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Active Visual Object Search in Unknown
Environments Using Uncertain Semantics

Alper Aydemir, Andrzej Pronobis, Moritz Göbelbecker, and Patric Jensfelt

Abstract—In this paper, we study the problem of active visual
search (AVS) in large, unknown, or partially known environments.
We argue that by making use of uncertain semantics of the envi-
ronment, a robot tasked with finding an object can devise efficient
search strategies that can locate everyday objects at the scale of
an entire building floor, which is previously unknown to the robot.
To realize this, we present a probabilistic model of the search en-
vironment, which allows for prioritizing the search effort to those
parts of the environment that are most promising for a specific
object type. Further, we describe a method for reasoning about the
unexplored part of the environment for goal-directed exploration
with the purpose of object search. We demonstrate the validity of
our approach by comparing it with two other search systems in
terms of search trajectory length and time. First, we implement
a greedy coverage-based search strategy that is found in previous
work. Second, we let human participants search for objects as an
alternative comparison for our method. Our results show that AVS
strategies that exploit uncertain semantics of the environment are
a very promising idea, and our method pushes the state-of-the-art
forward in AVS.

Index Terms—Active vision, semantic mapping, visual object
search.

I. INTRODUCTION

THE recent advances in the fields of robot localization, map-
ping, navigation, and human–robot interaction brought the

promise of autonomous systems, such as service and assistive
robots, operating in large-scale spaces. Such systems cannot rely
on the assumption that all objects relevant to the current task
are already present in view. Locating objects and other points
of interest become a prerequisite for many robotic tasks such as
mobile manipulation or fetch and carry. To this end, this paper
focuses on the robot’s ability to find objects in large-scale envi-
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Fig. 1. Floorplan of the Center for Autonomous Systems, KTH Royal Institute
of Technology. The object search scenario that is investigated in this paper is
concerned with finding objects in large-scale environments that are unknown to
the robot at the start of the search.

ronments using primarily visual sensing. We call this problem
active visual search (AVS).

One of the most important factors that determine the overall
performance of an AVS system is its search strategy. Imagine
a scenario that is depicted in Fig. 1 in which a mobile courier
robot is tasked with finding and fetching an object that is located
somewhere in an unknown office floor. With the limited field
of view of robotic sensors, it is unreasonable to assume that
the robot will exhaustively examine the whole space in order
to locate the object. Exhaustive search in such an environment
(i.e., the entire building floor) requires capturing and analyzing
millions of images, rendering the system unusable in practical
applications. However, semantic information about the object
and the environment can often be obtained and used to derive a
more efficient strategy. In such case, a robot that is equipped with
general world knowledge could use it to reason about possible
locations of the object and prioritize those locations during the
search process.

In most realistic scenarios, the robot needs the ability to ac-
quire knowledge about the environment in which it operates
autonomously. This adds another level of complexity to the
problem of AVS. The semantics of the environment can be used
in order to optimize the search strategy. However, knowledge
acquisition during an AVS task in unexplored environments in-
troduces additional cost. The problem requires deciding between
exploring the environment for discovering additional spatial se-
mantics and more places to search and searching a part of space
that is already explored. In this paper, we assume a realistic
scenario in which the robot is tasked with finding an object in a
large-scale environment as presented in Fig. 1, with minimum
cost defined as total time. The robot has no previous knowledge
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about the environment and, instead, relies on a semantic prior
about generic indoor spaces.

Our contributions in this study are twofold. First, we propose
an AVS system that can efficiently locate objects, which are de-
scribed in terms of their category (e.g., a cornflakes box), in an
unknown large-scale indoor environment. Second, we present
quantitative analysis of the performance of our method in an of-
fice environment containing 12 office rooms, a kitchen, a meet-
ing room, and a corridor, constituting a total search space of
33 m × 12 m.

Our approach is unique in that it extensively exploits spatial
semantics in novel maps for search. The system is capable of
extracting semantic cues from appearance, geometry, and topol-
ogy of the environment and combine it with general semantic
knowledge of indoor spaces in order to reason about locations
of interest. Furthermore, the system reasons not only about the
already explored parts of the environment but about unexplored
space as well. This allows us to direct the search toward areas
that are more likely to lead to the target object or location. The
search and exploration actions are governed by a planning algo-
rithm. This permits efficient tradeoff between exploration versus
knowledge exploitation and constitutes another unique feature
of our approach. Finally, our method is fully probabilistic. We
build on a semantic mapping algorithm that employs proba-
bilistic graphical models [1], and use a planning technique that
consists of a combination of partially observable Markov de-
cision process (POMDPs) and a traditional continual planner
for better scalability. The probabilistic framework allows us to
combine an imperfect semantic prior that is obtained from In-
ternet databases with uncertain sensing of semantic cues, and
better trade between possible planning solutions.

We perform an extensive qualitative and quantitative evalua-
tion, and compare the performance of our method with that ob-
tained by a greedy coverage-based search strategy found in pre-
vious work and with that obtained by humans on the same search
task. We demonstrate that the inclusion of semantic knowledge
results in a drastic improvement of the efficiency of the search.
Moreover, generated solutions become comparable with those
chosen by humans in terms of the length of the robot’s trajectory
and time required to complete the search.

II. ANALYSIS OF THE PROBLEM

We can think of the active search problem as a decision pro-
cess with a goal state and a set of actions that can take the robot
from the current to the end state. Since our observations are
inaccurate and stochastic, one can formulate the problem as a
POMDP. In a POMDP, a probability distribution over possible
world states is modeled, instead of directly representing the true
state since the latter is not directly observable. This is called a
belief state. The solution to a POMDP is a policy that specifies
the optimal action at any belief state. The optimality comes at
the price of computational complexity since the dimensionality
of the POMDP belief state space is equal to the number of possi-
ble world states that may result in a computationally intractable
policy computation step.

Let us first analyze the problem as in [2], assuming a fully
explored search environment, and overlaying a 3-D grid on the
entire map, with each grid cell holding the probability of the
target being there. In that case, the number of states is equal to the
number of target positions in the 3-D grid. As part of the POMDP
formulation, we define one action that is moving the camera to
a certain position and orientation, and performing sensing and
recognition in a single cell. The observations correspond to
the outcome of the recognition algorithm, i.e., the presence or
absence of the target.

This leads to a computationally challenging formulation. The
environment in the experimental evaluation in this paper is
33 m × 12 m, with roughly 3 m from floor to ceiling. With
a cell size of, e.g., 0.1-m cube, this results in 1.2 × 106 cells.
As discussed in the context of object search in [3], most general
POMDP solvers can handle the number of states in the order of
thousands, i.e., several orders of magnitude lower. Additionally,
such an approach requires a perfectly consistent 3-D mapping
framework. Relaxing the fully explored world assumption and
searching in a partially explored environment necessitate a new
exploration action in addition to the search action. Deciding
when to search and explore and reasoning about the outcome of
an exploration action only adds to the computational complexity.

A naive cell-by-cell search strategy would be extremely time
consuming. A common way to reduce the search space when
searching for objects is to limit the search to only occupied re-
gions in space. In [2], the search space is limited to areas around
a known table and shelf, while in [4] and more recently in [5]
and [6], only regions of space where a laser scanner detects ob-
stacles are used. In our example, such a method would reduce
the number of cells from 1.2 × 106 to 8 × 104 . Assuming that
the camera has a 45◦ opening angle and it needs to be located
no more than 2 m from the object for reliable detection, 3 × 104

views are required to cover the space. This corresponds to ap-
proximately 12 h of search, assuming that each view (including
motion of the robot) takes 5 s, and the object is found half-way
through the search. This is prohibitively slow for most realistic
applications.

