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Abstract— Objects are integral to a robot’s understanding
of space. Various tasks such as semantic mapping, pick-and-
carry missions or manipulation involve interaction with objects.
Previous work in the field largely builds on the assumption that
the object in question starts out within the ready sensory reach
of the robot. In this work we aim to relax this assumption
by providing the means to perform robust and large-scale
active visual object search. Presenting spatial relations that
describe topological relationships between objects, we then
show how to use these to create potential search actions. We
introduce a method for efficiently selecting search strategies
given probabilities for those relations. Finally we perform
experiments to verify the feasibility of our approach.

I. INTRODUCTION
Service robots – robots that perform everyday tasks in

everyday settings, whether domestic, office or other – are an
eagerly anticipated goal within autonomous agent research.
Compared to industrial robots, progress in service robotics
has been relatively slow to date. This discrepancy is largely
due to the fact that the environments service robots have to
cope with are far more dynamic, unpredictable and “human-
oriented” than those encountered by their industrial brethren.

Much work is going into overcoming the problem of
making sense of complex environments, especially using
vision. Key in this effort is the apprehension of objects.
Objects hold an important role in human perception of space
[1]. Localizing and interacting with them lies at the heart of
various robotics research challenges, and while there is no
shortage of open questions in dealing with objects, the bulk
of previous work relies on the assumption that the particular
object in question is already within the sensory reach of the
robot. An often stated reason for this is tasks such as object
recognition and object manipulation are already challenging
enough. Nevertheless, as the field advances in its aim to
build versatile service robots, the assumption of objects being
readily available in the field of view of robot’s sensors is no
longer reasonable.

A mobile robot operating in the real world will have to
interact with objects of varying size, shape and degree of
mobility, to name a few complications. One way around
the issue is to let the environment keep track of the objects
and report their location when asked; however, this creates
a dependency on an intelligent environment. Thus, it is
imperative to be able to reliably locate objects visually in
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the real world in order to perform tasks such as place
categorization, fetching and carrying, and manipulation.

The goal of object search, then, is to produce a set
of sensing actions which brings the target object into the
sensor’s field of view. For efficiency, it should consist of a
minimum number of sensing actions with maximal object
detection probability. This is an example of active vision
[2]. In the context of object search we refer to this as active
visual search (AVS).

Considering the case of searching for a 3D object in 3D
space, solving the AVS problem is far from trivial. Factors
such as occlusion and illumination affect the search outcome
significantly; therefore, to construct and execute such a plan,
the searcher must actively adjust its sensor parameters to
obtain the highest quality data. Search within the context
of an agent’s current sensory input has been investigated in
some detail in [3], [4]. However, the problem of search on a
mobile platform, in a real world environment has seen less
activity.

Most significantly, the mobile AVS problem has a dimen-
sionality proportional to the number of sensor parameters
that can be actively controlled – such as the position and
orientation of a sensor, for each action. Uninformed search,
i.e. without any prior information on the target object’s
location, inevitably suffers from the curse of dimensionality.
The pioneering work done by Tsotsos [5] showed that the
problem of optimal search is NP-hard. [6] provided the
probabilistic framework for performing object search which
is based on the Bayesian theory. Using the same probabilistic
framework [7] performed experiments on a humanoid robots
in a real world setting. [8] presented an approach where the
robot uses visual cues to further examine a particular part of
the search space.

In 1976, Garvey presented indirect search as a way of
limiting the search space [9]. Indirect search involves first
locating an intermediate object in order to facilitate the
search for the target object. An example of this is finding
the table first and then focusing on top of the table to find a
cup in a room. Later on, Wixson [10] showed that indirect
search provides a significant increase in search efficiency.

More recently the AVS problem has seen increasing inter-
est. [11] uses spatial relations to guide the search process.
[12] presents a system that creates object maps. [13] applies
the methodology used in a pursuit-evasion scenario to the
AVS problem providing a new insight but with limited
experiments. [14] studies the case where a robot simultane-
ously explores and searches for objects. [15] uses object co-
occurrence histograms to locate objects in the environment
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represented as a SLAM map. [16] focuses on getting the
6DoF pose of the object and uses probability maps to plan
the search.

A. Contributions

In this work we consider the case of a mobile robot looking
for an object in an indoor environment. Contributions of this
work are four-fold. First we provide an application of pre-
viously introduced spatial relations in a robotics framework,
by basing a strategy for AVS on them. Second, we present
several variants of a method for selecting a near-optimal
strategy, and compare them in the context of object search.
Third, we demonstrate a method for robust execution of a
set of strategies, by taking into account failed strategies and
re-evaluating possible strategies. Finally, we demonstrate the
above ideas by implementing them on a mobile robot.

