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Abstract— Autonomous mobile robots will soon become ubiq-
uitous in human-populated environments. Besides their typical
applications in fetching, delivery, or escorting, such robots
present the opportunity to assist human users in their daily
tasks by gathering and reporting up-to-date knowledge about
the environment. In this paper, we explore this use case and
present an end-to-end framework that enables a mobile robot to
answer natural language questions about the state of a large-
scale, dynamic environment asked by the inhabitants of that
environment. The system parses the question and estimates
an initial viewpoint that is likely to contain information for
answering the question based on prior environment knowledge.
Then, it autonomously navigates towards the viewpoint while
dynamically adapting to changes and new information. The
output of the system is an image of the most relevant part of
the environment that allows the user to obtain an answer to
their question. We additionally demonstrate the benefits of a
continuously operating information gathering robot by showing
how the system can answer retrospective questions about the
past state of the world using incidentally recorded sensory data.
We evaluate our approach with a custom mobile robot deployed
in a university building, with questions collected from occupants
of the building. We demonstrate our system’s ability to respond
to these questions in different environmental conditions.

I. INTRODUCTION

Many day-to-day tasks of occupants of large-scale human

environments, such as office buildings, hospitals, or ware-

houses, require up-to-date knowledge about the state of the

environment. However, human environments are also inher-

ently dynamic. As a result, a large component of everyday

tasks performed by humans in such environments is simply

collecting up-to-date information.

A lot of information about our world can be found online.

We can plan our time more efficiently by looking up the

operating hours of a store or checking traffic conditions for

a daily commute. However, a large portion of our world state

is not as easily accessible (e.g. “Is food available in the

downstairs kitchen?”). We believe that mobile robots hold

the key to broadening the spectrum of dynamic environment

knowledge that is readily available to human users.

In our previous work, we demonstrated the potential of

mobile information gathering robots in this scenario using

user surveys and Wizard-of-Oz deployment [1]. Inspired by

the results, in this work we demonstrate an end-to-end frame-

work capable of answering natural language questions about

the state of a dynamic environment using an autonomous

mobile robot. We use an image captured by the robot as
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Fig. 1. The end-to-end system: (a) a question is submitted through the
web interface; (b) robot estimates the initial configuration, navigates to the
destination while iteratively refining the estimate; (c) it captures the image
containing the requested information; (d) the image is delivered to the user
through the web interface.

a medium of choice to convey the information answering

the question back to the user, since images can be analyzed

quickly and accurately [2] while carrying rich context.

Our framework assumes the availability of prior knowl-

edge about the environment in the form of simple, semanti-

cally annotated 2D floor maps. This information is already

available in many buildings, often in electronic form, e.g.

indoor Google Maps. The system receives a natural language

question posted by users through a web interface (see Fig. 1

for an example). Once a question arrives, the framework

parses it and computes an initial robot configuration for

capturing an image containing the information. To this

end, our framework scores candidate robot configurations

regarding visibility of requested information according to

the semantic annotations and the previous, but possibly

outdated knowledge about the state of the world. Then, the

robot begins navigating to achieve the desired configuration

while refining its estimate as more accurate and up-to-date

information becomes available during the execution of the

task. This refinement process allows the robot to compute a

view maximizing the amount of captured information despite



potential dynamic changes such as unexpected occlusions or

obstacles that prevent the robot from reaching its initial goal.

We present an implementation of the proposed approach

on a custom mobile robot deployed in a university building.

We evaluate our system from several perspectives. First, we

quantify the performance of the language parser itself with

the natural language questions collected from the inhabitants

of the building. We then evaluate the complete system on a

selected, representative subset of questions for varying en-

vironment conditions. Finally, we demonstrate that the same

framework can be used to answer questions retrospectively

(“Was Mike Chung in the robotics lab?”) by choosing the

most relevant frame from incidentally recorded past data.