In order to make the search practical, we must find a heuristic
that guides the search more efficiently than only using obstacles.
We can get inspiration by analyzing human behavior. In a spe-
cific environment and when looking for a specific object, most
humans would rely on detailed instance models, e.g., Patric’s
mug is likely to be located on Patric’s desk. A robot assistant
could gather similar statistics over time. In this paper, we as-
sume an unknown environment. Therefore, we cannot use any
specific knowledge about the objects therein. However, most
humans tasked with finding a mug in an unknown environment
would still not use exhaustive search. We would make use of
very strong, domain unspecific priors for the location likely to
contain the object. For example, experience points out that there
is a strong correlation between mugs and kitchens. Instead of
looking for the mug exhaustively in the floor of a building,
we would first search for a kitchen. This can be generalized
to exploiting spatial correlations between object categories and
room categories. We argue that efficient search in human envi-
ronments should make use of such knowledge, as in [7] and [8].
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In a robotic system, this kind of search can be realized by
employing hierarchical planning to compute a search plan. The
system can first decide on regions of the search space that are
promising for finding the target object before computing search
strategies that take into account lower level aspects of the search
such as occlusion, movement cost, and viewpoint computation.
In this case, a robot would first identify the rooms to search for
a mug, and then compute a search strategy for individual rooms.
In this paper, we have adopted a similar approach.

Finally, it is important to keep in mind that we consider ex-
ploration of unknown space as part of the problem. That is, we
want to find an object without knowing the entire extent of the
environment being searched. This requires a principled way of
trading exploration of the unknown against search of what is
already known. In order to exploit semantic information, the
system needs to be able to reason not only about the semantic
spatial concepts associated with objects in the already explored
part of the environment, but also about what might lay ahead. In
the next sections, we will present the design of our active search
system based on this analysis, first focusing on the search space
modeling and pruning, and then on actions and control.

III. RELATED WORK

Despite the recent interest in the problem of active visual ob-
ject search with a mobile robot, there are no extensive surveys
in the literature on this topic. However, there are notable sur-
veys on the broad topic of active vision [9]–[11]. In particular,
Chen et al. [9] present an excellent overview of the previous
work on active vision in general, with cited contributions rang-
ing from selecting next best views for 3-D object modeling to
surveillance and inspection tasks. For this reason, we start with
a comprehensive treatment of the early and current work related
to the object search scenario that is considered in this paper. This
allows us to show how our work fits into this body of research,
and how our contributions push the state of the art in this area
forward.

In a seminal paper, Bajcsy introduced the term active percep-
tion [12]. The motivation for employing an active perception
strategy is that perceptual processes often seek for the desired
percepts; in the author’s words: “We do not just see, we look.” In
a system that employs active perception, passive sensors, such
as a camera, can be utilized in an active manner by adjusting
various parameters: zoom factor, depth of field, position, and
orientation in the 3-D world.

Building upon Bajcsy’s introduction to active perception,
Tsotsos analyzed AVS [13]. Some of the advantages of an
active strategy discussed are robustness to occlusions, possi-
ble increase of resolution, and use of motion to disambiguate
vision-related aspects of the world such as varying illumination
conditions. Tsotsos and Ye analyzed the computational com-
plexity of the AVS problem and found it to be NP-complete [14].
A significant lesson from this analysis is that AVS strategies are
more efficient than their passive equivalents. Achieving this
increased efficiency requires a more complex search process.
Active search strategies often use a prior that defines likely
positions of the target, which are used to direct the sensing.

Additionally, a planning approach that makes use of this prior
together with the current world state to select the next action is
part of most active perception systems. Realizing this interplay
between sensing and acting is far from trivial, the following
points need to be addressed.

1) How to build a prior for the task that reflects the state of
the world?

2) How to model the search actions to come up with a plau-
sible search plan?

These design questions are of great importance to the perfor-
mance of the system. In this paper, we will show how a prior
can be modeled, computed, and utilized by an autonomous robot
searching for an object in an unknown world.

Research focusing on the computation of the aforementioned
prior appeared in the literature as early as 1976. Garvey pre-
sented an implementation of a vision system capable of finding
objects in scenes by making use of certain assumptions about
the semantic scene structure [15]. One example of a search run
is given where the target object is a telephone. The system re-
alizes that due to the small size of the target object, searching
the whole image would be wasteful. Instead, the system plans
to search for a table first, and then searches in the image region
that corresponds to the table top for the telephone. Garvey calls
this type of search indirect search. Wixson and Ballard [16]
provide quantitative results by comparing two search strategies,
with and without indirect search for the same task.

In a series of papers, Ye and colleagues discuss computing
the next best view to move the camera to in an object search
task [6], [17]. A probability distribution over the 3-D space is
assumed to be given and is tessellated into identically sized cells.
Each cell contains the occupancy information as a binary state,
and the probability of the center of the target object being in this
cell. Knowing the field of view of the camera, the probability
mass covered by each view can be computed by summing over
the probabilities of cells that are located in the field of view. This
probability sum is a measure of how good a certain view is for
the task at hand. A number of views are sampled from the free
space, and the system greedily picks the view that has the highest
probability sum. In the most recent state-of-the-art visual search
system from the same research group, Andreopoulos et al. [2]
employ a similar strategy to object search using the humanoid
robot ASIMO in a 4 m × 4 m × 1.5 m search space. In parallel,
Ma et al. [18] use a probability map to guide the search and
determine where to move, in a similar fashion to [17]. The
authors present a scale-invariant feature transform (SIFT)-based
method to find and estimate the six-degree-of-freedom pose of
a target object.

Ekvall et al. [19] present an object detection method that can
be used to compute likely positions for a given object in an
image. The authors use a two-step approach where the first step
is to find regions in the image that are likely to contain the object.
Then, the system zooms into these areas and searches at a finer
scale. The authors present a mobile robot system for searching
for objects in multiple rooms of an office floor. However, the
map and the location to search from are known a priori as in [7].

Similar to [19], the idea of first finding object hypotheses
with a fast visual algorithm and, then, zooming into likely object
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locations to perform more expensive computation are revisited
by Forssén et al. [20]. The object search task is divided into
three separate sequential steps. First, the mobile robot system
explores the environment to build an occupancy map. In the
second step, the robot attempts to cover the environment as
much as possible, this time with its peripheral cameras. During
this step, object hypotheses are computed based on depth from
stereo and spectral residual saliency described in [21].

The method, which is described in [7], utilizes object–object
co-occurrence probabilities as a way to shape the prior on the
object location over the search space. The map of the environ-
ment is fully known a priori. The system then plans a path in the
map that once traversed by the robot has a high probability of
spotting the object. There is no view planning involved, and the
sequence of images, while the robot is traveling along this path,
is analyzed to find the target object. The system is evaluated with
three objects: chair, bicycle, and monitor. The biggest limitation
of the system is the assumption of a known map and previously
detected objects scattered throughout the whole environment.

Viswanathan et al. [8] have shown a similar system in which
a method for place labeling is used to bootstrap the search. As
in [7], this approach also uses the semantics of the environment
to make the search more efficient. Simulation experiments of
search indicate that making use of the environment semantics
results in fewer analyzed views compared with an uninformed
coverage-based search strategy.

The aforementioned methods provide different ways of con-
structing priors with various assumptions about the initial state
of the robot and the environment. As stated earlier, another im-
portant point of an active perception system is the need to plan
what sensing or moving actions are required to achieve the task.
This is generally called view planning [22], which requires con-
stant monitoring of the world and replanning if necessary. We
will now focus on the literature that deals with this aspect of the
visual object search problem.

In its simplest form, we can think of the view planning prob-
lem as covering a certain search space with sensors that have
limited field of view. Often, minimizing the number of sensing
actions and movement cost is desirable for increased search ef-
ficiency. Art gallery algorithms deal with this exact problem.
Given a 2-D polygon representing an art gallery (the search
space), and a limited amount of guards to protect the artworks
(viewpoints from which part of the environment is visible), what
is the best way to place guards to cover the polygon fully? This
problem has been well researched in the computational geome-
try literature, and an extensive survey of the results can be found
in [23] and more recently in [24] for mobile guards.

A number of researchers adopted the algorithms from the
art gallery literature to mobile robotics. González-Banos et al.
[25], [26] present a randomized art gallery algorithm for mobile
robots that are tasked with covering an environment. Sarmiento
et al. [27] present a heuristics-based method to find an object in
a 2-D polygon world. In a follow-up work, the authors present
a sampling-based algorithm, which is similar to [25], to find an
object in a 3-D environment [28]. Such coverage-based solutions
provide an accurate description of the problem when the sensing
capabilities of the robot are deemed noise-free, and the world

state is assumed to be completely known; in a typical robotics
scenario, there are uncertainties associated with sensing and
action.

