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Abstract—In this work we consider a mobile robot tasked with
finding an object in an unknown office floor. Object search in real-
istic large environments is a crucial step for various mobile robot
missions. We describe our spatial representation which grounds
human-level spatial concepts in lower level representations for
efficient informed object search and exploration. We present
a principled planning approach to the visual search problem.
Finally we perform real world experiments, in a larger and more
complex environment than found in previous work.

I. INTRODUCTION

Finding objects in large environments with complex scenes
is a necessary step for various mobile robot tasks. It is evident
that a strategy that involves examining every possible scene is
not feasible. A key insight is that the robot needs a relevant
spatial representation that allows for efficient search as well
as suitable vision algorithms. Furthermore the representation
should take into account high level semantic components of
space and ground them in the lower level spatial concepts.
Finally to make use of such a representation, a principled
way of selecting which action to take in order to bring the
target object in the limited field of view of the robot is
needed. In this work, we bring these components together to
build a searcher robot. Tsotsos [9] showed that the problem
of optimal visual search is NP-hard. Kollar and Roy [3]
uses object co-occurrence histograms to locate objects in
the environment represented as a SLAM map. Let Ψ be a
3D search region and s be a sensing action for localizing
an object o. The parameterization of s consists of camera
position (xc, yc, zc), pan-tilt angles (p, t), focal length f and
a recognition algorithm a; s = s(xc, yc, zc, p, t, f, a). Let S
be the set of all possible sensing actions with S = s0...st
within Ψ. Also let Po be the probability density function over
S whose structure is unknown. We define the object search
problem as calculating the subset of S which is most likely
to bring the target object in the field of view of the robot.

II. REPRESENTING SPACE

The proposed spatial representation consists of three sub-
representations focusing on different aspects of space, from
low-level sensory input to high-level conceptual symbols.
Firstly, we maintain a 3D metric map which supports view-
point selection for object search as well as obstacle avoidance
and path planning. Then, a topological map called place map
is generated which maintains the topology of the environment.
Finally, all these sources of information are integrated in
a conceptual map which ties symbols representing instance
knowledge about the environment (e.g. room1, object1) with
spatial concepts such as objects (a book), room categories
(a kitchen) or appearances (a kitchen-like appearance) and
enables inference about those concepts.

In the place map, the world is represented by a finite number
of basic spatial entities called places created at equal intervals
as the robot moves. Places are connected using paths which are
discovered by traversing the space between places. Together,
places and paths represent the topology of the environment.
This abstraction is also useful for a planner since metric space
would result in a largely intractable planning state space.

The places are futher segmented into rooms by detecting
doors in the environment. In addition, unexplored space is
represented in the place map using hypothetical places called
placeholders defined in the boundary between free and un-
known space in the metric map. Placeholders are used to
represent candidate exploration actions to drive exploration.
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Fig. 1. (a) A place map with several places and 3 detected doors shown as
red. (b) Shows two placeholders with different probabilities for turning into
new rooms: one of them is behind a door hypothesis therefore having a higher
probability of leading into a new room. Colors on circular discs indicates the
probability of room categories as in a pie chart: i.e. the bigger the color is
the higher the probability. Here green is corridor, red is kitchen and blue is
office.

The system employs categorical models which perform
abstraction of the sensory information into an environment
independent set of spatial properties such as room shape
(elongated and square) and appearance (office-like, kitchen-
like, corridor-like and meeting room-like). These models are
used to infer the room category of each place in the place map.



Fig. 2. Schematic image of spatial representation modeled as a chain graph

We use the models proposed in [7] to represent the properties
which combine Support Vector Machines with global visual
features extracted from camera images (in case of appearance)
and simple geometrical features extracted from laser range
data (in case of shape).

All higher level inference is done according to a unified
model integrating the conceptual knowledge with instance
knowledge about the environment. That unified model is
expressed using a chain graph [4], whose structure is adapted
online according to the state of underlying topological map.

The structure of the chain graph model is presented in Fig. 2.
Each discrete place is represented by a set of random variables
connected to variables representing semantic category of a
room. Moreover, the room category variables are connected
by undirected links to one another according to the topology
of the environment. The potential functions φrc(·, ·) represent
the type knowledge about the connectivity of rooms of certain
semantic categories.

The remaining variables represent shape and appearance
properties of space and presence of a certain number of
instances of objects as observed from each place. These can be
connected to observations of features extracted directly from
the sensory input. These links are quantified by the categorical
models in the place map. Finally, the functions ps(·|·), pa(·|·),
poi(·|·) correspond to size, appearance and object presence of
places, respectively. In our work the common sense knowl-
edge is handcrafted, ideally this can originate from various
sources [3]. However we note that, any initial probability will
be inevitably inaccurate for a specific environment. Therefore,
a plausible set of initial probabilities suffices and the emphasis
should be on building adaptive representations.