II. RELATED WORK

Previous work has explored many applications of au-

tonomous mobile robots in human environments. These

include fetching objects [3]–[6], giving guided tours [7]–[9],

escorting people to a target location [3], [10], or acting as a

kiosk to provide information [11]–[13]. However, the use of

such robots to answer people’s questions about a dynamic

environment has been largely unexplored.

Most closely related to our work is research focused on

object search [14]–[19]. These approaches utilize domain

knowledge about human environments and reason about

potential target object locations. Some of them acquire parts

of domain knowledge from the web [15], [19], or gather

the knowledge required for each object search from the

web on-demand [16]. While we consider search as a type

of information gathering, our work focuses on a different

type of information gathering task that involves checking

the dynamic state of a target specified in terms of natural

language. Our goal is to provide a human-centric, end-to-

end experience by combining information gathering with a

natural interface and handling tasks requested by real-world

users. Another line of relevant works focus on understanding

human language in the context of tasks in human environ-

ments, such as following natural language directions [20],

[21] or spatial modeling of linguistic prepositions [22], [23].

Outside the realm of human-populated environments, the

use of robots for information gathering is not a new idea.

Mobile robots have been used for exploring and gathering

information in challenging environments such as space, un-

derwater, or disaster zones [24]–[27]. Some works [28]–[31]

develop general algorithms for information gathering that

could potentially be used in human-populated environments.

III. USER-CENTERED DESIGN

We begun exploring the potential of mobile robots for

answering questions about the environment from the end-user

perspective [1]. We conducted several initial interviews and

administered a survey to occupants of two buildings at the

University of Washington. Our survey indicated that robots

might provide a useful service and allowed us to formulate

a coarse design of a practical framework.

To confirm our findings in practical situations, we de-

ployed our robot in one of the buildings using the Wizard-

of-Oz technique, i.e. the questions were interpreted manually

and the robot was controlled by a human operator. As a front-

end, we created a web interface through which users could

post free-form questions and monitor the status of the an-

swer. Users were recruited from graduate and undergraduate

students, staff and faculty.

The experiment was conducted for four business days

(9am-5pm). When a user asked a question using the web

interface, the operator received and validated it. The operator

then teleoperated the robot to a location where relevant

information could be acquired and positioned the on-board

camera to achieve the desired viewpoint. The question was

answered by delivering the picture taken from the viewpoint

together with a brief textual answer to the web interface.

Over the deployment period, we received 88 valid ques-

tions posted by 45 unique users. The majority of questions

(71%) were concerned with the presence of things at certain

locations in the building. Users were mostly interested in

the presence of people (33%). Common examples of this

type of question are “Is there anyone at {location}?” and

“Is {person} in his/her office?” Among questions concerning

objects in the environment, users were most interested in the

presence of food and mail; e.g. “Is there anything in my

mailbox?” and “Is there any food in the downstairs kitchen?”.

Another major group of questions was about the state of

the environment at target locations. Questions ranged from

checks about accessibility of various services (e.g. “Is the

door to the conference room open?”, “Is the reception still

open?”) to ambient conditions (e.g. “How noisy is it in the

atrium right now?” or “Is it raining outside?”).

The results of this formative study gave us insights into

the types of questions people might ask if an autonomous

framework was to be developed. Moreover, the intuition

that images can be a powerful medium when conveying the

answers to questions was supported by two users indicating

that, while the text answer did not answer their question,

they could extract the answer from the associated image.

IV. FRAMEWORK

Our primary goal in this work was to design and imple-

ment an autonomous system realizing the tasks requested by

the users during the aforementioned study, using the same

end-to-end approach. To this end, we replaced the human

operator with an integrated framework realizing all the steps

from input question understanding to delivering the answer

to the user. We settled on answers in the form of images

aiming to achieve a balance between usability and reliability

of the system. While extracting answers from images could

also be automated, even with the recent image understanding

methods, providing very accurate and context-rich image

understanding remains a challenge in real-world settings.

At the same time, this task can be solved robustly and

efficiently by the end users [2] without significant impact

on the experience [1].