II. SEARCH IN THE REAL WORLD

Imagine a robot tasked with visually locating and fetching
a cell phone located somewhere on a floor of a medium
sized building. Without any a priori information on the
object’s whereabouts the robot, in the worst case, must cover
the entire volume of each of the rooms on that floor. To
accomplish this, the robot calculates a search plan which
includes a series of sensing actions with the hope that this
plan will lead to localizing the said object. Sensors, and
in particular cameras, have a limited field of view and a
particular object can only be reliably detected within some
interval of ranges. Covering the entire environment will
be very time consuming and appear quite inefficient to
human observers. Therefore a robotic system would greatly
benefit from starting its search with some initial information
and thereby a non-uniform a priori probability distribution
function (PDF) defined over the volume of search space.

Assume there is such a PDF defined over the metric space,
as is done in [16], [13], [7]. A robot making use of such a
priori information will perform better than the aforemen-
tioned uninformed search, given that its initial PDF is an
accurate representation of the real world’s state. However
this representation of probabilities would suffer from being
susceptible to small changes in the environment since no
abstraction over the metric space is present. An obvious
example would be an object moved from one end of a
meeting table to another. Such a system would detect the
absence of the object and proceed with a full-fledged search
in the entire environment.

Furthermore, several different PDFs for various objects
will be harder to maintain and use as the environment
grows in size. This has led to experiments in the previous
work being done in a very limited search space, as it is
computationally expensive to run such a system in larger
environments. Finally, a robot interacting with humans is
likely to receive information on an abstract level and not
on the metric level. Humans describe positions not by exact
coordinates but by relations to other entities in the environ-
ment. Thus metric level systems will need some mechanism
to help them interpret such information. On the other hand,

a system that does not take into account lower level aspects
might perform poorly through failing to take account of such
low level factors as occlusions, limited sensor range, and
illumination.

III. PROBLEM FORMULATION

All of the above points out the necessity of introducing
higher level abstraction to the AVS problem, while still
meeting the lower-level challenges of a real world scenario.
We accomplish this by introducing functional definitions of
spatial relations to the AVS problem.

The main issue that this work aims to deal with is: given
information – possibly uncertain – about spatial relations
between objects in an environment, how is the agent to
organize an efficient search aimed at finding a given object?

A. Choosing a next best view

We introduce the next best view selection algorithm fol-
lowing the formulation of [6]. The robot has an initial PDF
over the 3D space Ψ. The search region Ψ is discretized
by tessellating it into 3D cubes c1...cn. A sensing action
s is then defined as taking an image of Ψ and running a
recognition algorithm to determine whether the target object
o is present in the image or not. In the general case, the
parameter set of s consists of camera position (xc, yc, zc),
pan-tilt angles (p, t), focal length f and a recognition algo-
rithm a; s = s(xc, yc, zc, p, t, f, a).

An agent starts out with an initial PDF for the target
object’s location over Ψ. We assume that there is exactly
one target object in the environment either inside or outside
the search region. Let p(ci) be the probability of the object’s
center being in the ith cell.

The next best view selection is then defined as:

argmax
j=1..N

n∑
i=1

p(ci)S(ci, j) (1)

Where N is the number of candidate sensing actions and
S is defined as:

S =

{
1, if ci is covered by the jth sensing action
0, otherwise

Finally, the set of candidate view points is determined by
randomly sampling the reachable space in Ψ.

B. Search Strategies and strategy steps

We wish to determine the strategy that minimizes the
expected cost to find the target object. A strategy consists
of a sequence of steps, each of which is a search procedure
in its own right: a “simple” search, looking for an object
given some specific prior probability distribution.

For example, a strategy might be composed of the steps
1) Go to room 1
2) Search for the table (which could be anywhere in the

room)
3) Search for the box on top of the table
4) Search for the book inside the box
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Another strategy might be
1) Go to room 1
2) Search for the box, which could be anywhere in the

room but at a height compatible with being on the table
3) Search for the book inside the box

In this case, the robot uses the relational information directly,
without the extra step of localizing the table.

The objective, then, is to find the most efficient sequence
of steps, out of all sequences that lead to the target object.