For planning, the chain graph is the sole source of belief-
state information. The underlying inference is approximate,
and uses the fast Loopy Belief Propagation [5] procedure.

III. EXPLORATION

Each placeholder represents a candidate exploration action.
By adding hypothetical places instead of placeholders in the
chain graph, we calculate a probability distribution over room
categories for each placeholder, which is then used by the
planner to decide which placeholder to pursue. The calculation
of the probability distribution for placeholders has three steps.

In the first step, a set of hypotheses about the structure of
the unexplored space is generated. 6 hypotheses for each
placeholder are evaluated: (1) placeholder does not lead to
new places, (2) placeholder leads to new places which do
not lead to a new room, (3) placeholder leads to places that
lead to a single new room (4) placeholder leads to places
that lead a room which is further connected to another room,
(5) placeholder leads to a single new room directly, and (6)
placeholder leads to a new room directly which leads to
another room. In the second step, the hypothesized rooms are
added to the chain graph just like regular rooms and inference
about their categories is performed. Then, the probability of
any of the hypothesized rooms being of a certain category
is obtained. Finally, this probability is multiplied by the
likelihood of occurrence of each of the hypothesized worlds
estimated based on the amount of open space behind the
placeholder and the proximity of gateways. The outcome for
a simple case can be seen in Fig. 1(b).

IV. REPRESENTING OBJECT LOCATION

Central to the task of active visual search is the model used
to represent the possible locations of sought objects (as well as
other objects that may have a relation to a sought object), and
the probabilities associated with these locations. The search
space is considered to be divided into locations L. A location
is either a room R or a related space. Related spaces are
regions connected with a landmark object o, either in or on
the landmark. The related space “in” o is termed Io and the
space “on” o Oo.

The use of spatial relations on and in provide a meaningful
way to cut down the search space. This aspect is crucial since
searching everywhere would be highly inefficient. Further-
more, we utilise a natural hierarchical organisation of human-
designed spaces, which tend to be conspicuously abundant
with both containers and surfaces for placing other objects
on. We consider locations to be exclusive, so that if o is in R,
an object in Io is not in R. The hierarchy of object locations
structure space efficiently and in a way it’s straightforward to
communicate to humans. Given a location to be searched, a
series of concrete view points must be determined. Let ΨL be
the portion of tesselated 3D metric space which corresponds to
a location L. We calculate the probability distribution over ΨL,
PL, using the perceptual definitions in our previous work [8].
This gives us a distribution over the fine grained metric space.
From this distribution, view points (i.e., a camera position and
orientation, along with the 3D cone it covers) are calculated
so as to cover PL to a certain threshold as presented in [1].

We assume that locations contain objects independently of
each other and independently of other objects in the same
location. Furthermore, we model PL over the metric grid map
for each location as a Poisson process. A Poisson process
describes the outcome of N independent events, in our model
each event is the probability of the target object being at a
certain cell in ΨL. After the robot has processed a sensing
action, the probability distribution over the observed location
is observed is updated according to our sensor model [1].



V. PLANNING

In order to exploit the spatial model, a good decision
making component is needed. Two different domain inde-
pendent planners are used for different parts of the task
presented in detail [2]: A classical continual planner (CP)
to decide the overall strategy of the search (for which objects
to search in which location) and a decision theoretic planner
(DT) to schedule the view cone actions using a probabilistic
sensing model. Both planners use the same planning model
and are tightly integrated. The planner has access to three
physical actions: MOVE can be used to move to a navigational
node, CREATEVIEWCONES creates view cones for a label in
relation to a specified location, PROCESSVIEWCONE moves
to a viewcone and uses the vision module to detect the
object the cone was created for. There is also the virtual
SEARCHFOROBJECT action that triggers the decision theoretic
planner. Each action has an associated cost. For the MOVE and
PROCESSVIEWCONE action this corresponds to movement
cost, SEARCHFOROBJECT’s cost is dependent on object’s size
and CREATEVIEWCONES action has a fixed cost.

VI. EXPERIMENTS

Experiments were carried out on a Pioneer III wheeled
robot, equipped with a Hokuyo URG laser scanner, and
a camera mounted at 1.4 m above the floor. Experiments
took place in 12x8 m environment with 3 different rooms,
kitchen, office1, office2 connected by a corridor. Target objects
(cerealbox, stapler and whiteboardmarker) were trained using
[6].

To highlight the flexibility of the planning framework eval-
uated the system with 6 different starting positions and tasked
with finding different objects in an unknown environment. We
refer the reader to http://www.csc.kth.se/∼aydemir/avs.html for
videos. Each sub-figure in Fig. 3 shows the trajectory of the
robot.