A. Problem Formulation

The goal of the framework is to find the best robot

camera configuration (viewpoint) v∗, for which the requested



information is present (I = 1, I ∈ {0, 1}) in the captured

image, given a natural language question q. We assume the

robot is operating in a dynamic environment described by

a body of coarse, domain-specific, static world knowledge

W , which is unlikely to be affected by dynamic changes, as

well as accurate, but potentially outdated, dynamic 3D map

M3D. We formulate our problem as

v∗ = argmax
v

P (I = 1|v, q;W,M3D). (1)

We factorize P (I = 1|v, q;W,M3D) as
∑

z

P (I = 1|v, z;W,M
3D)P (z|q;W ) (2)

≈max
z

P (I = 1|v, z;W,M
3D)P (z|q;W ) (3)

where z is a descriptor of the information requested in the

question. Factoring the problem in this way allows us to

independently estimate the viewpoint given a descriptor with

P (I = 1|v, z;W,M3D) and the natural language parse of

the question as a descriptor with P (z|q;W ).
For a question obtained through the web interface

(Fig. 1a), the information descriptor z takes the form of

a tuple z = (l, t) where l describes the coarse location

indicated in the question (e.g. a room cse101), and t is

a target specifying the object presence or the state of the

environment relevant to the question (e.g. person, stapler

or occupied). We then define P (z|q;W ) as a distribution

over information descriptors z for a question q. For example,

given the question q = “Is Mike Chung in his office?” and the

record in W that identifies Mike Chung as person and Mike

Chung’s office as cse101, the desired information descriptor

z is a tuple (cse101, person). Since we defer the image

interpretation to the end user, we do not need to make a

distinction between instances (Mike Chung) and categories

(person) of objects in question. Then, the desired output v∗

is a robot pose near or in the room CSE101 that provides the

best viewpoint for seeing a person, despite occlusions due to

moving people, chairs, doors or cubicle partition panels.

While we assume that the static domain knowledge is

sufficient for parsing, we cannot make that assumption

about navigation and viewpoint estimation in dynamic en-

vironments. Therefore, we tightly couple the task execution

process with the continuous refinement of the best viewpoint

estimates with the help of the constantly updated M3D.

We begin with an initial prior on the 3D map estimated

purely from the coarse static information in W . That is

sufficient to compute an initial v∗ to which the robot can

start navigating (Fig. 1b). However, M3D is likely to be

inaccurate or outdated due to dynamic changes. As a result,

v∗ may not provide the best viewpoint with respect to the

current state of the environment or the viewpoint might

be inaccessible. We address this problem by letting the

system continuously update M3D during task execution and

re-evaluate P (I = 1|v, z;W,M3D) to update the target

navigation goal and camera configuration accordingly. This

process continues until there is no change in the estimate

v∗ and the robot reaches the goal. Note that we do not re-

compute P (z|q;W ), since language parsing requires only

static world knowledge W . Once the robot reaches the final

v∗, it captures an image using the on-board camera (Fig. 1c)

and returns this image as its response (Fig. 1d).

B. World Model

As described in Sec. IV-A, our world model consists of a

static component W and a dynamic component M3D. Fur-

thermore, we introduce a topological map MT in which each

topological node serves as a candidate place from which a set

of discrete candidate viewpoints originate. When computing

Eq. 1, we search for v∗ only among the viewpoints in a MT

which makes our problem tractable and allows for real-time

continuous updates to the viewpoint estimates during task

execution. Below, we describe each component in detail.

1) Static World Knowledge: The static component W is

a tuple (M2D,MS , D). M2D is a 2D occupancy grid map

with a resolution of 0.05m in which each grid cell is is either

empty, occupied, or unknown. M2D is acquired by mapping

the environment using a method developed by Grisetti et al.

[32] and post-processed to only contain static information

(e.g. walls and stationary furniture). Obtaining such maps,

even for large environments, is easy, yet they provide suf-

ficient amount of information in our framework for global

navigation planning and anchoring semantic annotations.

MS is a representation of static semantic information

about the environment anchored in the 2D metric map M2D.

