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Abstract

As robotic technologies mature, we can imagine an increas-
ing number of applications in which robots could soon prove
to be useful in unstructured human environments. Many
of those applications require a natural interface between the
robot and untrained human users or are possible only in a
human-robot collaborative scenario. In this paper, we study
an example of such scenario in which a visually impaired per-
son and a robotic “guide” collaborate in an unfamiliar envi-
ronment. We then analyze how the scenario can be realized
through language- and gesture-based human-robot interac-
tion, combined with semantic spatial understanding and rea-
soning, and propose an integration of semantic world model
with language and gesture models for several collaboration
modes. We believe that this way practical robotic applica-
tions can be achieved in human environments with the use of
currently available technology.

Introduction

As robots become more capable of performing complex
tasks, there are an increasing number of scenarios and en-
vironments in which they may be deployed usefully. How-
ever, before we can build practical, useful domestic or per-
sonal robots, a number of challenges and shortcomings in
the current technology must be addressed. Current designs
often trade the complexity of the systems and scenarios for
overall robustness. As a result, robots can explore only por-
tions of typical environments and often do not attempt to
manipulate objects at the level required for many realistic
applications. As well, interfaces to current systems are of-
ten very limited, requiring the user to learn how to interact
with a robot, rather than the system learning how the user
naturally communicates.

In this paper, we place the focus on human-robot inter-
action. We claim that enabling robots to communicate and
collaborate with humans in a natural way is critical to mak-
ing them practical for realistic applications. The reasoning
is twofold: first, many of the envisioned applications re-
quire a natural interface between the robot and untrained hu-
man users; and second, many of the existing problems with
robotic technologies can be overcome by allowing the robots
to collaborate with humans and share competences.

Following this principle, we propose a realistic scenario
in which human-robot interaction and collaboration could
be used to enable a practical robotic application that uses
currently available technologies. Our scenario describes a
sequence of interactions between a visually impaired person
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and a robotic “guide” in an unfamiliar environment. In this
case, both the robot and the person have capabilities that are
unavailable to the other agent, and the collaboration results
in a clear mutual benefit.

This example application calls out a number of neces-
sary technical components, many of which are spread across
distinct research areas; in this work we focus on two:
language- and gesture-based multimodal human-robot in-
teraction, and spatial understanding and reasoning, both of
which have proven to be independently useful in realistic
demonstrations. At a high level, the approach we take to
integrating these components is based on interaction of two
problem-specific multimodal representations, namely, a se-
mantic world model and a human-robot interaction model.
We analyze the scenario from the perspective of those two
components and their integration, and identify several col-
laboration modes, which we study in more detail.

Related Work

Semantic understanding of the world is crucial for generaliz-
ing about environments and objects, interacting with human
users, and so on. As a result, the semantic mapping problem
has, in recent years, received significant attention (Galindo
et al. 2005; Zender et al. 2008; Vasudevan and Siegwart
2008; Meger et al. 2008; Tenorth et al. 2010). None of
these methods uses topology of the environment or general
appearance of places as a source of semantic information,
although there is large body of work on appearance-based
place categorization. Most systems primarily use objects for
extracting spatial semantics; we will build on (Pronobis and
Jensfelt 2012), which uses all of general appearance and ge-
ometry of places, object information, topological structure,
and human input to create semantic maps.

We will also use the conceptual map from (Pronobis and
Jensfelt 2012), in which a probabilistic ontology of the in-
door environment is discovered and linked to instances of
spatial entities for inference. This is most similar to this
of (Galindo et al. 2005) and (Zender et al. 2008); however,
those ontologies are built manually and use traditional AI
reasoning techniques which do not incorporate the uncer-
tainty that is inherently connected with semantic information
obtained through robot sensors in realistic environments.