Some recent papers tackled the problem of uncertainty by
drawing inspiration from the planning literature. Hollinger et al.
apply a POMDP planner to the problem of object search with
single or multiple searchers [3]. In order to model the object
search problem as a POMDP, the continuous 3-D search space
needs to be discretized carefully due to the high computational
complexity of most state-of-the-art POMDP solvers. The au-
thors discretize an entire simulated office building floor into 69
rooms as possible object locations. They make the assumption
that whenever the robot and the object are in the same room, the
object is detected. This is a big simplification of detecting an
object with a camera since the task of finding an object in a place
as big as a room involves many difficulties such as calculating
a good viewing position, dealing with occlusions, and detecting
objects that appear small in the image. The authors provide sim-
ulation results and a proof-of-concept implementation where a
mobile robot is tasked with finding cups in an already known
environment with known search positions that the robot may
choose to stop and take a picture from.

Sridharan et al. propose a POMDP framework for planning
a sequence of visual operators in a scenario where the robot
converses with a human about objects on a table top [29]. The
task involves the system to find objects referred by a human in
various ways through natural language. The authors demonstrate
the usage of a decision theoretic framework for deciding which
visual operators to apply on which regions of the image in order
to answer queries about the table top scene.

Similar to [19], Masuzawa and Miura [30] present a approach
where a mobile robot attempts to detect as many objects as possi-
ble in an environment of known size but unknown obstacles. The
system uses SIFT features to detect object candidates, and then
employs what the authors call a verification planning algorithm
to confirm the presence of these candidates. Further, Boussard
and Miura [31] present early results on modeling the search
problem as a constrained Markov decision process (MDP). The
planning problem is constrained in the sense that the authors
allow a certain amount of time during which the robot has to
detect as many objects as possible. The results, which are shown
in simulation, indicate the plausibility of the approach.

Recent research works in [32] and [33] investigate the usage
of radio-frequency identification (RFID) sensors for the object
search problem. Although visual search poses challenges, such
as illumination and viewpoint changes and object detection that
RFID sensors do not suffer from, RFID antennas also have lim-
ited field of view. The system presented in [32] searches for
certain product shelves in a supermarket setting. The environ-
ment is represented as a connectivity graph. The method exploits
the default knowledge about supermarkets in that related prod-
ucts are stored in nearby shelves. The authors compare their
results with human search performance measured in path length
during search. Deyle et al. [33] coin the term RF vision for build-
ing and analyzing images of the environment where each pixel
represents the signal strength of a certain RFID tag in the corre-
sponding direction. This image is used to infer the 3-D location
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TABLE I
TABLE COMPARING APPROACHES TO OBJECT SEARCH WITH MOBILE ROBOTS

of the target object by the fusion of three sensory modalities: 1)
an RF antenna; 2) a low-resolution camera; and 3) a tilting laser
scanner. The authors describe a method for fetching an object
equipped with an RFID tag from a signal strength image of the
scene.

Kunze et al. present an object search system that utilizes
default knowledge about typical object locations in indoor en-
vironments [34]. The authors utilize a semantic map framework
in order to reason about where to search for a given object. The
search locations in the map are assumed to be known in advance,
and the robot picks the order to visit these locations to find the
object.

Previously, we have implemented and evaluated a number of
approaches for an AVS task. In [5], we have revisited the idea put
forward in [15], and investigated the usage of spatial relations to
efficiently locate objects when the environment is known. In this
study, no planning was involved, and the search space consisted
of a 6 m × 5 m furnished room. The conclusion from this study
was that although using spatial relations greatly increases search
efficiency, it is often hard to detect objects that are in relation to
the target object, such as tables and bookshelves.

Later on, in [35], we have instead used an MDP planner
to choose between which locations to search. Finally, in [36],
we relaxed the assumption of a perfectly known world, and
have taken object search to a much larger scale with qualita-
tive results. The semantics of the environment represented in a
probabilistic framework was key to reducing the search space in
this study. This paper is based on our recent previous work [36],
and provides more detailed explanations of various parts of the
AVS strategy employed, and presents a thorough quantitative
evaluation.

IV. CONTRIBUTIONS

There are several aspects of the work presented in this paper
that push it beyond the current state of the art (see Table I). We
work with large-scale environments of the size of an 18-room
building floor. This is in sharp contrast with [2] where the envi-
ronment is a single room. Previous work in large-scale environ-
ments has assumed that the environment is already known [7],
or is completely explored in a first step [8], or have made use

of nonvision sensors such as RFID [32]. We work with the case
where the robot starts with no information about the specific en-
vironment. What sets our approach aside from, for example [8],
is that we interleave exploration and exploitation (i.e., search in
the known part of the environment) and do not start by exploring
the entire environment, which could be quite time consuming.
As a way to deal with object search in unknown environments,
we introduce a model that describes a distribution over pos-
sible extensions to the currently known world, which allows
the system to reason about whether to exploit the known part
or explore the unknown part of space in a principled way. We
present a thorough experimental evaluation with both qualitative
and quantitative analysis. Finally, we provide a gold standard
for comparison by letting human participants perform the same
task using the robot embodiment (remote control and observing
the environment through the cameras).

V. PROBLEM FORMULATION

The problem of active search, which is addressed in this
paper, is that of finding an efficient strategy to localize a certain
object in a large-scale unknown 3-D indoor environment we will
refer to as Ψ following [37]. Concretely, we look for a strategy
that decides what sequence of actions to execute to localize
the point of interest, while minimizing the total cost, where
cost is defined as time. The robot can execute motion actions
and sensing actions in the space of Ψ. The sensing actions are
characterized by the pose of the robot, camera parameters, and
recognition algorithm.

Additionally, let PΨ(X) be the probability distribution for
the position of the target X in the search space Ψ. Depending
on the level of a priori knowledge of Ψ and PΨ(X), there are
three extreme cases of the active search problem.

1) If both Ψ and PΨ(X) are fully known, the problem is that
of sensor placement and coverage maximization, given
limited field of view and cost constraints.

2) If PΨ(X) is unknown, but Ψ is known (e.g., the robot
has acquired a map of the environment with no ad-
ditional object-related information), the agent needs to
gather information about the environment similar to the
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aforementioned case. However, in this case, the explo-
ration is for learning about the target specific characteris-
tics of the environment. Knowing Ψ also means that the
robot can reason on whether or not to execute a costly
search action at the current position, or move to another
more promising region of space in a straightforward man-
ner.

3) If both Ψ and PΨ(X) are unknown, the agent needs the
ability to explore. The agent needs to select which parts
of the environment to explore first depending on the target
properties. Furthermore, the agent needs to tradeoff be-
tween executing a sensing action and exploration at any
given point (i.e., should the robot search for the target in the
partially known Ψ or explore further). This is classically
known as the exploration versus exploitation problem.

In this study, we consider the third case in which Ψ and
PΨ(X) are both unknown, and the robot is required to explore
the environment. We provide the robot with probabilistic seman-
tic common-sense knowledge, which is not environment specific
and encodes relationships between high-level human concepts
and functions of space. Typically, the common-sense knowledge
encodes correspondences between objects, landmarks, other
properties of space, and semantic room categories. Such in-
formation is valuable in limiting the search space and helps
humans efficiently search in unknown environments. Our goal
is to also leverage this to achieve similar efficient behavior in
artificial systems.

VI. SEARCH SPACE

As pointed out previously, the ability to reduce the search
space is crucial for practical applications. We choose to deal
with this problem by directing the search toward locations that
are likely to contain the object.

Indoor environments are typically organized into rooms, each
fulfilling a specific function of everyday life. At the same time,
the category of a room is often strongly correlated with the
actions afforded by the objects found therein (e.g., a book is
more likely to be found in offices rather than in kitchens). We
argue that rooms are an important spatial concept for efficiently
pruning large amounts of search space in typical indoor envi-
ronments.1 Our idea is to exploit the correlation between room
category and objects as part of the semantics of the environment.
Rooms have frequently been used in the past as nodes in topo-
logical representations [39]–[41]. Here, we make use of rooms
as a means to implementing a divide-and-conquer strategy for
the object search. Once a decision to search a room is made,
the system can then analyze the room through a more detailed
search, involving view planning by calculating where exactly to
move the camera in this smaller part of the search space. Our
assumption, which will be confirmed by the experimental eval-
uation, is that the cost of classification of rooms is more than
compensated by the benefits.

