces (object location,
spatial model and actions) to make a planner approach ap-
plicable to the AVS problem. Most methods make use of
discretizations as a way to handle the NP-hard nature of the
problem.

1) Representing space: For the purposes of obstacle avoid-
ance, navigation and sensing action calculation, Ψ is repre-
sented as a 3D metric map. Ψ discretised into i volumetric
cells so that Ψ = c0...ci. Each cell represents the occupancy
with the attributes OCCUPIED, FREE or UNKOWN as well as
the probability of target object’s center being in that cell.

However, further abstraction is needed to achieve reliable
and fast plan calculation as the number of cells can be high.
For this purpose we employ a topological representation of Ψ
called place map, see Fig 1(a). In the place map, the world is
represented by a finite number of basic spatial entities called
places created at equal intervals as the robot moves. Places are
connected using paths which are discovered by traversing the
space between places. Together, places and paths represent the
topology of the environment. This abstraction is also useful
for a planner since metric space would result in a largely
intractable planning state space.

The places in the place map are grouped into rooms. In the
case of indoor environments, rooms are usually separated by
doors or other narrow openings. Thus, we propose to use a
door detector and perform reasoning about the segmentation
of space into rooms based on the doorway hypotheses. We
use a template-based door detection algorithm which matches
a door template to each acquired laser scan. This creates door
hypotheses which are further verified by the robot passing
through a narrow opening.

In addition, unexplored space is represented in the place
map using hypothetical places called placeholders defined in
the boundary between free and unknown space in the metric
map.

We represent object locations not in metric coordinates but
in relation to other known objects or rooms to achieve further
abstraction. The search space is considered to be divided into
locations L. A location is either a room R or a related space.
Related spaces are regions connected with a landmark object
o, either in or on the landmark (see [1] for more details). The
related space “in” o is termed Io and the space “on” o Oo.

2) Modeling actions: The planner has access to three
physical actions: MOVE can be used to move to a place
or placeholder, CREATEVIEWCONES creates sensing actions
for an object label in relation to a specified location, PRO-
CESSVIEWCONE executes a sensing action. Finally, the virtual
SEARCHFOROBJECT action that triggers the decision theoretic
planner.

3) Virtual objects: There are two aspects of exploration in
the planning task: we’re searching for an (at that moment)
unknown object, which may include the search for support
objects as an intermediate step. But the planner may also need
to consider the utility of exploring its environment in order to
find new rooms in which finding the goal object is more likely.

Because the planners we use employ the closed world as-
sumption, adding new objects as part of the plan is impossible.
We therefore add a set of virtual objects to the planning
problem that can be instantiated by the planner as required by
the plan. This approach will fail for plans that require finding
more objects than pre-allocated, but this is not a problem in
practice. The monitoring component tries to match new (real)
objects to virtual objects that occur in the plan. This allows
us to deliver the correct observations to the DT planner and
avoid unnecessary replanning.

4) Probabilitic spatial knowledge: The planner makes use
of the following probabilistic spatial knowledge in order to
generate sensible plans:
• Pcategory(roomi) defines the distribution over room cat-

egories that the robot has a model for, for a given room
integrated over places that belongs to roomi. The planner
uses this information to decide whether to plan for a
SEARCHFOROBJECT action or explore the remaining
placeholders.

• Pcategory(placeholderi) represents the probability distri-
bution of a placeholder turning into a new room of a
certain category upon exploration. Using this distribution,
the planner can choose to explore a placeholder instead
of another, or plan to launch search altogether.

• P (ObjectAtL) gives the probability of an object o being
at location L.

More details about calculation of these probabilities are further
explained in Section III.

III. SPATIAL REPRESENTATION

5) Conceptual Map: All higher level inference is performed
in the so called conceptual map which is represented by a
graphical model. It integrates the conceptual knowledge (food
items are typically found in kitchens) with instance knowledge
(the rice package is in room4). We model this in a chain
graph [8], whose structure is adapted online according to the
state of underlying topological map. Chain graphs provide a
natural generalisation of directed (Bayesian Networks) and
undirected (Markov Random Fields) graphical models, allow-
ing us to model both “directed” causal as well as “undirected”
symmetric or associative relations.