Robots deployed in unconstrained real-world settings will
need to learn to understand the intentions and references of
users, from the users themselves. In order to interact natu-
rally and smoothly with end users in an unconstrained way,
it is necessary to understand human inputs (here, natural
language commands and queries, and indicative gestures).
While gesture recognition has been extensively explored for
use in such interfaces (Mitra and Acharya 2007), our focus



is on using non-scripted gestures to control physical sys-
tems. (Matuszek et al. )

The language component of our work falls into the class
of grounded language acquisition approaches, in which lan-
guage is learned from situated context. Learning about
the world and human communication from a combination
of language and sensor data has achieved particular suc-
cess in understanding commands, for example in naviga-
tion (Hawes and Wyatt 2010), robot command interpreta-
tion (Tenorth and Beetz 2012), localization (Spexard et al.
2006), and search and rescue (Cantrell et al. 2012).

There has been significant work on using learning to in-
duce probabilistic semantic parsers. Parsed natural lan-
guage can be grounded in a robots world and action mod-
els, taking perceptual and grounding uncertainty into ac-
count, enabling instruction-following in such tasks as robot
direction-following and operation (Matuszek et al. 2012b;
Tellex et al. 2012). In this paper we propose an extension to
our work on using semi-supervised learning to jointly learn
models of language and vision, (Matuszek* et al. 2012a)
which builds on work on supervised learning of Combina-
tory Categorial Grammar (CCG) lexicons for semantic pars-
ing. (Kwiatkowski et al. 2011; Artzi and Zettlemoyer 2013)

Integrated robotic systems consisting of a large number
of independent components still pose a great challenge in
practical applications, but even in this arena there exist ex-
amples of recent successful work (Guizzo and Ackerman
2012). Work on natural language grounding (Matuszek et al.
2012b), unconstrained gesture comprehension (Matuszek et
al. ), spatial understanding and semantic mapping (Prono-
bis 2011), assistive robotics (Kulyukin 2006), and natu-
ral user interfaces (Wigdor and Wixon 2011) – when inte-
grated into a system that takes advantage of their capabil-
ities – offer hope of a robotic system that can be robustly
and usefully deployed. Some of the remaining gap can be
bridged by thinking of robots as collaborators, with capabil-
ities that supplement and are supplemented by human abili-
ties. (Veloso et al. 2012)

Human-Robot Collaborative Scenario

Many believe that we will see large growth in the areas
of service and assistive robotics in upcoming years, areas
where even limited robotic intervention has the potential to
offer substantial benefits. In this section, we describe a pos-
sible assistive technology scenario that draws in work in hu-
man/robot interaction, vision, semantic mapping, and natu-
ral language grounding, among others.

The scenario is deliberately designed to both take advan-
tage of work to date, and to show the potential of near-
term technology in supporting natural, useful robotic sys-
tems. We annotate the scenario according to different types
of interaction; after presenting the scenario, we discuss the
components necessary to support such a system. In this col-
laboration, the robot uses interactions and its world model
to roughly model a human’s belief state, rather than main-
taining such a model explicitly as in (Breazeal et al. 2005).
While limited, this model of the users’ cognitive state is suf-
ficient to allow for near-term performance of certain tasks.

We divide the interactions into types of high-level interac-
tion, which we label in the dialog as follows. ‘Goal’ refers
to an explicit statement by a person of a goal to be carried
out; ‘Clarify’ is an action in which the robot seeks clarifi-
cation of the world-state from a person; ‘Respond’ means
a robot’s response to a human query about the world; ‘Ex-
plain’ is an interaction in which a human clarifies or adjusts
the robot’s belief state; ‘Inform’ is a standing goal for the
robot to inform a user about anything atypical or interest-
ing, or informs the person about an action being taken; and
a ‘Request’ occurs when the robot needs assistance from a
human. The section on collaboration modes explores the
first four in more detail.