Since we assume no initial knowledge of the specific envi-
ronment in which the robot operates, the categories of rooms

1We note that rooms, as defined here, do not have to have physical boundaries,
such as walls and doors, as demonstrated in [38].

Fig. 2. (a) Place map with several places and placeholders shown as large
circular disks and three detected doors shown as smaller disks. The places
have circular pins at the center of disks and placeholders have rectangular pins.
Colors on disks indicate the probability of a place being in a room of a certain
category in the form of a pie chart. Here, green is corridor, red is kitchen, and
blue is office. (b) Start of a search run where two placeholders are detected with
different probabilities of leading into new rooms of certain categories. The size
of the color indicates the probability value that the placeholder leads to a new
room of a certain category (gray represents the case that there is no new room).
One of them is behind a door hypothesis, therefore having a higher probability
of leading into a new room.

found in the environment have to be inferred based on obser-
vations acquired by the robot during the search. To this end,
we have recently proposed a probabilistic semantic mapping
framework [1]. The system bootstraps the probabilistic models
by extracting default knowledge from databases. As we will
explain in the next section in more detail, this allows us to rea-
son about object presence in the known and unknown parts of
space, by combining different types of observations (e.g., of ob-
jects and room appearance), and predicting existence of rooms
of certain categories even in unexplored space.

A. Modeling the Search Space on the Environment Scale

Our modeling of the search space is as follows. On the large
scale (e.g., a whole building floor containing multiple rooms),
we represent the search space as an undirected graph called the
place map. The nodes of the graph correspond to discrete places
in the environment, and are created at equal intervals as the
robot moves. Edges in the graph represent direct paths between
places. Together, places and paths represent the topology of the
environment. An example of a place map is shown in Fig. 2(a).
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The places in the place map are further grouped into rooms
by detecting doors in the environment. In addition, unexplored
parts of the environment are represented in the place map us-
ing hypothetical places called placeholders, which are defined
in the boundary between free and unknown space in the met-
ric map [42], [43]. Both places and placeholders are associated
with beliefs about room categories estimated based on the avail-
able knowledge about the explored part of the environment. To
assist in deciding which room to search or which placeholder
to explore in an object search task, we estimate two probability
distributions related to object presence in the already discovered
rooms and in unexplored space.

1) p(Ooi
rj
|θ), Ooi

s,rj
∈{0, 1}: distribution indicating whether

an object of the category oi exists in not yet searched
area of one of the known rooms rj , derived from all the
observations θ collected by the robot up to this point.

2) p(Ooi

hj
|θ), Ooi

s,hj
∈{0, 1}: distribution indicating whether

an object of the category oi exists in a potential new room,
which can be discovered after exploring in the direction
of placeholder hj , derived from all the observations θ
collected by the robot up to this point.

As noted previously, in order to calculate the above, we exploit
the relationship between the room category and object presence
of a certain category. Therefore, we calculate two types of room
category probabilities, for explored and yet unexplored space.

1) p(Crj
|θ), Crj

∈{ck}NC

k=1 : distribution over room cate-
gories (for NC categories in total) for a given known room
rj and all the observations θ that the robot gathered up to
this point.

2) p(Cci

hj
|θ), Cci

hj
∈{0, 1}: distribution indicating whether the

placeholder hj leads to a new room of the category ci

upon exploration. The knowledge about unexplored space
is derived from all the observations θ gathered by the robot
in the explored part of space.

This information can be used to decide whether to explore one
placeholder instead of another, or simply perform fine-grained
search for an object in one of the previously discovered rooms.
A visualization of the distributions is presented in Fig. 2.

B. Assigning Probabilities

In order to calculate the aforementioned probability distri-
butions for the partially explored environment, we used the
probabilistic semantic mapping framework, which was recently
proposed in [1]. The joint distribution that represents the depen-
dences between object categories and room categories for known
rooms is modeled as a probabilistic chain graph model [44].
Chain graphs are a natural generalization of directed (Bayesian
Networks) and undirected (Markov Random Fields) graphical
models. As such, they allow for modeling both directed causal
as well as undirected symmetric or associative relationships,
including circular dependences. The structure of the model is
presented in Fig. 3, and is adapted at run time according to the
state of the underlying topological map.

The semantic mapping framework relies on several properties
or attributes of space obtained from various modalities. Those
properties characterize each of the places and contribute to the

Fig. 3. Structure of the chain graph model that represents the search space
at the large scale. The vertices represent random variables. The edges repre-
sent the directed and undirected probabilistic relationships between the random
variables. The textured vertices indicate observations that correspond to sensed
evidence. The yellow rectangles group variables that represent spatial proper-
ties of a single place. The blue rectangles group variables that represent object
information for a single room.

knowledge about room categories. We use the following prop-
erties in our implementation: geometrical room shape and size
obtained from laser range data, and general room appearance
captured by a camera. In the chain graph model, which is shown
in Fig. 3, the values of those properties are represented as a set
of variables (SHpi

, SIpi
, Api

) for shape, size, and appearance
properties, respectively. They are generated automatically for
each discovered place pi based on the topology of the place
map.

The spatial property variables for all places in a single room
rj are connected to a random variable Crj

that represents the
functional category of the room. The relations between place
properties and room categories (psh(SHpi

|Crj
), psi(SIpi

|Crj
),

pa(Api
|Crj

)) are derived from the default knowledge. The
shape, size, and appearance properties can be observed by the
robot in the form of features extracted directly from the robot’s
sensory input. As proposed in [1], the links between observa-
tions (textured vertices in Fig. 3) and the place property variables
are quantified by categorical models of sensory information im-
plemented using support vector machines (SVM). A separate
SVM model is trained for each spatial property (shape, size,
and appearance). The models are trained from sequences of
images and laser range data recorded in multiple instances of
rooms belonging to different categories and under various illu-
mination settings. During recognition, confidence measures are
derived from the distances between the classified samples and
SVM hyperplanes [45]. The confidences are accumulated across
all views acquired within a place [41] and then normalized to
form probabilities.

Additionally, for each room, there is a set of variables that rep-
resents the presence of a certain set of objects of each category
in the already searched space inside the room (Oo1

rj
, . . . , O

oN o
rj ,

Ooi
rj

∈ N0) (e.g., for reasoning about finding another cup in a
kitchen, after having found one cup). Those variables are linked
to the corresponding room category variable Crj

. This rela-
tion represents the default knowledge about canonical object
locations (e.g., that a coffee machine is likely to be found in a
kitchen). Since we do not implement an observation model for
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the objects, the values of those variables are directly observed
and set to a certain value depending on the number of objects of
a certain category detected in the room.

Finally, the potential functions φrc(Cri
, Crj

) describe knowl-
edge about typical connectivity of two rooms of certain cate-
gories (e.g., that kitchens are more likely to be connected to
corridors than to other kitchens). Those connections propagate
semantic knowledge between rooms represented in the topolog-
ical map.

The default knowledge about room connectivity, shapes,
sizes, and appearances was acquired by analyzing the annota-
tions of the COLD database, typically used for experiments with
place categorization [1], [46]. The database consist of floor plans
and images captured in various environments labeled with room
categories. The database was additionally labeled with the val-
ues of spatial properties (shape, size, general appearance). Then,
co-occurrences between room categories of neighboring rooms
as well as room categories and property values were counted
and later normalized to form distributions.