It takes the form of groups of the 2D map cells associated

with semantic symbols compatible with the descriptor z =
(l, t). We use polygon regions on top of M2D associated with

symbols in l to encode spatial extent of semantic information

about locations, e.g. a region describing a room CSE101. We

use distributions over cells in M2D associated with symbols

in t to express the likelihood of presence of semantic target at

a cell, e.g. a distribution modeling the presence of a person or

object over 2D map cells near a desk. A large portion of such

static semantic annotations is already available in electronic

form in many buildings (e.g. floor plans or indoor Google

Maps). Additional annotations can be placed manually or

with the help of semantic mapping algorithms (e.g. [33]).

Often, the benefit in terms of reliability will outweigh the

one-time effort required to provide such annotations.

Finally, D is a relational database of domain specific

knowledge about the environment. In our implementation,

the database was generated from existing databases of em-

ployees of the building and offices they were assigned to. It is

used primarily to support language understanding and enrich

the semantic information captured in MS . For instance, in

order to map the question “Is Mike Chung is his office?”

to a set of viewpoints that could provide an answer, we

can combine the annotations in MS of room CSE101 and

locations likely to contain a person, with the knowledge in

D that Mike Chung is a person assigned to office CSE101.

2) Dynamic World Knowledge: The dynamic component

M3D of our world model is a 3D occupancy grid map,

aligned with M2D, with a resolution of 0.05m in each of

the three dimensions. M3D provides a richer representation

of the environment; however, in dynamic environments it can



Fig. 2. A typical example of a set of topological nodes on top of the values
of φG(Ni) for each pixel of an occupancy grid map.

quickly become outdated. Hence, we continuously update it

with incoming depth data from RGB-D sensors using the ap-

proach of Hornung et al. [34]. M3D is the representation that

stores the most up-to-date, detailed environment knowledge

collected over the course of the robot’s deployment and is

used for reasoning about visibility.

To obtain an initial 3D representation required for view-

point estimation, before any 3D data is acquired, we rely on

the static information stored in W . We transform W into the

coordinate system of M3D by extending the 2D information

in M2D and MS into the third dimension. The occupancy

information in the new dimension is generated based on

the semantics of the objects. Walls and windows separating

rooms in M2D are assumed to have a fixed height (2m and

0.85m in our environment), while other objects annotated in

MS are assigned with a Gaussian distribution modeling their

approximate size and distance from the ground with µ and

σ depending on the semantic class. These distributions are

then used to sample initial occupancy information.

3) Topological Map: The topological map allows the

framework to constrain the problem of viewpoint estima-

tion to viewpoints originating from a discrete subset of all

possible locations in the 2D map. This makes the problem

tractable, but also results in a commitment that could harm

performance. Therefore, it is important to select a discretiza-

tion that properly supports the problem at hand.

We generate topological maps from a probability distribu-

tion that models the relevance of 2D grid map locations to

the task and distributes topological places accordingly. The

distribution is defined as:

p(N |M2D) =
1

Z

∏

i

φR(Ni)φG(Ni),

where Ni ∈ {0, 1} determines whether a place exists at loca-

tion i in the 2D map and Ni = {Nj : j ∈ neighborhood(i)}
is a set of Nj for a local spatial neighborhood of 1m radius.

The potential function φG(Ni) models the relevance of a

location for the task and is defined in terms of three potentials

calculated from the 2D occupancy map M2D:

φG(Ni) = φO(Ni) (φC(Ni) + φV (Ni)− φC(Ni)φV (Ni)) ,

where:

• φO depends on the distance dOi between location i and

the nearest obstacle and equals 0 for distance smaller

than the radius r of the robot and exp(−α(dOi −r)) oth-

erwise. The cost function and α are the same as in the

local planner of the robot’s navigation algorithm [35].

• φV = exp(−β|dOi − dV |) depends on the relation

between the distance dOi and a fixed distance dV that

provides good visibility of obstacles and is determined

by the camera parameters.

