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Abstract—Registering frames of 3D sensor data is a key func-
tionality in many robot applications, from multi-view 3D object
recognition to SLAM. With the advent of cheap and widely
available, so called, RGB-D sensors acquiring such data has
become possible also from small robots or other mobile devices.
Such robots and devices typically have limited resources and
being able to perform registration in a computationally efficient
manner is therefore very important. In our recent work [1] we
proposed a fast and simple method for registering RGB-D data,
building on the principle of the Iterative Closest Point (ICP)
algorithm. This paper outlines this new method and shows how
it can facilitate a significant reduction in computational cost
while maintaining or even improving performance in terms
of accuracy and convergence properties. As a contribution we
present a method to efficiently measure the quality of a found
registration.

I. INTRODUCTION

Data registration is the natural next step after acquisition of

sensory data. The goal is to align two frames of sensor data of

the same scene taken from different locations. Registration is

often used as a way to replace or enhance odometry obtained

from wheel encoders. Registration is important because a

robot’s behavior is based on its world model and that world

model requires accumulation of data in a consistent reference

frame. Therefore, a more accurate data registration allows the

robot to make better inferences and decisions.

The recent advancements in RGB-D cameras have led

to increasing use of range image data in robotics. The

availability of both depth and visual information can largely

simplify the registration itself. In this work, we focus on the

problem of registration of RGB-D views and actively exploit

the visual content to improve both accuracy and efficiency.

In [1], we present Adaptive Iterative Closest Keypoint

(AICK), a registration algorithm for RGB-D views which

builds on the idea of Iterative Closest Point (ICP) [2].

Algorithms based on the principle of ICP are able to provide

very accurate estimations, given an initial transformation that

is close to the final result. Unfortunately, the performance of

standard ICP often deteriorates steeply with the decrease of

the quality of the initial guess, as often happens in case of

registration of views captured during fast sensor rotations.

Additionally, noise can drastically affect the convergence of

the iterative optimization method, with local minima being

a common problem.
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AICK preserves the accuracy of ICP for small transforma-

tions, while providing a drastic improvement of robustness

to larger view rotations and translations without the need for

an initial guess given sufficient overlap between the frames.

Our algorithm exploits both depth and visual information and

relies on keypoints detected in images associated with 3D

positions in the local reference frame and a visual descriptor.

The key property of the algorithm is the ability to weigh

the importance of the visual descriptor and the 3D position

while iteratively optimizing the transformation. This allows

us to exploit the distinctiveness of appearance features for

improved initial robustness and accuracy of point locations

for the final precision.

In this paper we compare the proposed method to gener-

alized ICP (GICP) [3], the 3D normal distribution transform

(3D-NDT) [4] and a method based on RANSAC [5] and

keypoints which we will call 3-point RANSAC and show

how our method provides a significant reduction in compu-

tational cost without sacrificing performance and improving

it significantly in most use cases. The evaluation of the four

algorithms is performed on a publicly available dataset [6]

and we base our quantitative analysis on an established

benchmarking procedure and performance measure [6]. In

this paper we also present an efficient way to assess the

quality of the registration between two frames.

In the remaining parts of the paper, we first provide an

overview of registration methods. Section III provides details

of the proposed algorithm. Section IV covers the setup for

the experimental evaluation. Finally, we present the results

of the experimental evaluation in Section V.

II. RELATED WORK

Most of the point cloud registration methods are based

on the Iterative Closest Point (ICP) algorithm introduced

in [2]. The most computationally expensive part of ICP

is typically finding the closest points. The standard way

of performing the matching is to use nearest neighbour

matching in Euclidean space. This has a complexity of

O(N2) in a naive implementation. A common way to speed

this up is to use a kd-tree (or a set of trees) which reduces

the complexity to O(Nlog(N)).
Each point cloud is a sample of the real world and even

small perturbations in the sensor pose can lead to sampling

different structures or parts thereof. A common way to

address this is to make a parametric model and then, for

example, fit the points in one frame against planes in the

other as in [7] or more recently in the GICP algorithm [3]

where both point clouds are models with planar surfaces.



The 3D normal distribution transform (3D-NDT) [4], [8] fit

Gaussian ellipsoids to the data which both address the issue

of noise and reduces the dimensionality of the data, thus

speeding up the processing. Similar work has been presented

in [9]. The Multi-scaled EM-ICP [10] share some properties

with AICK. It does not assume one data association but

rather consider a weighted combination of matches with the

scale setting the weight.