The conditional probability distributions poi
(Ooi

rj
|Crj

) that
relate the number of objects (Ooi

rj
∈ N0) of a certain object cat-

egory oi present in an already searched part of a room rj to the
category of rj (Crj

) are represented using Poisson distributions
(e.g., probability of finding another cup in a kitchen after having
searched for one). The rationale behind this is that each occur-
rence of a certain object category in a room is conditionally
independent from each other, with an expected total number of
objects for that room category. The Poisson distribution allows
us to easily model the expected number of object occurrences
in a room through its parameter λ

poi
(k|cj ) =

(βλoi ,cj
)k e−βλo i , c j

k!
. (1)

The parameter k is the actual number of object occurrences
that we are interested in (e.g., what is the probability of finding
two books in this room?), and β indicates the percentage of the
room already searched by the robot (e.g., half of the room). In
our model, λoi ,cj

is estimated separately for each object type and
functional room category. It is calculated from the probability of
existence of an object of type oi in a room of category cj obtained
from commonsense knowledge databases. The process is first
bootstrapped using a part of the Open Mind Indoor Common
Sense database2 from which potential pairs of objects and their
locations are extracted. Those pairs are then used to generate
“obj in the loc” queries to an online image search engine. The
number of returned hits is then used to obtain the probability
value. More details about this approach can be found in [47].
Once the probability of existence of an object of a specific type in
a room of a specific category is obtained, the λoi ,cj

is calculated
so that

∑∞
k=1 poi

(k|cj ) is equal to that probability.
Given observations of some of the objects and properties of

space for the explored part of the environment, the distribution
p(Crj

|θ) over room categories of a room rj can simply be
calculated by marginalizing over all other variables in the chain
graph model. In the following, we describe the models that are

2http://openmind.hri-us.com/

Fig. 4. Examples of extensions of the search space model permitting reasoning
about unexplored space behind placeholder located in room 1.

used for reasoning about unsearched and unexplored parts of
the environment.

C. Reasoning About Unsearched Parts of the Environment

Given the model built for the explored and searched part of the
environment, we can now use it to reason about the presence of
objects and rooms in yet unsearched or unexplored space behind
a placeholder. To this end, the chain graph model is extended in
two ways.

First, for the unsearched space, as shown in Fig. 4, we add a set
of variables Oo1

s,rj
, . . . , O

oN o
s,rj , Ooi

s,rj
∈{0, 1} that allows us to rea-

son about the presence of objects of various types in unsearched
parts of known rooms. The distributions ps,oi

(Ooi
s,rj

|Crj
) are

represented in a very similar fashion to (1), however, this time
focusing on the remaining unsearched portion of space 1 − β.
Since, in order to direct the search, we are only interested in the
presence of at least one instance of the object, ps,oi

(Ooi
s,rj

|Crj
)

simplifies to

ps,oi
(Ooi

s,rj
=1|Crj

=cl) = 1 − e−(1−β )λo i , c l . (2)

Then, the probability p(Ooi
s,rj

|θ) is obtained by marginalizing
over all the other variables in the chain graph model.

Second, in order to reason about unexplored space behind a
placeholder, we hypothesize potential room configurations in
the topological map of the environment. For each configuration,
we extend the chain graph from the room in which the place-
holder exists with variables representing categories of hypoth-
esized rooms. Then, the categories of the hypothesized rooms
are calculated by performing inference on the chain graph, and
the probability of existence of a new room of a certain category
behind the placeholder is obtained by summing over the room
category inference results for all possible configurations.

In our system, we consider three hypotheses3: 1) placeholder
leads to a single new room; 2) placeholder leads to a new room
connected to another new room; 3) placeholder does not lead
to a new room. For the cases 1) and 2), we extend the chain

3These are based on the observation that in typical indoor environments, you
can reach most rooms in two steps, thanks to “connector room” like corridors.
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Fig. 5. (a) Robot during a search run in a room. (b) Corresponding 3-D map of the room built by the robot, where green areas represent obstacles. (c) Spatial
probability distribution over 3-D space shown in purple, where occupied regions of space have a likelihood of containing the object. (d) Three out of several
viewpoints computed for this room are shown.

graph model, as shown in Fig. 4, by adding variables CrX
, CrY

,
and CrZ

connected to the variable representing category of the
room in which the placeholder is located. The probability of
there being a new room of a certain category ci behind the
placeholder hj is then calculated as follows:

p(Cci

hj
=1|θ) = p(r1

hj
) p(CrX

=ci |θ)

+ p(r2
hj

)
∑

y=i∨z=i

p(CrY
=cy , CrZ

=cz |θ) (3)

where p(r1
hj

) and p(r2
hj

) are priors assigned to each of the hy-
potheses. If we assign equal prior to the cases 1) and 2), it is
sufficient to calculate a probability of the placeholder leading
to at least one room p(rhj

). This can be estimated as follows:
p(rhj

) = p(hhj
)(1 − p(dhj

)) + p(dhj
), where p(hhj

) denotes
the probability that the placeholder hj leads to another place-
holder and, thus, potentially to another room, and p(dhj

) is the
probability of there being a doorway behind the placeholder ob-
tained from a door detector. The value p(hhj

) can be estimated
from the amount of open space in the direction of the place-
holder estimated from the laser range data. The outcome can be
seen in Fig. 2(b).

D. Modeling the Search Space on the Room Scale

We maintain a 3-D metric map for each room that supports
viewpoint selection for object search as well as obstacle avoid-
ance and path planning. This map is represented as a 3-D grid
consisting of equally sized grid cells. Each cell holds the occu-
pancy information, and the probability of the target object being
in this cell, as in [17].

The sum of the probability value of all the cells given a room
comes from the chain graph model, namely, the estimated value
of p(Ooi

rj
|θ) described earlier. The total probability is uniformly

distributed over all occupied cells as possible locations for the
target object’s center point (see Fig. 5). In this way, we connect
the object probabilities at the place map to the finer 3-D metric
representation of the same space.

Furthermore, changes in this 3-D spatial probability distribu-
tion should also influence the probabilities in the place map. As
an example, processing a viewpoint inside a room without find-
ing an object reduces the probability values of the cells that are
visible from this viewpoint. This change needs to be reflected in
the place map as well since the decision making algorithms need

to operate on the place map level and not at the fine-grained 3-D
map level, for reasons discussed in Section II.

To this end, as explained previously, we introduce the term β
to the chain graph model that represents the ratio of the space
searched by the robot in a room. By updating this value accord-
ingly during the search process, the system can reason about
the tradeoff between continuing to search the current room or
execute another action such as exploration or search in another
location.

VII. ACTIONS AND CONTROL

In this section, we will first describe the set of actions that
makes use of the above described model of the search space, and
then present the planning algorithm that decides which actions
to execute. However, our approach to devising a search strategy
is not dependent on the specific planning algorithm employed.
At any point in time, the robot can search an already explored
room or explore more of the environment. This choice should
be driven by the belief that doing so is the most cost efficient
way to find the object, by making use of the probabilities related
to space and objects explained previously.

For illustration, assume that we are given certain knowledge
that the target object is never found in a kitchen, and the robot
happens to be in a kitchen. The only rational decision is to
explore the area outside of the current room (if any) in the hope
of finding another room. This should fall out of the algorithm
and not be scripted. In addition, the decision will never be as
clear cut as this; there will be a certain probability of finding the
object in the known part of space and some in the unknown (as
long as we have not found the object).

We design the set of actions required for such intelligent
search behavior, regardless of the specific planner being used.
The planner needs to reason with probabilities, and it needs to
operate at a wide range of levels of abstraction, i.e., from high-
levels decisions, such as moving between rooms, to the precise
placement of the camera to acquire an image.

A. Modeling Actions

We define four actions: 1) MOVE; 2) PROCESSVIEW; 3) CAL-
CULATEVIEWS; and 4) SEARCHOBJECT. The MOVE action moves
the robot to a place or a placeholder. The PROCESSVIEW action
moves the robot to a viewpoint and runs an object detection
algorithm on the image acquired from this location. The object
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is deemed as found when the object detection algorithm reports
a true positive.

The action CALCULATEVIEWS is used to calculate a set of
viewpoints in a single room. Each viewpoint consists of a po-
sition on the 2-D plane at the camera’s height, a pan, and a tilt
angle. As introduced previously, let Ψ be the 3-D search space
tessellated into a set of cells C = {c0 . . . cm}, and PΨ(ci) be the
probability of the object’s center being in the ith cell. The set of
candidate viewpoints is determined by randomly sampling the
reachable space in Ψ and successively picking views from the
sample set

argmax
j=1..M

n∑

i=1

p(ci)S(ci , j) (4)

where M is the number of candidate sensing actions and S is
defined as

S =
{

1, if ci is covered by the jth viewpoint
0, otherwise.

Each viewpoint covers a set of cells in Ψ. The total probability
sum of a viewpoint’s cells is the robot’s likelihood of finding the
object upon processing this viewpoint. We compute successive
views in the same way until the probability sum of all covered
cells is above a given threshold as in [25]; an example is shown in
Fig. 5. The reason for introducing the threshold is that often it is
not possible to cover 100% of all probability due to occlusions,
the robot’s limited field of view, and clutter in the environment,
making full coverage impossible. In this way, enough views
are calculated that covers regions of the search space likely to
contain the object.