• φC = exp(−γdCi ) depends on the distance dCi of

location i to the nearest node of a Voronoi graph of the

2D map. This promotes centrally located places since

central locations are often safe for navigation.

Overall, the definition of φG(Ni) ensures that candidate

places are located only in areas that will not lead to a colli-

sion with permanent obstacles and are either preferred due to

their central location or good visibility of objects of interest

(usually located near occupied cells on the 2D map). The

potential φR(Ni) ensures that places are spread with a certain

distance to one another, by enforcing low probability for

locations that are close to other existing places. The resulting

places, despite being generated based on the static elements

of the environment (e.g. walls, permanent furniture), provide

sufficient coverage, even when considering the presence of

dynamic objects. At the same time, the topological map

eliminates a large portion of irrelevant locations.

We employ Gibbs sampling to perform the maximum a

posteriori inference and choose samples corresponding to

topological maps with highest posterior probability. A typical

example of a generated set of topological nodes for a single

floor of a building is shown in Fig. 2. For each place, we

assume a discrete set of orientations evenly spread across the

full circle (in our implementation, every 30◦), which together

with the metric position of a place fully specify a viewpoint.

C. Parsing Natural Language Questions

Parsing a language input question q to an information de-

scriptor z = (l, t) is equivalent to evaluating P (z|q;W ). We

first process q by using Stanford CoreNLP Natural Language

Parsing Toolkit [36] to extract part-of-speech (POS) tags and

a context-free phrase structure tree, and apply co-reference

resolution. We merge all outputs from the CoreNLP to a

parse tree q′ by copying the output parse tree and replacing

its leaf nodes with the input words and the POS tag pairs.

We then use the results from the co-reference resolution to

replace the subtrees corresponding to the referring words

with the subtree corresponding to the referred words. For

example, given q = “Is Mike Chung in his office?”, the

sentence extracted from q′ is “Is Mike Chung in Mike

Chung’s office?”.

Given q′ we evaluate:

P ((l, t)|q′;W ) ∝ max
i

1(Ti(q
′))

×

{

max
j

d(L(Ti(q
′)), Aj(l)) + max

k
d(G(Ti(q

′)), Bk(t))

}

,

where:

• Ti(q
′) is an ith relation template that can detect words

describing a location and a target type in q′. Templates



use relationships between tags (e.g. check if a node has

children with tags PP and NP) and predefined keywords

(e.g. check if a word paired with a IN POS tag equals

to the locational preposition such as “in”, “at”, etc.) to

detect the words. 1(Ti(q
′)) returns a boolean variable

indicating whether Ti(q
′) fits on q′ or not.

• L(·) and G(·) operators return detected words describ-

ing a location and a target type, respectively, from ap-

plying a template Ti(q
′). Using the q′ mentioned earlier,

L(Ti(q
′)) = “Mike Chung’s office” and G(Ti(q

′)) =
“Mike Chung” for some i.

• Ai(l) returns ith name describing l and Bj(t) returns

jth name describing t by looking up the data stored

in the domain knowledge database D. For example,

Ai(cse102) = “Mike’s Office” and Bj(person) =
“Mike Chung” for some i, j.

• d(·, ·) function measures the similarity between two text

inputs (e.g. Levenshtein distance).

In Sec. IV-A, we approximate the summation in Eq. 2 with

the max (Eq. 3). In other words, we are only considering

the most likely information descriptor instead of all possible

information descriptors in order to ensure real-time perfor-

mance when scoring viewpoints during 3D map changes.

If the input sentence is not an information checking

question, then the distribution P ((l, t)|q′;W ) will not be

proper; no relation templates Ti(q
′) can cover the input q′.

We can use this property to detect valid questions.