Each strategy step, such as “the box on the table” cor-
responds to a 3D PDF (Figure 2). The step is carried out
by greedily generating a set of potential view points, as
described in III-A. The process is continued until the object is
found, or the remaining probability is lower than a threshold
(we set it to 30%), in which case it is deemed that the current
strategy step has failed.

The cost of a strategy step is calculated as follows: First
a 3D PDF corresponding to a strategy step is calculated.
Then the set of next best view points that covers 70% of
this PDF is generated in accordance with III-A. Finally the
total distance travelled to visit all the view points in the set
is calculated. The cost thus is based on the total amount of
movement until a certain proportion of the initial probability
is covered.

IV. SPATIAL RELATIONS AND SEARCH
Objects in environments that are created and used by

human beings do not occur randomly. Rather, people design
and organize spaces in ways that serve various functional
purposes. This organization is expressible in terms of spatial
relations.

Spatial relations are abstractions of the configuration in
space of objects, such as their distances, directions or
topological relationships. These help humans structure and
remember aspects of their environment, and are likewise of
great potential use when a robot has to search for objects in
that same environment.

We make use of two of the most important topological
spatial relations: “in” (meaning that an object is contained
in the convex hull of another) and “on” (meaning that one
object is being physically supported by another). The object
that contains or supports is termed the “landmark”, while the
other is termed the “trajector”.

In [11] a detailed computational model for each of these
relations is proposed, and a method for computing a prob-
ability density, as might be used by an AVS procedure, is
presented. These models take the form of functions that
take the pose and geometry of two objects and yield a
scalar measure of how applicable the relation “on” or “in”,
respectively, is to the configuration in question. High values
mean the trajector’s pose corresponds very well to being
“on”/“in” the landmark. These functions, when normalized
over 3D space, produce probability density functions that can
be directly used in AVS.

Given the position of a landmark, this method drastically
reduces the search space when looking for a trajector that
has a known spatial relation to that landmark. Even when

the landmark’s position is not known the spatial relation
information may help accelerate the search by biasing the
distribution.

[11] assumes that the robot has complete knowledge of
which relations hold. This is not the typical case, however;
rather, what is given will be a probability distribution over
possible relations, gleaned from common-sense knowledge
databases or learned from experience in real environments.
The question then becomes how best to investigate the
different possible relational configurations in order to find
the sought object at as low a cost as possible.

V. STRATEGY SELECTION

The object search strategy selection is modeled as a
Markov decision process, MDP, over the belief state. The
target object location is represented by an n-tuple of booleans
s. Each element corresponds to a relational description of the
object location such as: “book on table in livingroom”. We
refer to these descriptions as configurations for the object.
An element of s is true if the object has the configuration
in question. The configurations are not mutually exclusive.
We restrict ourselves to configurations that contain a specific
room. The s is a discrete random variable. Its probability
evolves as the robot searches for the object. This probability
is the belief state of the MDP.

The actions, a, are specific strategies for searching con-
figurations. A single configuration will always have a direct
search strategy which is to search for the object with the
a priori distribution of object locations dependent on the
configuration as a whole. Some configurations will also have
indirect search strategies with several steps, as exemplified
in Sec. III-B. Each action has a set of possible final states
and costs. The state transitions consist of either finding the
object or failing at some step. Finding the object changes the
belief to certainty and ends the search; failing at some step
changes the probabilities of the configurations and the costs
of future actions.

The probabilities change by the Bayes update rule:

p(s|z) = p(z|s)p(s)/p(z) (2)

where z is the observation of failing the current step. The
probability of successfully finding the object in a step given
a specific configuration is the sum of the probability mass
covered by all the view cones selected during that step.

Costs of actions are based on an estimate of robot motion
needed to carry out the action, including travel to the room
and movement between the selected view points. After a
failed step, costs for subsequent actions may be decreased,
if the search located objects that are intermediate steps in
those actions.

The Bellman equation without discount for this system is:

V (x) = max
a

(R(x, a) +
∑
x′

p(x′|x, a)V (x′)). (3)

Where x and x′ are belief states and V is the value
function which here is the negative expected cost. The
maximum is taken over all actions (i.e. search strategies)
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and the sum is over the various possible transitions states
x′ from x under action a. The optimal action would be the
argument of the maximum.

Without a discount on future costs and without any
certainty of finding the object, a stopping criterion for the
search is required, or the expected cost will be infinite. The
choice of stopping criteria will affect the optimal policy. The
search terminates when the probability of the object being
in a room is below some threshold for every room. One
could also use the probability of a configuration or just the
posterior probability of the object being in the environment.
A stopping criterion at the room level is useful as it allows
for exploiting the separation of the search into rooms to make
policy computation tractable.