If the object is not found after a PROCESSVIEW action, we set
the probability of the cells covered in this viewpoint to a low
value based on the sensor model, and update the β parameter
accordingly to indicate that a part of the currently searched room
is covered.

The SEARCHOBJECT action is for forming a subproblem for
the POMDP planner whose action set consists of MOVE and
PROCESSVIEW to search for an object in a single room. Its pre-
requisite is that viewpoints are already calculated for this room
by the CALCULATEVIEWS action.

B. Planning

As we discussed in Section II, the state space of the object
search task for large environments is prohibitively large for most
POMDP planners without greatly simplifying the search space.
It would also require us to perform many unnecessary calcula-
tions beforehand (such as calculating viewpoints for all rooms,
even those which seem unpromising). This could be alleviated
by creating a hierarchical approach, i.e., using one POMDP to
select the room, and then a second one to select which view-
points to visit in which order. However, if the task requires explo-
ration, this becomes difficult, as we then have to model all possi-
ble worlds in a POMDP framework. The switching planner [48]
we use can be regarded as a hierarchical planning algorithm,
although it differs from the outline above in two major ways:
the high-level planner is a fast classical planner that operates

Fig. 6. Assumption operator for placing objects in rooms. The probability
(P− exists?l?c) is equal to 1 − p? l (O? l

?r = 0|C?r = ?c) (c.f. VI-B), i.e.,
the probability of finding at least one object of type ?l in a room of category
?c.

according to the continual planning paradigm [49]. In addition,
the decomposition of the low-level POMDPs is not static, but
computed by the switching planner on the fly, depending on the
current world state. The planner takes the problem description,
in a dialect of PPDDL [50], called decision-theoretic PDDL
(DTPDDL). See [48] for a detailed discussion on the planner
and the input language.

The switching planner alternates between two phases (called
sessions). In a sequential session, the classical planner (we use a
modified version of Fast Downward [51]) computes a single plan
that reaches the goal with as little costs as possible. In classical
planning, this usually means minimizing the number of actions
(in the case of uniform action costs) or the sum of all action costs
in a plan. Lowest costs is a suitable optimization criterion for
fully observable deterministic tasks. However, this is not what
we need in our situation. The cheapest plan would always be
to search for an object at the robot’s current location, no matter
the likelihood of actually succeeding. Therefore, the switching
planner uses a modified planning model, where in addition to
costs, actions can have associated success probabilities p(a).
We can then define the following objective function, which the
continual planner tries to minimize

c =
∑

a∈π

cost(a) + R

(

1 −
∏

a∈π

p(a)

)

for a plan π with R being the reward for reaching the goal.
For small values of R, the planner will prefer cheaper but more
unlikely plans; for larger values, more expensive plans will be
considered if they have a higher probability of succeeding. Costs
and success probabilities can be defined as per-operator con-
stants in the DTPDDL domain, or they can be provided by the
search space model (e.g., as in Fig. 6).

In our setting, the uncertainty is mostly part of the initial state.
To capture this in the sequential plans, we force the planner
to make assumptions. Assumptions are a type of all outcome
determinization [52], a way for a classical planner to solve
(some) problems that involve uncertainty. The planner may need
to perform actions that depend on uncertain facts in the world
(either as an action precondition or as part of a conditional
effect). Assumptions are internal actions that the planner can
use to establish that a fact is supposed to be true, allowing later
actions in the plan to depend on this fact. They have the following
properties: 1) an assumption may only be scheduled before any
physical action so that all parts of the actual plan are based on
the same set of assumptions and 2) if an assumption established
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Fig. 7. High- and low-level search actions and observation model. The SEARCHOBJECT action is used in sequential sessions to select the room to search in. The
PROCESSVIEW action is used, together with the observation model, by the POMDP planner when selecting the order in which to process the views.

a fact f , no other assumption may be used that establishes a
different fact f ′ so that f and f ′ are mutex. For example, the
planner may not make assumptions that a room is a kitchen and
an office at the same time.

As assumption can (and usually does) have associated prob-
abilities, making many (or unlikely) assumptions will lead to
higher costs of the plan.

Whereas the original switching planner creates the assump-
tions from a grounded representation of the robot’s belief state,
we allow for an implicit representation of that belief state by
allowing assumptions to be created from arbitrary operators.
Such an operator that ties an object of a type ?l to a room in-
stance ?r is shown in Fig. 6. Similar operators exist for partially
searched rooms, or to describe the probabilities of finding a new
room beyond an unexplored frontier. The associated probabili-
ties for these assumptions (i.e., the probability of a room being a
kitchen, or the probability of a placeholder yielding to a kitchen)
come directly from the chain graph model, which was explained
previously.

Once the planner tries to execute an action that depends on
an uncertain fact (e.g., the effect of the SEARCHOBJECT action
in Fig. 7 depends on the location of the object), a contin-
gent session is started. The switching planner creates a POMDP
for the subproblem of achieving the effect of the action that
triggered the session. To keep the POMDP tractable, it only
contains those facts that are relevant to the subgoal and which
do not cause the initial belief state to exceed a given size (50
in our implementation). As the initial belief state is so small,
states can be represented and computed explicitly. The resulting
POMDP can contain all actions that are available to the contin-
ual planner (as described in Section VII-A) plus goal actions that
provide a reward for correctly achieving the subgoal. However,
most actions will usually not be executable in the subproblem,
as their preconditions are not satisfiable in the restricted state
of the subproblem. Observations are described in DTPDDL by
an observation model. The (usually conditional) effect in an ob-
servation model describes the signal the POMDP planner will
receive given that one or several facts hold in the true world
state. In Fig. 7, the VISUALOBJECT model states that the planner
will receive an observed− location signal for every object
that is visible from a processed viewcone.

In contrast with the continual planning that takes place in a se-
quential session, the POMDP planner operates in a closed-loop

manner. It does not compute a complete policy, but only outputs
one action, waits for the resulting observations, and only then
computes the next action. A contingent session can be either
terminated by the POMDP planner itself by executing a goal
action, or by the switching planner if an action results in a state
that is outside the POMDP subproblem (e.g., if a move action
places the robot in a previously unknown place), or causes the
rest of the sequential plan to become invalid. In either case, the
planner continues with the previous sequential session, replan-
ning if necessary.

Consider the case where the robot is asked to find a coffee
mug and has just started in a corridor with two placeholders, as
illustrated in Fig. 2(b). As no viewpoints have been created at
this time, the only way the planner can satisfy that goal (mak-
ing known− location true for a mug object) is executing the
SEARCHOBJECT action in a room, with the assumption that the
object is in that room. Together with the action’s precondition,
the planner has to satisfy three subgoals: 1) the robot is in that
room (first precondition); 2) viewpoints must be created (sec-
ond precondition); and 3) the assumption that the object is in
the room must be established (effect condition).

In this case, it might assume that the current room is a kitchen,
since kitchens have the highest likelihood of containing a coffee
mug among the categories and searching a kitchen is the most
promising lead toward finding the object. It would then start
exploring the room, as this is a direct precondition of the CAL-
CULATEVIEWS action. During this exploration, it may quickly
become clear that the room is not likely to be a kitchen af-
ter all, causing the planner to replan. It may then switch to a
plan that assumes that it finds a new kitchen beyond one of the
placeholders, and will proceed to explore in that direction.

The search in a single room is handled by the POMDP planner.
Once the planner tries to execute the SEARCHOBJECT action, it
will switch to a contingent session, as the action’s effect depends
on the (unknown) fact (locationmug). When the robot decides
to search a room, a subproblem for the POMDP planner is
created, containing only the places and viewcones in the current
room, as well as the object that the robot searches. This has
two benefits. First, by forming simple problems for the POMDP
planner on the fly, we employ a divide-and-conquer approach
to avoid formulating too complex planning problems. Second,
we use optimality where it matters the most in the system,
that is, choosing the order in which viewpoints are processed.
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Fig. 8. Objects used during the object search experiments (stapler, cereal box
and coffee mug) are shown. Appearance models for these objects are known to
the robot before each search run.