We evaluated the ability of the parser to (i) detect valid

questions and (ii) predict an information descriptor given

sentence on the real user questions collected during the

deployment experiment described in Sec. III. The labels

for the questions were acquired by a coding process per-

formed by two of the authors. Labeling involved adding an

information descriptor z∗ = argmaxz P (z|q;W ) for each

question q. For the valid question detection task, we attained

an accuracy of 74%, a precision of 94% and a recall of 71%
(# of true positives: 48, true negatives: 17, false positive: 3,

false negatives: 20). For the 65 questions that were correctly

identified, we evaluated our system’s ability to extract the

corresponding information descriptor. Our parser achieved an

accuracy of 72% in correctly classifying the full information

descriptor z = (l, t).

D. Viewpoint Estimation

As mentioned in Sec. IV-A, estimating the best viewpoint

providing answer to the question asked by the user is

equivalent to evaluating P (I = 1|v, z;W,M3D) for the

given information descriptor z. Importantly, in our system,

this evaluation is performed continuously and in parallel to

task execution as M3D is updated, resulting in updates to

the target navigation goal and camera configuration. The

distribution P (I = 1|v, z;W,M3D) can be decomposed as

follows (W,M3D omitted to keep notation uncluttered):

P (I = 1|v, z) =
∑

x

P (I = 1|x, z)P (x|v) (4)

where x are the cells in the coordinate system of the 3D

occupancy map M3D.

The first term P (I = 1|x, z;W,M3D) models the pres-

ence of the information specified by descriptor z at cell

x by combining the semantic information in MS with the

current state of the 3D occupancy map and the information

in M2D projected into three dimensions for the parts of

the environment for which a detailed 3D map has not been

acquired yet (see Sec. IV-B.2 for details). The annotations

in MS are compatible with symbols in z = (l, t) and

can be expressed directly in terms of probabilities assigned

to the occupied cells of the dynamic 3D representation.

We use P (I = 1|x, l;W,M3D) = 1 for every occupied

cell of every vertical column within the polygon region

describing location annotation l. For target annotations t,

we assign P (I = 1|x, t;W,M3D) to the value of the

distribution over 2D map cells associated with the annotation,

uniformly distributed across all the occupied cells of the

vertical column. We assume independence between the two

types of annotation (W,M3D omitted): P (I = 1|x, z) =
P (I = 1|x, l)P (I = 1|x, t).

The second term in Eq. 4, P (x|v;W,M3D), models the

visibility of cell x from viewpoint v. We compute it using

raytracing in the most up-to-date 3D representation. We

assume a fixed angular resolution when projecting rays from

the origin of the viewpoint (100× 100 rays within the field

of view of the robot’s camera). This approach provides a

heuristic behavior promoting viewpoints that are neither too

close nor too far from the target. Viewpoints that are too close

miss information outside the field of view, while viewpoints

that are too far observe the target with low resolution. We

place a threshold on the maximum length of a ray to be 15m

and assume that cells x that are hit by one of the rays without

occlusions are visible from the viewpoint v. Finally, while

the robot is executing the task, it might discover that certain

v is not reachable (cannot be navigated to). For such v, we

set P (x|v;W,M3D) = 0 for all x.

V. EXPERIMENTS AND RESULTS

We evaluated our end-to-end framework in two question

answering scenarios with a mobile robot deployed in an

office building: autonomous information acquisition and re-

trieval of answers from previously collected data.

A. Experimental Setup

The framework was deployed on a custom-built mobile

robot based on the MetraLabs Scitos G5 mobile base ex-

panded with a structure providing support for sensors and

user interfaces (Fig. 1b,c). A high-resolution camera with

97◦ horizontal and 79◦ vertical field of view at the height of

1.31m was used for providing images to the users. An Asus

Xtion Pro depth camera placed at 1.25m above the ground

was used to collect depth images for the purpose of building

the 3D map and navigation. Hokuyo UTM-30LX laser range

finder was used for navigation and 2D map building. Another

backward facing Xtion depth camera was also placed on-

board to assist navigation in tight spaces.