The structure of the chain graph model is presented in Fig. 2.
Each discrete place is represented by a set of random variables
connected to variables representing semantic category of a
room. Moreover, the room category variables are connected

4

(a)

(b)

Fig. 1. (a) A place map with several places and 3 detected doors shown as
red. (b) Shows two placeholders with different probabilities for turning into
new rooms: one of them is behind a door hypothesis therefore having a higher
probability of leading into a new room. Colors on circular discs indicates the
probability of room categories as in a pie chart: i.e. the bigger the color is
the higher the probability. Here green is corridor, red is kitchen and blue is
office.

by undirected links to one another according to the topology
of the environment. The potential functions φrc(·, ·) represent
the type knowledge about the connectivity of rooms of certain
semantic categories.

To compute Pcategory(roomi) each place is described by
a set of properties such as size, shape and appearance of
space. These are are based on sensory information as proposed
in [12]. We extend this work by also including presence of a
certain number of instances of objects as observed from each
place as a properties (due to space limitations we refer to [11]
for more details). This way object presence or absence in a
room also affects the room category. The property variables
can be connected to observations of features extracted directly
from the sensory input. Finally, the functions ps(·|·), pa(·|·),
poi(·|·) utilise the common sense knowledge about object,
spatial property and room category co-occurrence to allow for
reasoning about other properties and room categories.

For planning, the chain graph is the sole source of belief-
state information. In the chain graph, belief updates are event-
driven. For example, if an appearance property, or object de-
tection, alters the probability of a relation, inference proceeds
to propagate the consequences throughout the graph. In our
work, the underlying inference is approximate, and uses the
fast Loopy Belief Propagation [9] procedure.

A. Object existence probabilities

To compute the P (ObjectAtL) value used in active visual
search in this paper, objects are considered to be occurring:

1) independently in different locations L
2) independently of other objects in the same location

Fig. 2. Schematic image of chain graph

3) as Poisson processes over cells c0...ci per location L
In other words, each location has the possibility of containing,
independently of all other locations, a number nc of objects
of a class c with probability

P (nc = k) =
λk
L,ce

−λL,c

k!
(1)

where λL,c is the expected number of objects of class c in the
location L. The probability of at least one object in a location
is

P (nc > 0) = 1− P (nc = 0) = 1− e−λi,c (2)

Because of the independence assumptions, the λ values for
a location and all its subordinate locations can simply be added
together to obtain the distribution of the number of objects of
that class occurring in that whole hierarchy.

1) Exploration: In addition to making inferences about
explored space, the conceptual map can provide predictions
about unexplored space. To this end, we extend the graph by
including the existence of placeholders. For each placeholder
a set of probabilities is generated that the placeholder will lead
to a room of a certain category.

This process is repeated for each placeholder and consists
of three steps. In the first step, a set of hypotheses about the
structure of the unexplored space is generated. In case of our
implementation, we evaluate 6 hypotheses: (1) placeholder
does not lead to new places, (2) placeholder leads to new
places which do not lead to a new room, (3) placeholder leads
to places that lead to a single new room (4) placeholder leads
to places that lead a room which is further connected to another
room, (5) placeholder leads to a single new room directly,
and (6) placeholder leads to a new room directly which
leads to another room. In the second step, the hypothesized
rooms are added to the chain graph just like regular rooms
and inference about their categories is performed. Then, the
probability of any of the hypothesized rooms being of a certain
category is obtained. Finally, this probability is multiplied
by the likelihood of occurrence of each of the hypothesized
worlds estimated based on the amount of open space behind
the placeholder and the proximity of gateways. A simple
example is shown in Fig. 1(b)

5

IV. EXPERIMENTS

Experiments were carried out on a Pioneer III wheeled
robot, equipped with a Hokuyo URG laser scanner, and a
camera mounted at 1.4 m above the floor. Experiments took
place in 12x8 m environment with 3 different rooms, kitchen,
office1, office2 connected by a corridor. The robot had models
of all objects it searches for before each search run. 3 different
objects (cerealbox, stapler and whiteboardmarkers) were used
during experiments. The BLORT framework was used to
detect objects [10].

To highlight the flexibility of the planning framework
evaluated the system with 6 different starting positions and
tasked with finding different objects in an unknown environ-
ment. We refer the reader to http://www.csc.kth.se/

˜aydemir/avs.html for videos. Each sub-figure in Fig. 3
shows the trajectory of the robot. The color coded trajectory
indicates the room category as perceived by the robot: red is
kitchen, green is corridor and blue is office. The two green
arrows denote the current position and the start position of
the robot.

In the following we give a brief explanation for what
happened in the different runs.