The movement between viewpoints constitutes by far the most
expensive part of the whole object search execution. We believe
this way of mixing optimality and nonoptimal fast planning is a
good fit for a robotics scenario. If all viewpoints in a room are
processed without finding the object, the β parameter is updated
(as explained in Section VI-D), and the continual planner is
invoked to compute a new plan with the updated probabilities.

VIII. EXPERIMENTS

Experiments took place in a 33 m × 12 m environment with
15 different rooms of which 12 are office rooms, one is a kitchen,
and one is a meeting room connected by a corridor. The mobile
robot platform utilized is a Pioneer III wheeled robot, which is
equipped with a Hokuyo URG laser scanner, a Microsoft Kinect
camera, and a higher resolution camera mounted at 1.4 m above
the floor.

Three different objects were used during experiments: a cereal
box, a stapler, and a coffee mug (see Fig. 8). The BLORT vision
toolkit [53] was used to detect all objects. The robot had a
priori knowledge of the object models beforehand. The default
knowledge indicates that the cereal box is mostly expected to be
in a kitchen, the stapler in office rooms, and the coffee mug can
be in almost any room in the environment except the corridor.

The whole system is implemented as separate components us-
ing the CAST Robotics Middleware Framework [54]. We have
used the CURE software library for building a map of the en-
vironment and for path planning [55]. The 3-D grid map of the
rooms consists of 10 cm × 10 cm × 10 cm cubes. The Microsoft
Kinect camera, together with the laser scanner, are used to per-
form 3-D mapping and obstacle avoidance. The robustness in
navigation gained from this allowed us to run our experiments
in a dynamic cluttered real-world office floor.

A. Experimental Setup

It is generally very hard to obtain ground truth data on the
task of searching for objects in large environments for quanti-
tative analysis of the system. There are several reasons for this.
First, there are no established datasets, as the active nature of
the problem makes this hard, and there are no well-established
simulation environments in the literature in order to compare the
few systems that are designed to search for objects in large-scale
environments. Second, in the absence of a benchmark dataset
for visual search tasks, different systems need to be evaluated

in the same conditions (e.g., same environment, same objects,
and object placements) for a meaningful comparison of results.

We have implemented a method for comparison, later referred
to as uninformed search, which does not make use of the se-
mantics of the environment. With uninformed search, we aim to
recreate the greedy search strategy that is employed in the most
recent state-of-the-art systems on AVS such as [2], [6], and [18].
In this case, the robot, at each newly discovered room, first ex-
plores the room fully, and calculates viewpoints that cover the
entire room. The robot then proceeds to process each viewpoint
one by one, in a greedy fashion. The search continues until the
object is found or there are no rooms left that have not been
searched.

Furthermore, we also compare our method to a human per-
forming the AVS task. We believe this provides a gold standard
on testing the efficiency. The idea of comparing an object search
method against human participants has been explored recently
in [32]; however, in our work, we let the human remote control
the robot and perceive the environment using the same sensors
as the robot.

Finally, we have implemented the method proposed in this
paper, later referred to as informed search, that uses the seman-
tics of the environment to guide the search task by using the
actions and the spatial representation presented in this paper.

Our experiment setup is as follows. We invited 12 people
to the Center for Autonomous Systems (CAS) Laboratory. The
participants are picked such that they had not seen the test en-
vironment beforehand and were not familiar with this work and
robotics in general.

First, the target objects were shown to each participant from
all view angles. This corresponds to learning the object models
in the system. Then, each participant is given a driving practice
of steering the robot with a joystick at another location, until
they are comfortable in maneuvering the robot. The participants
passed certain tests that proved they were able to drive the
robot comfortably. This included moving between rooms and
to designated places in the environment. Once the participants
were able to control the robot with ease using the joystick,
they then sat in front of a computer, which displayed a live
feed video from the robot’s cameras. The robot is placed in the
test environment, which is the entire sixth floor of CAS. The
participants were then asked to find one of the objects with the
starting point for the robot, and the object location is picked
randomly for each run.4

After a participant has completed a run, we changed the loca-
tion of the object and asked the participant to perform another
search task. This corresponds to the case when the robot has a
known map of the environment at the start of the search task. For
each of the human runs, we have run informed and uninformed
object search methods in exactly the same conditions regarding
the robot’s starting position, presence or absence of an a priori
map, and location of the target object. Repeating this process

4The cereal box object was placed only in the kitchen, the stapler was placed
in one of the office or meeting rooms, and coffee mug was placed in any of the
rooms except the corridor, commensurate with the default knowledge.
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for the three objects, in total, resulted in 108 real-world test runs
of an object search task for all three methods.

B. Quantitative Experiments

We have recorded the search trajectory and time during runs
for both the unknown map and known map cases. Fig. 9 shows
the average trajectory lengths and search times for all three
cases for both when the map is known a priori and when it is
unknown. To compare with the robot performance, we have only
considered instances where the object is successfully found by
the robot. The uninformed search is by far the most inefficient
way of locating objects by traveling on average 112 m. In con-
trast with the use of semantics of the environment in order to
guide the object search, the robot nearly halves the total search
trajectory length. As expected, human runs have the shortest tra-
jectory length. It is worth noting that the difference between the
human performance and the informed search is smaller when
the map is known. This shows that the method, which is pre-
sented in this paper, can utilize the already known information
about space without additional algorithmic or implementation
changes.

The difference in trajectory length between the human and the
informed search methods is approximately 25 m in the unknown
map case, and 18 m in the known map case. The main reason
for this is humans are far better in visual tasks than robots,
and can recognize objects and categorize rooms from far away
in contrast with the robot. Therefore, we would expect that
the search strategy and modeling of the search space presented
in this paper would automatically benefit from better visual
processes in categorizing rooms and detecting objects in images.

Looking at the object search task performance from the search
time point of view, we see a similar ordering in terms of the
three methods tested. The differences between the methods are
larger than in the trajectory length case. The reason for this is
that moving more in the environment requires turns and twists,
which takes a longer time that does not manifest itself in the
trajectory length metric. As can be seen from the graph, in the
uninformed search case, it takes approximately 36.4 min to find
the target object for the unknown map case, and 28.5 min for the
known map case. This is clearly an unacceptable time to wait
for an intelligent autonomous robot living in human spaces. On
the other hand, by utilizing the semantics of the environment, as
described in this paper, on average, we are able to find the object
15.8 min in the unknown map case, and 7.8 min in the known
map case. This is a huge gain in efficiency. As expected, in the
known map case, human participants were very adept at learning
the environment. The search time for the human participants
for the unknown and known map cases were 8.55 and 3.6 min,
respectively. We note that some of the difference in time between
the human and informed search is caused by humans navigating
the robot more expertly around obstacles than the autonomous
navigation algorithm. Fig. 10 shows the trajectories of human,
uninformed, and informed search methods from a single run.
The target object is the cereal box and the map is unknown. The
starting position for all of the runs is the same, which is the
leftmost position in the corridor indicated in Fig. 10.

The search trajectory of the human participant is shown in
Fig. 10(a). At the start of the search, the human participant
steered the robot into the office room. This was a commonly
occurring behavior with most human participants. We argue that
the reason for this is that the participant first required some initial
information on the type of the environment. Upon realizing that
the room is a typical office room, and most likely all other office
rooms in this floor look alike, the participants typically have
constructed their idea of what kind of an environment this is,
therefore what types of rooms they should anticipate. Therefore,
for the remaining part of the trajectory, they only peeked through
the doors of other rooms to inquire its category, until they have
found the kitchen room. The cereal box object was placed on a
table in plain sight in the kitchen.

Fig. 10(b) shows the search trajectory of the method pre-
sented in this paper. The robot here starts out in the corridor and
by exploration it enters each room. One difference between the
human case is that, while humans can deduce a room’s category
by peeking through the doors, the robot has to enter the room
and accumulate observations. However, after gathering evidence
that the category of the room is not what the planner expected,
the robot continues with the exploration in the corridor with
the hopes of finding a kitchen room. As expected, the informed
search method traverses a significantly shorter trajectory com-
pared with the uninformed search method.

Finally, Fig. 10(c) shows the uninformed search trajectory. As
expected, this strategy covers the whole environment without
making use of spatial characteristics of the visited places. This
results in a significantly less efficient search compared with
other two methods.