Using key points (such as SIFT [11], SURF[12],

BRIEF [13], BRISK[14] and FREAK [15]) typically ex-

tracted from the RGB information, reduces the need to treat

all pixels and using feature descriptors allows for reliable

associations. An example of using key points and ICP to

register RGB images is given by [16]. In this work we use

SURF and ORB [17] which extends BRIEF with invariance

to rotation. Key points are often detected by FAST [18] or

Harris corners [19].

The Kinect Fusion algorithm [20] uses a dense, non-

parametric, representation for the reference frame from

which an artificial point cloud is sampled and registered

against.

A common data association problem is that of looking

for a match between one frame and all frames previously

seen. Finding these, so called, loop closures are key to a

successful implementation of SLAM. Here the question is

first if the two frames match at all and if so what the

transformation is. Matching feature by feature in each frame

is prohibitively slow. A common approach taken is to make

use of visual vocabularies [21]. The basic idea is to form

clusters in descriptor space and assign a label to each cluster

or word. The discretisation of descriptors into words means

that feature matching can be done by comparison two integer

indices (the label of the word). This has laid the foundation

for FAB-MAP [22] and its follow-ups.

A major part of registration is the problem of outlier

rejection i.e. the fact that there may be regions with no

overlap. Using a suitable model, RANSAC [5] can be used to

separate inliers from outliers and calculate model parameters.

III. THE AICK ALGORITHM

The AICK algorithm is an efficient and accurate way to

register two frames of RGB-D data. It exploits keypoints

that have both a 3D position in space as used by ICP and a

descriptor which characterizes the surrounding context of the

point. In contrast to ICP, it is able to find a good registration

even when no initial guess is given. AICK is an iterative

algorithm that adaptively changes from emphasizing the

descriptor match to emphasizing the geometric fit between

the points in the two frames. At the later stages it becomes

essentially ICP but having avoided the local minima that

result from incorrect initial matches. The results are thus as

for ICP with less failures.

As said, in ICP one must start with an initial guess of

the transformation between the two frames. One then finds

all the matching pairs of points. The matching criteria is

the smallest Euclidean distance, de between the 3D points.

After finding all matches where de is below a threshold, the

transformation is recomputed to minimize the sum of these

distances.

The main strength of the ICP method is that it gives very

accurate transformations when the matches are correct. It is

most suitable for dense point clouds where sampling artifacts

are not significant.

The main weakness of ICP is that if the initial guess

leads to too many incorrect matches the solution can get

’stuck’ trying to make those fit. It needs most of the initial

matches to either be correct or at least on the correct smooth

surfaces. The need to have a good guess to start with is rather

problematic as it is just this transformation that we are after.

It would be better if the method did not require any initial

guess, especially when looking for loop closures. In AICK

the initial match is independent of the transformation as it is

based solely on the descriptor information.

AICK does not match dense point clouds but rather

keypoints. Two similar features or the same feature seen from

different angles will have descriptors that are close in this

descriptor space. This way we reduce the number of points

to consider for matching to only those points that have a key

point associated with it. This then addresses the problem of

which points to select as well.

AICK does the same two phases, match and optimize, as

ICP but it uses a different matching metric which adapts over

the course of the iterations. Instead of de we use di,

di = (1− αi)de + αidd, (1)

where i ∈ {0, 1, 2, 3, . . . } is the iteration number, dd is

the distance, L2 norm, in descriptor space and the constant

parameter α ∈ [0, 1] is the decay factor to move from pure

descriptor distance, (i = 0) to nearly only Euclidean distance,
(αi << 1)
In addition to assessing what points are closest, the dis-

tance metric is also used to reject points that are too far away.

The distance de and dd have different units and finding a

threshold for the combined distances requires some thought.

We define this threshold according to

λi = (1− αi)λe + αiλd, (2)

where λe is the outlier rejection corresponding to the eu-

clidean distance and λd corresponding to the feature distance.

A. Non exhaustive search strategy

AICK reduces the computational requirement compared to

standard ICP in several ways. Firstly, because it only uses

points with an associated key point. Experiments also show

that we do not have to perform an exhaustive search for

the best matches. That is, even if we limit the search for the

keypoints in one frame to only a small subset and miss some

matches performance is maintained high given that we start

with enough key points. This opens up ways to make the

algorithm more efficient by trading off the expensive step of

finding all the matches that fall below our threshold.

A common way to reduce the cost of matching, which we

also make use of, is to use a so called ’vocabulary’ of words

do this we use the method of learning a ’vocabulary’ of words



as in the bag of words method.1 We learn the words using

different data from what we test on. Learning corresponds

to clustering the descriptors from all the training images into

a predetermined number of clusters. The words are then the

mean descriptors for each cluster.