Scenario: Human-Robot Collaboration

Robot and person enter office building
Default goals: Inform person of anything atypical or interesting +

Gather knowledge

Robot: I’m in a new building. I think we are in an office building,
in a big hall. [Inform]

Person: Let’s find the coffee room on the second floor. [Goal]
Robot: What is a coffee room? [Explain]
Person: It’s like a kitchen with a coffee machine. [Explain]
Robot: Okay. [Explain]
Goal: Navigate to coffee room on second floor

Robot: Which floor are we on? [Clarify]
Person: The ground floor. [Clarify]
Robot: Ok. [Clarify]
Robot: Looking for an elevator. [Inform]
Robot: There seem to be a lot of tables in the hall. [Inform]
Robot: We are at the elevators. [Inform]
Robot: Could you summon the elevator? [Request]
Person: Where is the elevator button? [Respond]
Additional goal: take user to place containing the elevator button

Robot: I will take you. (leads) [Respond]

Events unfold. Robot and human are now in the coffee room.

Goal: default

Person: Is this decaf? (points) [Respond]
Robot: What does a decaf look like? [Explain]
Person: It would have a green lid. [Explain]
Robot: Yes, it is a decaf. [Respond]

This use case, while complex, is not unrealistically far be-
yond the current state of the art. However, realizing it will
require integrating components from a number of areas: nat-
ural language understanding, vision, semantic environment
mapping, knowledge representation, planning and cost anal-
ysis, and natural language generation, among others.

In the remainder of this paper, we discuss the technology
underpinning the semantic mapping and human interaction
components in more detail. We assume the remaining roles
will be filled by work performed in those fields, although in
practice an initial implementation would likely rely on sim-
pler approaches (such as templated language generation).

Semantic World Model

Our world model is a holistic representation of complex,
cross-modal, uncertain spatial knowledge. It includes
knowledge about spatial topology, the presence of objects
(e.g. cups or bottles) and landmarks (e.g. a door or a shelf),



Figure 1: The layered structure of the spatial representation and
an excerpt of the ontology of the conceptual layer. The conceptual
layer comprises knowledge about concepts (rectangles), relations
between concepts, and instances of spatial entities (ellipses).

object attributes (e.g. shape or color) as well as room at-
tributes such as shape (e.g. elongated or rectangular), size or
general appearance (e.g. kitchen-like or corridor-like). This
representation follows the principles presented in (Pronobis
et al. 2010; Pronobis and Jensfelt 2012) and can be built
in real-time using their semantic mapping algorithm. It
abstracts multi-modal sensory information and integrates it
with conceptual common-sense knowledge in a fully prob-
abilistic fashion. This keeps the representations compact,
makes knowledge robust to dynamic changes, and permits
reasoning about concepts that are not directly observed.

The structure of the representation is presented in Fig. 1.
The framework comprises four layers, each focusing on a
different level of knowledge abstraction, from low-level sen-
sory input to high-level conceptual symbols. The lowest
level of the representation is the sensory layer, which main-
tains an accurate representation of the robot’s environment.
Above, the place layer discretizes the continuous space into
places. Places connect to other places by paths, which are
generated as the robot travels between them, forming a topo-
logical map. The categorical layer comprises universal cat-
egorical models, which describe objects and landmarks, as
well as room and object attributes such as geometrical mod-
els of room shape or visual models of appearance.

The highest-level layer is the conceptual layer, pop-
ulated by instances of spatial concepts and providing a
unified representation relating sensed instance knowledge
from lower-level layers to general common-sense concep-
tual knowledge. Moreover, it includes a taxonomy of
human-compatible spatial concepts. It is the conceptual
layer which would contain the information that kitchens
commonly contain refrigerators and have certain appear-
ance; this allows the robot to make inferences about the en-
vironment (e.g., the presence of a cereal box makes it more
likely that the current room is a kitchen.
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Figure 2: Structure of the chain graph model of the conceptual
map. Vertices represent random variables; edges show probabilis-
tic relationships among random variables. Textured vertices show
observations corresponding to sensed evidence.