• Fig. 3(a) Starts: corridor, Target: cerealbox in kitchen
The robot starts by exploring the corridor. The robot finds
a doorway on its left and the placeholder behind it has a
higher probability of yielding into a kitchen and the robot
enters office1. As the robot acquires new observations the
CP’s kitchen assumption is violated. The robot returns
to exploring the corridor until it finds the kitchen door.
Here the CP’s assumptions are validated and the robot
searches this room. The DT planner plans a strategy of
first finding a table and then the target object on it. After
finding a table, the robot generates view cones for the
Otable,cornflakes location. The cerealbox object is found.

• Fig. 3(b) Starts: office2, Target: cerealbox in kitchen
Unsatisfied with the current room’s category, the CP
commits to the assumption that exploring placeholders in
the corridor will result in a room with category kitchen.
The rest proceeds as in Fig. 3(a).

• Fig. 3(c) Starts: corridor Target: cerealbox in kitchen
The robot explores until it finds office2. Upon entry
the robot categorises office2 as kitchen but after further
exploration, office2 is categorised correctly. The robot
switches back to exploration and since the kitchen door
is closed, it passes kitchen and finds office1. Not satisfied
with office1, the robot gives up since all possible plans
success probability are smaller than a given threshold
value.

• Fig. 3(d) Starts: office1 Target:stapler in office2
After failing to find the object in office1 the robot notices
the open door, but finding that it is kitchen-like decides
not to search the kitchen room. This time the stapler
object is found in office2

• Fig. 3(e) Starts: kitchen Target: cerealbox in kitchen
As before it tries locating a table, but in this case all
table objects have been eliminated beforehand; failing
to detect a table the robot switches to looking for a

counter. Finding no counter either, it finally goes out in
the corridor to look for another kitchen and upon failing
that, gives up.

• Fig. 3(f) Starts: corridor Target: whiteboardmarker in
office1
The robot is started in the corridor and driven to the
kitchen by a joystick; thus in this case the environment
is largely explored already when the planner is activated
and asked to find a whiteboardmarker object. The part
of the corridor leading to office2 has been blocked. The
robot immediately finds its way to office1 and launches
a search which results in a successful detection of the
target object.

In the following, we describe the planning decisions in more
detail for a run similar to the one described in Fig. 3(a), with
the main difference being that the cereals could not be found
in the end due to a false negative detection.

The first plan, with the robot starting out in the middle of
the corridor, looks as follows:

ASSUME-LEADS-TO-ROOM place1 kitchen
ASSUME-OBJECT-EXISTS table IN new-room1 kitchen
ASSUME-OBJECT-EXISTS cerealbox ON new-object1 table kitchen
MOVE place1
CREATEVIEWCONES table IN new-room1
SEARCHFOROBJECT table IN new-room1 new-object1
CREATEVIEWCONES cerealbox ON new-object1
SEARCHFOROBJECT cerealbox ON new-object1 new-object2
REPORTPOSITION new-object2

Here we see several virtual objects being introduced: The
first action assumes that place1 leads to a new room new-
room1 with category kitchen. The next two assumptions hy-
pothesize that a table exists in the room and that cornflakes
exist on that table. The rest of the plan is rather straightfor-
ward: create view cones and search for the table, then create
view cones and search for the cereal box.

Execution of that plan leads to frequent replanning, as the
first assumption is usually too optimistic: most placeholders
do not directly lead to a new room, but require a bit more
exploration.

After following the corridor, the robot does find the office,
and returns to the corridor to explore into the other direction.
It finally finds a room which has a high likelihood of being a
kitchen.

ASSUME-CATEGORY room3 kitchen
ASSUME-OBJECT-EXISTS table IN room3 kitchen
ASSUME-OBJECT-EXISTS cerealbox ON new-object1 table kitchen
MOVE place17
MOVE place18
MOVE place16
CREATEVIEWCONES table IN room3
SEARCHFOROBJECT table IN room3 new-object1
CREATEVIEWCONES cerealbox ON new-object1
SEARCHFOROBJECT cerealbox ON new-object1 new-object2

The new plan looks similar to the first one, except that
we do not assume the existence of a new room but the

6

(a) (b) (c)

(d) (e) (f)

Fig. 3. Trajectories taken by the robot in multiple experiments

category of an existing one. Also, the robot cannot start
creating view cones immediately because a precondition of
the CREATEVIEWCONES action is that the room must be fully
explored, which involves exploring all remaining placeholders
in the room.