With every keypoint, pk, we associate a list of its closest

words in that frame, which we denote as Ψ(pk). Ψ(pk)
contains the words to which the descriptor distance of the

keypoint is less than a threshold, Rw. This can be done

swiftly if the vocabulary contains few clusters or if the words

are arranged in a tree structure that speeds up this search.

Note that this is only done once per frame, i.e., if we match

the frames to many other frames we need not recompute Ψ.

This is key for applications such as SLAM where detection

of loop closures look at the same frame for matches several

times. To look for matches for a key point in frame A to

key points in frame B we start with the closest words in

frame A and match the key point only to the key points

associated with the same words in the other frame. This can

be made very fast by creating an index per frame from words

to keypoints. Instead of having to match all points to all

points we only match each point to a (small) subset of the

points in the other frame. This can speed up the expensive

association step by an order of magnitude in most cases. We

consider this a generalization of the original algorithm as

using Rw = ∞ is equivalent to the original algorithm.

B. Quality of registration

To assess the quality of the registration we subsample

every RGB-D frame using a grid in the image plane. We

store one validation point for each intersection point in this

grid. When two frames are matched the validation points in

the two frames are backprojected into the depth of the other

frame.

These points are scored based on the difference di between

the backprojected depth and the measured depth. If the abso-

lute value of di is smaller than a threshold Γgood this point is

considered valid. In order to make use of knowledge of open

space between the sensor and the depth reading, validation

points that end up much closer(quantified in the form of a

threshold Γbad) to the sensor than the measured depth are

penalized by assigning it a value δ < 0. The definition of

score(di) is summarized in the following equation.

score(di) =











1, |d| < Γgood

δ < 0, d > Γbad

0, otherwise

(3)

The overall quality measure, W , is given

W =
1

M

N
∑

i=1

score(di) (4)

where N is the number of overlapping validation points and

M = max(Mmin, N), withMmin ensuring thatW becomes

small when N is small, i.e. when there is a small overlap.

1We do not use the ’bags’ in this work only the words. The bags might
be useful to chose which two frames to try to register to one another which
is a question not addressed here.

IV. EXPERIMENTAL SETUP

For evaluation we use [6] which is a publicly available

dataset designed for the purpose of benchmarking RGB-

D SLAM algorithms in realistic indoor environments. The

dataset is complete with ground truth and contains sequences

of RGB-D data captured using a Kinect. To be specific, we

use the sequence fr1/room which at the time of writing this

paper was the longest of all the sequences in the natural

office environment subset. This data set is well suited to

its designed purpose of testing state of the art registration

algorithms in that the motion has all 6 degrees of freedom

and the movement is both rapid and uneven.

A. Performance Measure

We employed a performance measure provided together

with the dataset [6]. The measure is based on the relative pose

error, which is found by first transforming the origin pose

using the estimated transformation and then transforming it

back using the inverse of the ground truth transformation. In

a perfect case without error, this results in a pose matching

the origin pose.

Ei = G−1

i Qi − I, (5)

where Gi is the ground truth transformation for transfor-

mation i, Qi is the estimated transformation and I is the

identity matrix. We analyze the translation component of

Ei by measuring the relative distance between the pose

obtained after the two transformations described above and

the origin pose as suggested in [6]. This error will be given

in meters, see (6) for mathematical formulation. As a means

of summarizing the results for a set of translation errors we

define successratio as the ratio of translation errors smaller

than some threshold λt in the set. That is the registration is

considered a ’success’ if it satisfies (6).

ETranslation
i = (

2
∑

j=0

||Ei,j,3||
2)1/2 < λt. (6)

It is worth noting that when successratio = 0.5, λt is

the median error. Similarly to using the median error the

successratio considers all outliers as equal, meaning that

gross outliers does not bias the analysis. This formulation

allows us to analyze the distribution of errors by varying the

threshold λt.

B. Algorithms tested

Three different registration algorithms in addition to

AICK2 were ran and compared on the test set. The param-

eters for the algorithms were optimized by hand by testing

a large set of values to yield good performance within a

maximum of roughly five minutes of execution time per

pairwise registration.

1) GICP: We use the GICP implementation provided by

the Point Cloud Library (PCL [23])3.

2AICK using λe = 0.01m and λf = 0.2.
3GICP was allowed to run for 25 iterations. Rejection threshold =

0.004m.



2) 3D-NDT: We use the 3D-NDT implementation pro-

vided by the Point Cloud Library (PCL [23])4.