C. Qualitative Experiments

In order to show the adaptability of our system to different
search conditions and provide better understanding of typical
search missions, we have also run our system in a smaller three-
room environment and logged the input/outputs and the resulting
trajectories. We have evaluated six different scenarios with dif-
ferent starting positions, object locations, and map status (from
completely unknown to partially known at the start of search)
each time. Fig. 11 shows the search trajectory of all the runs. The
trajectories are color coded. The colors indicate robot’s room
category estimates for the current position. Red, green, and blue
corresponds to kitchen, corridor, and office, respectively. In the
following, we give a brief explanation for what happened in the
different runs.

1) Fig. 11(a) Starts: corridor, Target: cereal box in kitchen
The robot starts by exploring the first placeholder in the
corridor. After this, two more placeholders appear: one
continuing in the corridor, the other on the left behind a
doorway. The latter placeholder has a higher probability of
leading into a kitchen due to it being nearer to the doorway,
and the robot enters office1. The robot then starts explor-
ing other placeholders appearing in office1. After explor-
ing the second placeholder in office1, the room category
of office1 is deemed an office. Since default knowledge
indicates cereal boxes are seldom in office rooms, the
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Fig. 9. (a) Average trajectory length and (b) average search time for human, uninformed, and informed search methods for both the unknown and known map
cases over 108 search runs.

Fig. 10. Trajectories overlaid on the floorplan of the test environment from a visual search run for the object cereal box with unknown map. (a) Trajectory for
one of the human runs. (b) Trajectory taken by the method presented in this paper. (c) Trajectory of the uninformed search method. The robot missed visiting two
rooms in this example uninformed search run due to the inaccuracies in the robot’s occupancy map, which resulted in missing placeholders for these rooms.

Fig. 11. Search trajectories that resulted from different object search runs, while utilizing the methods presented in this paper. The environment consists of
three rooms. The colors indicate robot’s estimate on the most likely room category with red, green, and blue corresponding to kitchen, corridor, and office,
respectively. Each trajectory corresponds to an object search instance with varying target object placement and room accessibility, hence resulting in different
search behaviors. This shows the flexibility of our approach in coping with different search conditions. A video of the above search runs can be viewed at
http://csc.kth.se/ aydemir/Active-Visual-Search.html.
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robot returns to exploring the corridor until it finds the
kitchen door, and explores the placeholder near this door.
This time, exploration of kitchen goes without interrup-
tion since cereal boxes have a high probability of being
located in rooms with category kitchen. Finally, the robot
computes views in this room with the CALCULATEVIEWS

action. After processing some view positions, the cereal
box object is found.

2) Fig. 11(b) Starts: office2, Target: cereal box in kitchen
Similar to Fig. 11(a), after exploring a few placeholders,
the robot does not issue the search command in the current
room, and continues with exploration until it finds the
corridor. Eventually, the robot finds the room kitchen, and
the rest proceeds as in Fig. 11(a).

3) Fig. 11(c) Starts: corridor, Target: cereal box in kitchen
The robot explores until it finds office2. Upon entry, the
robot categorizes office2 as kitchen but after further ex-
ploration, office2 is categorized correctly. As a result of
this, the robot switches back to exploration and since the
kitchen door is closed, it passes the kitchen and finds of-
fice1. Similarly, after determining the category of office1,
the robot sets out to explore more; however, there are no
more placeholders to explore, and therefore, the search is
stopped.

4) Fig. 11(d) Starts: office1, Target:stapler in office2
The robot starts by exploring the current room and mean-
while categorizes the room correctly as an office room.
Since stapler has a high probability of being in offices, the
robot launches a search in this room. However, the object
is placed in office2, and the robot fails to find the object.
After failing to find the object in office1, the robot contin-
ues with exploration, which leads it to the corridor. The
robot then finds the room kitchen but after realizing that it
is kitchen-like, decides not to search the kitchen room and
continue its exploration. The robot then finds the room
office2. After determining the category of this room, the
robot launches a search, and this time, the stapler object
is found in office2.

5) Fig. 11(e) Starts: kitchen, Target: cereal box in kitchen
As before, realizing that the current room is promising for
cereal box, the robot calculates viewpoints in this room.
After processing the views its visual algorithms fail to
detect the object. After processing all views, it finally goes
out into the corridor to look for another kitchen. However,
the environment is fully explored and the search stops.
This is a case where the search strategy has successfully
brought the object into the field of the view of the robot
however there was a failure in object detection.

6) Fig. 11(f) Starts: corridor, Target: stapler in office1
The robot is started in the corridor and driven to the kitchen
by a joystick; thus, in this case, the environment is largely
explored already when the planner is activated. The part
of the corridor leading to office2 has been blocked delib-
erately. By exploration, the robot finds its way to office1,
and launches a search that results in a successful detection
of the target object.

D. Comparison With Previous Work

In this section, we will compare our approach with those in
previous works that are closest to our work. In short, we will
focus on three different lines of work [7], [17], [18], [20]. We
note that a quantitative comparison is not possible since it is
either not possible to recreate the exact search environments
in which these works have produced their results, obtain the
same target objects or search conditions. Therefore, we will aim
to give an extensive discussion on how the method, which is
described in this paper, presents a contribution in the light of
these research works.

The pioneering work by Tsotsos et al. in AVS with mobile
robots introduced the first ideas on view planning in 3-D space
with a moving agent and a spatial probability distribution de-
fined over the search space [17]. In later work from the same
authors, the environment is assumed to be unknown in advance
as it is in this paper [6]. The robot exhaustively covers the search
space in this work until the object is found, or the whole environ-
ment is covered. A very recent visual search system presented
in [18] uses a similar greedy search strategy. The uninformed
search method implemented and evaluated in this paper approx-
imates to this type of search. As shown, such a method is highly
inefficient for the search space and target objects depicted in
this paper. In contrast, we utilize semantics of the environment
to prune the search space, and guide the search toward more
promising areas of the search space.

The system described in [20] takes on a different approach
by first identifying candidate locations that are visually similar
to the target object. After this first step, the robot then visits
each of these locations to run a more computationally expensive
and powerful object recognition algorithm. While this approach
exploits the visual similarity, it still first needs to cover the
whole space in order to generate candidate locations. In our
case, this would mean exploring the entire floor, which would
be prohibitively costly from a task completion point of view.

Finally, the work by Kollar and Roy [7] is closest to our work
in the sense that environment semantics are utilized to guide
the search. In this case, object–object co-occurrence properties
are exploited in order to compute paths in the environment
that lead to the target object. In order to accomplish this, the
environment is first explored, and various objects are discovered.
These objects later indicate where the target object might be in
the environment. As an example, if the robot is looking for a
chair, then an area where there are lots of tables can be a good
candidate place. A path is computed to this area. There is no
view planning involved, the target object is deemed found if
the images while traversing the path contain the said object. In
comparison, our method does not rely on first exploring and
discovering a dense set of objects in the environment. Instead,
we utilize default knowledge about object locations and room
categories (e.g., cereal box is likely to be found in the kitchen)
to guide the search.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have argued that a search strategy that effec-
tively reduces the search space, allowing for successful object
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search otherwise intractable, can be devised by exploiting the se-
mantics of the environment. To this end, we have demonstrated
how to build and use uncertain environment semantics in order to
efficiently search for objects. Further, we have proposed a way
of dealing with unexplored environments by reasoning about
possible worlds in the same spatial model. We define search
actions that allow efficient search over the whole environment
by taking full advantage of this model of the search space. We
show that these set of actions allow a flexible search system that
can handle different starting positions and environments with
ease.

Future work will focus on calculating a more informed 3-D
probability distribution over the metric space by incorporating
our work [56]. We think that this has the potential to further
increase search efficiency at the viewpoint level. Another inter-
esting future research direction is more sophisticated reasoning
about the unexplored part of indoor environment, as in our pre-
vious work [57]. For this, we plan to use the learned indoor
models from a large annotated floor plan database to help guide
the robot in goal-directed exploration.

Furthermore, we would like to explore the case when a robot
lives in the environment, visiting the same rooms and objects
over large periods of time, and searching for objects occasionally
during this time. We think that the search strategies, environment
models, and models on object locations that can handle not only
spatial but also spatiotemporal aspects of object search is an
interesting direction for future research.
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