We further simplify the policy calculations by limiting the
state transitions to either success or failure at the final step.
This means that we need not update the probabilities of the
intermediate configurations, e.g., “table in livingroom”.

The expected cost for an action selection policy, π is:

< cost|π >= E0(π) = Cn(π) +Qn(π)En(π) (4)

where En(π) is the expected cost of the continued search
given that the nth policy action failed.

Qn(π) = Qn−1(π)(1− pn(π)) (5)

where pn(π) is the probability of success on the nth action
given that the previous actions all failed. Qn is the probabil-
ity of failing n steps. Then suppressing the dependence on
the policy π:

Cn = Cn−1 +Qn−1(pncsn + (1− pn)cfn (6)

where csn and cfn are the expected cost of success and
failure respectively.

We can now compute the expected cost of any policy if we
knew En(π). It can be approximated based on Qn. Qn starts
as Q0 = 1.0 and is then reduced as n increases, asymptoti-
cally approaching Q̄ which is the a priori probability that the
object is not in the environment. Qn is therefore a measure of
the progress of our search. We will explore two assumptions
on En: i), it is simply a constant or ii), it is proportional to
(Qn − Q̄).

The constant assumption leads to the problem of choosing
a specific constant. We use two methods of selecting this
constant future cost. First, introducing a parameter Ē chosen
based on typical search costs.

E0 = Cn +QnĒ. (7)

Second, use Eq.(4) to estimate the constant by setting
En = E0.

E0 = Cn +QnE0 → E0 = Cn/(1−Qn). (8)

Similarly, using the second assumption on En we find:

E0 = Cn/(1−Qn(Qn − Q̄)/(1− Q̄)), n > 0. (9)

Once an assumption has been made one can find a well-
defined optimal action by setting the depth of the policy
search, n, or the number of steps to project the MDP. The
larger n is the smaller the effect of our approximation;
however, the number of belief states grows exponentially
with n. This makes simple exhaustive search of all paths
impractical for more than a few steps. If the greedy search
n = 1 is used the search will often be sub-optimal; for
example, moving from one room to another carries a large
cost and should not be chosen until the current room has been
well searched, whereas the cost of returning to the room later
is not considered by the greedy search.

Search over multiple rooms is complex. Nevertheless if the
search were restricted to one room the sequence of actions
would be independent of the state of the search in the other
rooms. The magnitude of the problem may thus be greatly
reduced by finding the optimal search sequence for each
room separately. We then only need to optimize the choice
of room at each step, knowing the sequence of actions to
take given the room.

Within a room the greedy strategy works well so long as
there are no dependencies between the separate configura-
tions. Such independence does not hold in general. In some
cases a configuration is made easier to search by having
failed on some earlier search; e.g., finding the book on the
table after having found the table on a previous failed search.
These special configurations can be enumerated. We then do
a restricted forward projection of the MDP within a room
by choosing at each step to project the lowest expected cost
policy from the previous step and the lowest cost policy out
of those that contain the special configurations for each of
the special configurations. In this way we are not likely to
miss an advantage from these dependencies.

During policy evaluation we look at all sequences of room
choices out to our search depth, choosing for each room the
next action from the list of optimal actions found for that
room. We then take the sequence of actions the has the lowest
expected cost.

This gives us an efficient way to reduce the search over
policies, breaking the problem up first into rooms and then
into searches containing a limited number of policies at each
step.

VI. EXPERIMENTS

A. Simulation

We used simulations to verify that our action selection
policies could produce lower cost searches on average. The
MDP model matches the simulation while the actual imple-
mented object search on the robot is not modeled perfectly
in the MDP used for policy selection. Besides not being able
to model the uncertainty in object recognition for all viewing
angles, we also could not model other relatively random
aspects of the real world robot, such as chance recognition of
the tables and furniture that might help with later searches.

The simulations were done by varying the a priori distri-
bution of the object over configurations. We set these ran-
domly and then computed the action under a policy. We then
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Fig. 1. We show the simulated expected costs for the example of four
rooms using the three policies vs. n, the depth of the policy’s search over
actions.

found the next action under the policy for the contingency
of failure. We continued until the search would have ended
due to our stopping criteria. Then we computed the expected
cost of executing the entire sequence of actions using Eq. (4)
where En is zero when we reach the stopping point. All
policy variations were checked on this initial distribution.
Finally a new random distribution was then selected and
the process repeated. We performed 100 distributions and
computed the resulting performance for various policies and
depth of search. In this way we could see how the three
assumptions on En, the depth of search, and the size of the
environment affect the expected cost of search.