3) 3-POINT RANSAC: We used the RANSAC algorithm

on this problem by first forming a list of potential matching

keypoint pairs based on the similarity of the descriptors only.

We then randomly select three of these pairs to define a

transformation between the frames, which we will call the

’model’. We then count the number of ’inliers’ according

to the model. The model with the most inliers is chosen

and updated by using all of the found inliers. In forming

the list of potential matched pairs only associations between

keypoints with descriptor distance dd ≤ λf are used. Inliers

are calculated by transforming the keypoints in one frame by

the model and associating the transformed keypoints to the

closest keypoint in the other frame. If the euclidean distance

de ≤ λe between these keypoints the association is counted

as an inlier5. For the 3-point RANSAC algorithm we use

SURF keypoints.

We will use two different types of keypoints, SURF [12]

and ORB [17]. The Surf keypoints will be extracted using

OpenSURF Library[24]. Using our test set we found an

average of 906 surf keypoints with valid depthdata in an

average of 0.12 seconds. To extract the ORB keypoints we

use OpenCV [25]. Using our test set we found an average

of 857 ORB keypoints with valid depthdata in an average of

0.011 seconds.

C. Experimental Procedure

The registration experiments were performed by estimat-

ing transformations between consecutive frames of the data

sequence. In order to test robustness to larger transforma-

tions, we performed the experiments for pairs of frames

separated by different lengths of time. Performance is mea-

sured quantitatively using the measure described in (6). The

point clouds were created with calibrated camera parameters.

In section V-C we visualize the effects of accumulat-

ing a sequence of consecutive frame transformations and

transforming the appropriate pointclouds into a common

coordinate frame.

V. EXPERIMENTAL RESULTS

We plot the successratio versus a varying λt for (6) up to

0.05 meters using consecutive frames (around 30ms apart)

for the different algorithms in fig. (1)6 . This allows us to

see both the size and variation of the translation error of the

different methods when the transformation between frames

is relatively small. A steep curve can be interpreted as good

performance as that would mean that the method often yields

a transformation with a small translation error. One sees

that, for consecutive frames, all of the methods reach nearly

100% successratio at a relatively small λt. The conclusion is

4To keep the runtime reasonably low the pointclouds were subsampled
through the use of a voxelgrid with a voxel size of 0.02m. 3D-NDT was
allowed to run for 25 iterations, with resolution = 0.1 and stepsize =

0.09.
5We iterated the RANSAC over 400 random models in searching for the

best model using λe = 0.02m and λf = 0.2.
6 AICK was run for 25 iterations with α = 0.8 and Rw = ∞
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Fig. 1. The successratio as a function of the threshold on the translation
error in m. Here we use all the found keypoints. The red dashed line shows
the threshold used in fig. (2). Meaning that the intersections with the red
dashed line are equivalent to values for the successratio in fig. (2) when the
time difference between frames equals 30 ms.
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Fig. 2. successratio as a function of the time difference between frames
with a fixed threshold on the translation error of 0.01 m. Here we use all
the found keypoints.

that while AICK using surf keypoints outperforms the other

methods in this test all of the methods are fairly accurate

given small displacements of the camera. It is also interesting

to note that the difference between the use of surf and orb

keypoints is relatively small for AICK.

It is also informative to see the result on the successratio

by using a fixed threshold and varying the time difference

between the frames being matched. This is shown in fig. (2)6

for a threshold of 0.01 meters. It is clear that the AICK and 3-

point RANSAC degrades much slower than GICP and NDT

when the camera displacement increases.