After view cones are created, the decision theoretic planner
is invoked. We used a relatively simple sensing model, with a
false negative probability of 0.2 and a false positive probability
of 0.05 – these are educated guesses, though. The DT planner
starts moving around and processing view cones until it
eventually detects a table and returns to the continual planner.
At this point the probability of the room being a kitchen
is so high, that it considered to be certain by the planner.
With lots of the initial uncertainty removed, the final plan is
straightforward:

ASSUME-OBJECT-EXISTS cerealbox ON object1 table kitchen
CREATEVIEWCONES cerealbox ON object1
SEARCHFOROBJECT cerealbox ON object1 new-object2
REPORTPOSITION new-object2

During the run, the continual planner created 14 plans in
total, taking 0.2 – 0.5 seconds per plan on average. The DT
planner was called twice, and took about 0.5 – 2 seconds per
action it executed.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a planning approach to
the active object search. We made use of a switching planner,
combing a classical continual planner with a decision theoretic
planner. We provide a model for the planning domain appro-
priate for the planner and show by experimental results that
the system is able to search for objects in a real world office
environment making use of both low level sensor perceipt and
high level conceptual and semantic information. Future work
includes incorporating 3D shape cues to guide the search and
a specialized planner for the AVS problem.

REFERENCES

[1] Alper Aydemir, Kristoffer Sjöö, John Folkesson, and Patric Jensfelt.
Search in the real world: Active visual object search based on spatial
relations. In IEEE International Conference on Robotics and Automation
(ICRA), May 2011.

[2] C. Bäckström and B. Nebel. Complexity results for SAS+ planning.
Comp. Intell., 11(4):625–655, 1995.

[3] Michael Brenner and Bernhard Nebel. Continual planning and acting in
dynamic multiagent environments. Journal of Autonomous Agents and
Multiagent Systems, 19(3):297–331, 2009.

[4] Thomas D. Garvey. Perceptual strategies for purposive vision. Technical
Report 117, AI Center, SRI International, 333 Ravenswood Ave., Menlo
Park, CA 94025, Sep 1976.

[5] Moritz Göbelbecker, Charles Gretton, and Richard Dearden. A switching
planner for combined task and observation planning. In Twenty-Fifth
Conference on Artificial Intelligence (AAAI-11), August 2011.

[6] Marc Hanheide, Charles Gretton, Richard W Dearden, Nick A Hawes,
Jeremy L Wyatt, Andrzej Pronobis, Alper Aydemir, Moritz Göbelbecker,
and Hendrik Zender. Exploiting Probabilistic Knowledge under Uncer-
tain Sensing for Efficient Robot Behaviour. In Proc. Int. Joint Conf. on
Artificial Intelligence (IJCAI), 2011.

[7] Malte Helmert. The fast downward planning system. Journal of Artificial
Intelligence Research, 26:191–246, 2006.

[8] S. L. Lauritzen and T. S. Richardson. Chain graph models and their
causal interpretations. J. Roy. Statistical Society, Series B, 64(3):321–
348, 2002.

[9] J. M. Mooij. libDAI: A free and open source C++ library for discrete
approximate inference in graphical models. J. Mach. Learn. Res.,
11:2169–2173, August 2010.

[10] T. Mörwald, J. Prankl, A. Richtsfeld, M. Zillich, and M. Vincze. BLORT
- The blocks world robotic vision toolbox. In Workshop on Best Practice
in 3D Perception and Modeling for Mobile Manipulation at ICRA 2010,
2010.

[11] Andrzej Pronobis and Patric Jensfelt. Hierarchical multi-modal place
categorization. In submitted to ECMR’11, 2011.

[12] Andrzej Pronobis, Oscar M. Mozos, Barbara Caputo, and Patric Jensfelt.
Multi-modal semantic place classification. The International Journal of
Robotics Research (IJRR), Special Issue on Robotic Vision, 29(2-3):298–
320, February 2010.

[13] J. K. Tsotsos. On the relative complexity of active vs. passive visual
search. International Journal of Computer Vision, 7(2):127–141, 1992.

[14] S. Vasudevan and R. Siegwart. Bayesian space conceptualization and
place classification for semantic maps in mobile robotics. Robot. Auton.
Syst., 56:522–537, June 2008.

[15] Yiming Ye and John K. Tsotsos. Sensor planning for 3d object search.
Comput. Vis. Image Underst., 73(2):145–168, 1999.