We found that the best expected costs were found by using
equation (8). Figure (1) shows the expected costs vs depth
of search for our policies 1, 2, and 3 using Eq. (7), Eq. (8)
and Eq. (9) respectively. One can see that the cost drops
about 20-25% by searching out 3 steps. It then does not
change significantly by extending the search to more steps.
The standard deviation at these points was about 300-450.
This shows that policy 2 is expected to outperform the other
two and that there is some gain to looking several steps
ahead.

We also compared to exhaustive searching all actions out
to three steps. This took on average 450 ms to compute an
action and had an expected cost of 3900. This compares to
the time 0.4 ms for our policies 1, 2, and 3 which achieved
about this same level of cost at 3 steps. Exhaustive searching
to two steps took 10 ms and a cost of 4250 vs. about 0.2 ms
for policies 1, 2, and 3. So our exploiting the separation into
rooms reduced the exponential growth from a factor of 45
to 2 even with only 4 rooms.

We also looked at much larger environments of up to 10
rooms. For instance for a 10 room environment policy 2 with
5 steps was 12% better than a 1 step policy. For 10 rooms
and five steps, policies 1, 2 and 3 all took around 500 ms to
compute an action at 5 step depth.

B. Robot experiments

1) Setup: In order to demonstrate its practical workability,
we also implemented and tested our approach on a real-
world autonomous system. Experiments were carried out on
a Pioneer III wheeled robot, equipped with a Hokuyo URG

Fig. 2. An example PDF (shown in purple color) that corresponds to the
relation “book on bookcase” and selected view point during an actual run.
The map containing two rooms is also shown.

laser scanner, and a camera mounted at 1.4 m above the floor.
Experiments took place in two different rooms, connected by
a corridor that the robot could traverse whenever it decided to
search the other room. A SLAM implementation [17] carried
out localization using a previously built map.

(a) Robot in room 1 searching “book in box on
table”

(b) Robot in room 2 searching “book in crate”

Fig. 3. The robot used during experiments in two different rooms
performing strategies

Room 1 contained the following fixed, identifiable objects:
One small and one large bookcase, and one table; room 2
contained another table and a set of shelves. Mobile objects
used were a cardboard box, a metal crate and a book (the
target object).

The given initial belief state across configurations is pre-
sented in Table I. Note that the probabilities do not sum
to 1; rather, configurations subsume each other; for ex-
ample, book ON table IN room1 contains book IN
box ON table IN room1 as a special case. (In other
words, the probability that the book is on the table but not
in the box is zero.)

2) Selected policy: The policy chosen given the same ini-
tial belief state, maps and object geometries is deterministic;
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Configuration Probability
book IN room1 0.55
book ON table1 IN room1 0.05
book ON small bookcase IN room1 0.30
book IN small bookcase IN room1 0.05
book IN large bookcase IN room1 0.05
book IN box ON table1 IN room1 0.05
book IN box IN room1 0.15
book IN room2 0.40
book ON table2 IN room2 0.05
book IN crate IN room2 0.30
book IN shelves IN room2 0.05

TABLE I
INITIAL CONFIGURATION PROBABILITIES USED IN EXPERIMENTS

Go to room1
↓

Search for small bookcase
↓

Search for book ON small bookcase
↓

Search for box
↓

Search for book IN box
↓

Go to room2
↓

Search for crate
↓

Search for book IN crate
↓

Object not found

TABLE II
POLICY GENERATED DURING EXPERIMENTS

for the above state, the policy chosen (assuming the book was
never detected) is presented in Table II. The robot performs
indirect search on the most likely landmarks in the first room,
then moves on to the second room. The search is aborted if
it fails all three strategies, the cost-to-probability ratio for the
remaining possibilities falling below the threshold.

3) Results – Accurate probabilities: The system was run
20 times, with the target object placed at each configuration
a number of times commensurate with the configuration
probabilities provided the robot. The results were as follows:

Configuration Freq. Success Avg.
views

ON sm bookcase IN r1 6 6 2.67
IN sm bookcase IN r1 1 1 5
ON lg bookcase IN r1 1 0 20
IN box ON table1 IN r1 1 1 7
IN box IN r1 3 2 10
ON table2 IN r2 1 0 22
IN crate IN r2 6 5 11.17
IN shelves IN r2 1 0 19
Overall 20 15 9.6

The results show that the policy selected for the given
probabilities performs well, catching most of the config-
urations whose cost-to-probability ratio are not below the

threshold. A different threshold would naturally mean more
strategies examined, and thus longer searches, but also fewer
failures.