A. Quality of registration

By rejecting bad transformations we can ensure a higher

performance for the non-rejected transformations. Fig. (3)7

shows the effects on the successratio for two different

thresholds on W (see eq. (4)). Notice the large difference

7 Using a 10-by-10 subsampling grid with a minimum overlap of 500
samples, Γgood = 0.01m, Γbad = 0.075m and δ = −2.



Algorithm successratio for threshold λt

Keypoints Rw Iterations Avg runtime [s] λt = 0.0033 λt = 0.01 λt = 0.05

AICK on avarage 906 surf keypoints ∞ 25 0.180 0.374 0.944 0.993

AICK on avarage 857 orb keypoints ∞ 25 0.135 0.276 0.885 0.999

AICK max 200 surf keypoints ∞ 5 0.00385 0.281 0.902 0.993

AICK max 350 orb keypoints ∞ 10 0.0113 0.209 0.833 0.998

AICK max 200 surf keypoints 0.26 5 0.000445 0.258 0.888 0.992

AICK max 200 surf keypoints W > 0.7 0.26 5 0.000480 0.313 0.953 0.999

AICK max 200 surf keypoints W ≤ 0.7 0.26 5 0.000480 0.156 0.740 0.977

AICK max 200 surf keypoints W > 0.5 0.26 5 0.000480 0.285 0.931 0.999

AICK max 200 surf keypoints W ≤ 0.5 0.26 5 0.000480 0.075 0.500 0.932

AICK max 350 orb keypoints 0.165 10 0.000717 0.209 0.828 0.995

GICP 25 224 0.070 0.366 0.996

NDT 25 237 0.177 0.706 1

3-point ransac 400 4.09 0.255 0.860 0.993

TABLE I

RUNTIME COSTS AND PERFORMANCES FOR THE TESTED ALGORITHMS. Rw IS THE RADIUS AROUND THE KEYPOINT TO FIND MATCHING WORDS.
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Fig. 3. successratio as a function of the time difference between frames
with a fixed threshold on the translation error of 0.01 m.

between the cases when the W is over a specified threshold

as compared to being under this threshold.

B. Runtime

We can control the runtime to performance trade-off of

the algorithm using three main parameters: the number of

keypoints used, the number of iterations the algorithm is

allowed to run and the threhold Rw. The effects on the

successratio from limiting these parameters can be seen in

Table I for registration of two consecutive views. The cost

for extracting keypoints used by AICK or 3-point RANSAC

is not included in the table. The reason being that in many

applications keypoint extratction is only done once per frame

whereas frame to frame registration may be run multiple

times per frame. For the frames in the test set we found an

average of 906 surf keypoints with valid depthdata in an av-

erage of 0.12 seconds and an average of 857 ORB keypoints

with valid depthdata in an average of 0.011 seconds. It can

be seen that the keypoint based methods are much faster

than the non-keypoint based methods. Obviously runtime is

dependent on implementation but since the keypoint methods

deal with a lot less data there are less calculations to be done.

By controlling the parameters for the AICK algorithm results
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Fig. 4. successratio as a function of the time difference between frames
with a fixed threshold on the translation error of 0.01 m.

similar to that of the 3-point RANSAC can be achieved in

a fraction of the time. It can also be seen in table (I) that

extracting an estimate of the quality of the registration can

be done at a small computational load.

The performance of AICK using different parameter set-

tings is shown in table (I) and in fig. (4)8,9. Rw = ∞
indicates not using words at all. Table (I) shows that tuning

the parameters of the algorithm can greatly speed up the reg-

istration while fig. (4)8,9 shows that the drop in performance

was relatively small.

C. Visual inspection

The AICK algorithm clearly outperforms the other meth-

ods in both robustness and precision as the above results

show. In fig. (5) we visualize the results of accumulating

transformations estimated by AICK over a sequence of

1000 frames. This is a common and effective way to allow

for a qualitative evaluation by visual inspection. Because

8AICK orb fast was run 10 iterations with α = 0.6, a maximum of 350
orb keypoints and Rw = 0.165.

9AICK surf fast was run 5 iterations with α = 0.3, a maximum of 200
surf keypoints and Rw = 0.26.



Fig. 5. Rendering of the the points given by frame-to-frame transformation
estimates when walking past a series of bookshelfs in the KTH library. The
data is displayed from three different view points. The bookshelves are lined
up in the library and the upper part of the image shows that our method
produces results very close to this even using pure dead-reckoning.

transformations are added frame by frame, i.e. pure dead-

reckoning, errors, especially in orientation, will result in

clearly visible distortions. To remove the background and

avoid displaying noisy data, only data captured close to

the sensor is displayed. The absence of distortions lends

credibility to the practical use of the AICK method on real

world systems.

VI. SUMMARY AND CONCLUSIONS

In this paper we have clearly shown that AICK is natural

choice for small robots, mobile devices and other embedded

systems with limited resources but where high performance

is needed. This is made possible by transitioning between

coarse, appearance-based registration such that no initial esti-

mate is needed and fine registration using position-based ICP

on distinctive keypoints. In order to verify the performance of

our method, we employed a standard benchmark consisting

of a dataset and performance measure [6]. We compared the

method to three different high performance registration tech-

niques. In the experiments our method showed a significant

improvement of both robustness to larger transformations

and precision of the final result which can be attributed to

the adaptive distance metric. Furthermore, sub-sampling of

the point cloud into a selection of keypoints resulted in an

algorithm orders of magnitudes faster than algorithms used

for comparison.
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