Our experiments were conducted in the building of the

Computer Science & Engineering department of the Uni-
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Fig. 3. Images returned as answers from the four runs of Experiment I. The first two rows show images from the runs with the ground truth answer “yes”
and the next two rows show images from the runs with the ground truth answer “no” for the corresponding checking questions (columns). The column
headers display the inferred information descriptors for the corresponding questions (Q1–Q5).

versity of Washington in Seattle. The building provided an

interesting experimental environment with open spaces con-

taining movable chairs, tables and whiteboards for students

and visitors (breakout areas) as well as labs and offices

separated by walls with large windows. The 2D occupancy

maps of the building (M2D) were collected prior to the

experiments. In the maps, we limited access of the robot

to the the publicly accessible spaces such as corridors and

breakout areas to avoid interrupting office occupants during

working hours. However, we still reasoned about visibility

of the inaccessible space, making it possible for the robot

to look inside through open doors or windows. 295 location

annotations in MS were imported from the building floor

plan and the target type annotations were placed manually.

B. Experiment I: Information Acquisition

First, we evaluated the ability of our framework to acquire

and deliver relevant images as answers. We used questions

frequently asked by real users during the Wizard-of-Oz

deployment (Sec. III):

Q1. Is {person} in his/her office?

Q2. Is there anyone in the mobile robotics lab?

Q3. Is the breakout area occupied?

Q4. Is the conference room occupied?

Q5. Is there a stapler in the printer room?

The corresponding information descriptors from the language

parser are shown as column headers in Fig. 3. We ran the

system four times throughout the day for each question.

We chose the timing of the runs so that the ground truth

answer was twice “yes” and twice “no”. However, we did not

control the visibility and reachability conditions of the target

locations to capture natural variations in the environment.

Fig. 3 shows the images returned as answers for each run.

Handling dynamic changes. Fig. 4 illustrates how the view-

point estimation algorithm adapts to dynamic changes in the

environment by selecting alternative viewpoints with similar

information content. For Q2, the robot was able to capture

the interior of a lab through its door when it was open, but

also through its windows when the door was closed and the

blinds on the window were open (run 3). Similarly for Q3,

the robot navigated to the other end of the breakout area

and turned around to capture the area, when it encountered

a whiteboard blocking the view from the initial viewpoint

estimated based on prior, outdated information.

Viewpoint quality. To better assess the quality of the view-

point estimates from the point of view of the end user relying

on the captured images as question answers, we conducted

a user study among 10 building occupants. For each run,

we asked the participants to respond to the corresponding

questions (Q1-Q5) using only the returned image as a cue.

Response options were “definitely yes”, “probably yes”, “I

don’t know”, “probably no”, and “definitely no”. Fig. 5

shows the results from the user study. We consider a response

to be correct if a user responds with “definitely yes” or

“probably yes” when the ground truth answer is “yes”

(similarly for “no”). We consider a response wrong if the

user’s answer contradicts the ground truth and undecided if

the user responds with “I don’t know.”

Overall participants achieved a high classification accu-

racy, particularly for questions Q2, Q3, and Q4. As can be

seen in Fig. 3, high undecided rates and non-zero incorrect
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Fig. 4. Viewpoint estimation details for Q2 and Q3 in Experiment I. The
evaluated P (I = 1|v, q;W,M3D) for a certain state of M3D and each
viewpoint is displayed using colored arrows on top of the 2D map. Warm
colors (red) indicate higher probability. The camera field of view of the
viewpoint currently considered best is indicated with purple lines and the
image captured from this viewpoint is shown. The dynamic changes to the
environment that influenced viewpoint estimation are highlighted in red.
Gray areas were marked as inaccessible, but could be observed.
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Fig. 5. Statistics of answers generated by the user study participants based
on images captured by the robot.