4) Results – Inaccurate probabilities: To confirm that
the proposed strategy selection algorithm makes proper use
of the probabilities it is given, we also carried out two
tests in which the robot was provided different configuration
probabilities from those listed above, producing different
search policies accordingly. It was then estimated, based
on this and the previous runs, how successful and costly
those policies would be, given that the reality (i.e. the actual
configurations) were the same as originally.

Case 1: By shifting 0.2 worth of probability mass away
from “book ON small bookcase IN room1” to “book IN
large bookcase IN room1”, and similarly swapping the prob-
abilities of “book IN crate IN room2” and “book ON table2
IN room2”, a policy is generated which tries strategies in
this order: First “book IN box IN room1”, then “book IN
large bookcase IN room1”, and finally “book ON table2 IN
room2”.

Case 2: Similarly, swapping “book ON small bookcase IN
room1” with “book ON table1 IN room1” and “book IN crate
IN room2” with “book ON table2 IN room2” yields strategies
in the sequence: “book ON table1 IN room1”, “book IN box
IN room1” and “book ON table2 IN room2”.

When these two policies, based on modified probabilities,
are applied to the set of configurations drawn from the
probabilities in Table I, (simulated) success rates and view
counts worsen considerably:

Run Appr. avg. views Appr. success rate
Accurate 9.6 75%
Inaccurate 1 19.7 25%
Inaccurate 2 12.1 20%

These results indicate that the strategy selection algorithm
does indeed make proper use of the probabilistic information
it is provided.

C. Conclusions

We have presented a method for robust and scalable AVS
using spatial relational information. We have introduced the
idea of using object-object spatial relations as an abstraction
method for AVS. We showed how groupings of spatial
relations can be used as search strategies in the context of
AVS. Furthermore, we provide a decision theoretic strategy
selection method to obtain a near-optimal search behavior
and to handle cases where some strategies fail to find the
target object. We have finally concluded through real world
experiments the feasibility and correctness of our presented
ideas.

Using spatial relational information as a way of influenc-
ing object search greatly improves both the search efficiency
and outcome. However the search performs poorly when
the probabilities associated with these strategies do not
correspond to the real world.
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D. Future Work and Discussion

Directions for future investigation involve making use of
dense 3D point cloud representation of scenes to guide the
search. The functional aspects of our everyday world mean
that 3D structure provides better cues to object locations
compared to using only visual appearance. Therefore ex-
ploiting shape properties of scenes would be beneficial for a
searcher robot.

In the experiments section the qualitative object location
probabilities are given to the system manually beforehand
and they are not updated based on the search result. Instead
of hard-coded probabilities, we would like to give the robot
access to a database of spatial knowledge. Abstracting this
knowledge makes the the problem tractable and the knowl-
edge representation more robust. This knowledge can be
mainly regarded as spatial common sense knowledge that
is not environment specific. For instance, the category of a
room can be used to build a prior over the objects that are
more likely to be found in that room [18]. Such general
knowledge can be learned by the robot over the course
of its operation, but can also be transferred from humans
either directly or by an analysis of annotated databases (e.g.
LabelMe [19], ConceptNet [20]) or results gathered using
Internet search engines.

It also is important to develop the methods to maintain
these probabilities over very long periods of time so that
the searcher robot can adapt to its environment. One future
direction is designing a probabilistic graphical model repre-
senting spatial knowledge at the conceptual level in order to
perform inference on object locations using common sense
knowledge and various types of information acquired from
the robot’s sensors. We propose to structure the abstracted
spatial knowledge according to a semi-probabilistic ontolog-
ical representation that combines high level spatial concepts
as well as relationships between those concepts and instances
of objects and rooms in the environment.

In order to fully represent the statistical dependencies
between the random variables expressing the uncertainties
captured by the representation, we need a more expressive
model such as Bayesian Networks (BN) or Markov Random
Fields (MRF).

However, in order to capture the different types of de-
pendencies that exist in the model, as a future research
direction we suggest using chain graph models, being a
natural generalization of the above. Chain graph models
have the advantage over either BNs or MRFs of being
able to express both strictly causal relationships as well as
symmetric and associative relations, both of which can be
identified in representation of spatial knowledge [21].
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