In the following we give a brief explanation for what
happened in the different runs.
• Fig. 3(a) Starts: corridor, Target: cerealbox in kitchen

The robot starts by exploring the corridor. After com-
pleting one exploration action, two more placeholders are
generated. The placeholder behind the detected doorway
has a higher probability of yielding into a kitchen (as
opposed to not yielding to any new room) and the robot
enters office1. As the robot acquires new observations the
CP’s kitchen assumption is violated. The robot returns
to exploring the corridor until it finds the kitchen door.
Here the CP’s assumptions are validated and the robot
searches this room. The DT planner plans a strategy of
first finding a table and then the target object on it. After
finding a table, the robot generates view cones for the
Otable,cornflakes location. The cerealbox object is found.

• Fig. 3(b) Starts: office2, Target: cerealbox in kitchen
Unsatisfied with the current room’s category, the CP
commits to the assumption that exploring placeholders in
the corridor will result in a room with category kitchen.
The rest proceeds as in Fig. 3(a).

• Fig. 3(c) Starts: corridor Target: cerealbox in kitchen
The robot explores until it finds office2. Upon entry
the robot categorises office2 as kitchen but after further
exploration, office2 is categorised correctly. The robot
switches back to exploration and since the kitchen door
is closed, it passes kitchen and finds office1. Not satisfied
with office1, the robot gives up since all possible plans
success probability are smaller than a given threshold
value.

• Fig. 3(d) Starts: office1 Target:stapler in office2
After failing to find the object in office1 the robot notices
the open door, but finding that it is kitchen-like decides
not to search the kitchen room. This time the stapler
object is found in office2

• Fig. 3(e) Starts: kitchen Target: cerealbox in kitchen
As before it tries locating a table, but in this case all
table objects have been eliminated beforehand; failing
to detect a table the robot switches to looking for a
counter. Finding no counter either, it finally goes out in
the corridor to look for another kitchen and upon failing
that, gives up.

• Fig. 3(f) Starts: corridor Target: whiteboardmarker in
office1
The robot is started in the corridor and driven to the
kitchen by a joystick; thus in this case the environment
is largely explored already when the planner is activated.
The part of the corridor leading to office2 has been
blocked. As before, the robot finds its way to office1 and
launches a search which results in a successful detection
of the target object.

In the following, we describe the planning decisions in more
detail for a run similar to the one described in Fig. 3(a), with
the main difference being that the cereals could not be found
in the end due to a false negative detection.

The first plan, with the robot starting out in the middle of
the corridor, looks as follows:

ASSUME-LEADS-TO-ROOM place1 kitchen
ASSUME-OBJECT-EXISTS table IN new-room1 kitchen
ASSUME-OBJECT-EXISTS cerealbox ON new-object1 table kitchen
MOVE place1
CREATEVIEWCONES table IN new-room1
SEARCHFOROBJECT table IN new-room1 new-object1
CREATEVIEWCONES cerealbox ON new-object1
SEARCHFOROBJECT cerealbox ON new-object1 new-object2

Here we see several virtual objects being introduced: The
first action assumes that place1 leads to a new room new-
room1 with category kitchen. The next two assumptions hy-
pothesize that a table exists in the room and that cornflakes
exist on that table. The rest of the plan is rather straightfor-
ward: create view cones and search for the table, then create
view cones and search for the cereal box.

After following the corridor, the robot finds the office, and
plans to return to the corridor to explore further. It finally finds
a room which has a high likelihood of being a kitchen.

http://www.csc.kth.se/~aydemir/avs.html
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Fig. 3. Trajectories taken by the robot in multiple experiments.The color coded trajectory indicates the room category as perceived by the robot: red is
kitchen, green is corridor and blue is office. The green arrow denote the start position of the robot.

ASSUME-CATEGORY room3 kitchen
ASSUME-OBJECT-EXISTS table IN room3 kitchen
ASSUME-OBJECT-EXISTS cerealbox ON new-object1 table kitchen
MOVE place17
MOVE place18
MOVE place16
CREATEVIEWCONES table IN room3
SEARCHFOROBJECT table IN room3 new-object1
CREATEVIEWCONES cerealbox ON new-object1
SEARCHFOROBJECT cerealbox ON new-object1 new-object2

The new plan does not assume the existence of a new room
but the category of an existing one. After view cones are
created, the decision theoretic planner is invoked. The DT
planner processes view cones until it eventually detects a table
and returns to the continual planner.

ASSUME-OBJECT-EXISTS cerealbox ON object1 table kitchen
CREATEVIEWCONES cerealbox ON object1
SEARCHFOROBJECT cerealbox ON object1 new-object2

During the run, the continual planner created 14 plans in
total, taking 0.2 – 0.5 seconds per plan on average. The DT
planner was called twice, and took about 0.5 – 2 seconds per
action it executed.

VII. CONCLUSION AND FUTURE WORK

We have presented a spatial representation and a planning
framework fit for the object search task in large environments.
Present work consists using 3D shape cues from depth imag-
ing in order to prime the search process in a single scene
and learning over environment topologies to perform more
informed exploration.
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