response rates are due to the limitations of the sensors or the

encountered situation rather than a limitation of the algorithm

(e.g. target locations blocked by closed doors or difficult

illumination conditions). For example, in the 4th run for Q1

and 3rd run for Q5, participants said they were undecided if

the person or object is present because the door were closed,

not because the robot provided insufficient information. In

other words, if the users were to answer Q1 or Q5 in this

situation by going to the target location, they would reach the

same conclusion. In the remaining runs of Q5, the incorrect

and undecided answers were due to insufficient illumination
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Fig. 6. Results of Experiment II for a sparse set of previously visited
viewpoints. The path taken by the robot is shown with a green line (with
direction) and visited viewpoints are marked as small arrows along the path.
The color of the arrows has the same semantics as in Fig. 4. The camera
field of view for the selected previously visited viewpoint is shown with
purple lines and the image captured from this viewpoint is provided. The
target area is marked with a red ellipse in each image. For reference, an
estimate of a viewpoint that would have been selected if the robot were to
navigate back to the scene to capture the requested information is shown
with the orange lines.

and small, reduced-quality image. This problem could be

mitigated by allowing the robot to navigate into the room to

obtain a better viewpoint, post-processing images to enhance

color contrast, or allowing participants to zoom in on parts

of the image to obtain the answer.

C. Experiment II: Information Retrieval

Next, we considered the retrospective information retrieval

scenario in which the viewpoint estimation is performed on

previously recorded sensory data. This captures scenarios

that involve questions concerning the past (“Was Mike Chung

in the robotics lab?”), where the system attempts to provide

a response based on incidental visits to a place while

performing other tasks involving navigation (e.g. patrolling

or delivery). Storing and searching all images captured by

the robot could be problematic. However, since we con-

sidered only a discrete set of possibly relevant viewpoints

originating from places in our topological map, we could

easily maintain the most recent image for each previously

visited viewpoint. Then, the viewpoint estimation algorithm

was applied with the latest available 3D occupancy map,

within the constrained search space of the visited viewpoints.

We considered four such cases. In the first two, the robot

was navigating near the breakout area in opposite directions

as shown in Fig. 6 (left). Later, the system was asked the

question Q6: “Was the breakout area occupied?”. In the latter

two cases, the robot was navigating near the conference room

as shown in Fig. 6 (right) and the system was asked the

question Q7: “Was the conference room occupied?”.

The retrieved images are shown in Fig. 6. We observe

that the viewpoint estimation algorithm produces appropriate

responses given the rather sparse set of visited viewpoints.



In response to Q6, the robot needs to capture the breakout

area from a set of candidate viewpoints that are tangential

to the area (i.e. the robot passed by the breakout area

without turning towards it). We see that the algorithm selects

viewpoints that are further away from the target, yet not

too far to be useful. This way, despite the viewpoints being

tangential to the target, the target is captured within the

camera’s field of view. In first run for Q6, the robot exploits

the fact that the hand rail only partially obscures the view,

making a further viewpoint that captures a larger part of the

target area more optimal. In response to Q7, the robot is able

to capture a part of the target conference room by choosing

viewpoints near two different doors to the room in the two

different runs in opposite directions.

VI. DISCUSSION AND CONCLUSION

We presented a unique framework for answering natural

language questions about the state of a dynamic environment

co-inhabited by humans and mobile robots. Overall, our

findings indicate that the framework and its implementation

address the problem well. Our previous work motivated

the usefulness of this capability from the end-user perspec-

tive [1], while this paper demonstrates the feasibility of

end-to-end implementation on an autonomous mobile robot.

There are nonetheless several assumptions made in scoping

our problem and some limitations to the proposed approach.

First, we assume that the user’s question mentions a

single target location that can be feasibly captured from

a single viewpoint. Such question as “Is Mike Chung in

this building?” requires object search and therefore is out

of scope for our framework. However, one can imagine a

search method that embeds our approach for checking infor-

mation at multiple target locations, within a larger planning

framework. Similarly, questions that mention multiple target

locations, such as “Is Mike Chung in the robotics lab or in

his office?” are not handled; however, this task could simply

be considered as two separate requests.

Second, in our current framework, we do not utilize the

visual information for the purpose of viewpoint selection.

Although, we choose to leave the extraction of answers from

images to the end user, the system could still rely on visual

information to assist the semantic annotations in viewpoint

selection (e.g. prefer viewpoints containing the a chair in the

area where a person might be present). This is an interesting

area of investigation for our future work.
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