The concept of a room is exploited in the conceptual layer
in order to group locations. Rooms tend to share similar
functionality and semantics and are typically assigned se-
mantic categorical labels e.g. a double office. This make
them appropriate units for knowledge integration.

A visualization of the data representation of the con-
ceptual layer is shown in Fig. 1. This representation
is relational, describing common-sense knowledge as re-
lations between concepts (e.g. kitchen has-object

cornflakes), and describes instance knowledge as rela-
tions between either instances and concepts (e.g. object1
is-a cornflakes), or instances and other instances (e.g.
place1 has-object object1).

Relations in the conceptual layer are predefined, acquired
from observations, or inferred from the conceptual layer,
and can either be deterministic or probabilistic. Probabilis-
tic relations allow the expression of statistical dependencies
and uncertainty as in the case of the kitchen has-object

cornflakes or room1 is-a hallway relations which
hold only with a certain probability.

The Conceptual Map

In order to allow probabilistic inference in the conceptual
layer, it is compiled into a chain graph representation (Lau-
ritzen and Richardson 2002), which we refer to as a concep-
tual map (Pronobis and Jensfelt 2012). Chain graphs allow
us to model both “directed” causal relations (such as is-a)
as well as “undirected” symmetric or associative relations
(such as room connectivity). The structure of the conceptual
map is adapted on the fly, reflecting the state of the underly-
ing topological map and observations gathered by the robot.

The structure of the conceptual map is presented in Fig. 2.
Each discrete place instance is represented by a set of ran-
dom variables describing object and landmark instances and
spatial attributes associated with that place. These variables
are connected to a random variable describing the functional
category of the room. The distributions over the values of
those variables represent the is-a relation in Figure 1. The



distributions psh(·|·), psi(·|·), pa(·|·), po(·|·), pl(·|·) repre-
sent common sense knowledge about the relations between
room categories and room shape, size, and appearance at-
tributes, as well as categories of objects and landmarks that
are typically present. Additional variables represent infor-
mation about object attributes such as color or shape and
the distributions poa1(·|·), . . . , poaN (·|·) encode the com-
mon sense knowledge relating objects of certain categories
with their attributes. Moreover, the room category variables
are connected by undirected links to one another accord-
ing to the topological map. The potential functions φrc(·, ·)
describe knowledge about typical connectivity of rooms of
certain categories (e.g., kitchens are more likely to be con-
nected to corridors than to other kitchens).

The variables describing room attributes, objects, land-
marks and object attributes can be linked to observations
gathered by the robot in the form of features extracted di-
rectly from the sensory input. As proposed in (Pronobis and
Jensfelt 2012), these links (textured vertices in Fig. 2) can
be quantified by categorical models of sensory information.
This common-sense knowledge about room connectivity,
shapes, sizes and appearances can be acquired by analyzing
annotations of existing databases, typically used for experi-
ments with place categorization (Pronobis and Jensfelt 2012;
Pronobis and Caputo 2009). As shown in (Hanheide et al.
2011), the correspondences between object and landmark
categories and certain functional categories of rooms can be
obtained by exploiting common-sense knowledge databases
or by analyzing results of image search engines.

Reasoning about Unexplored Space

Having a probabilistic relational conceptual representation
allows us to perform uncertain inference about concepts
based on their relations to other concepts, as well as based on
direct observations; this permits spatial reasoning about un-
explored space. Consider the case of predicting the presence
of objects of certain categories in a room with a known cat-
egory. This can be easily performed in our model by adding
variables and relations for object categories without provid-
ing the actual object observations. As shown in (Aydemir et
al. 2013), this can be exploited to continuously predict the
existence of objects based on other semantic cues.

Another way of using the predictive power of the concep-
tual map is to predict the existence of a room of a certain cat-
egory in the unexplored space. In this case, the conceptual
map is extended from the room in which unexplored space
exists with variables representing categories of hypothesized
rooms for different possible room configurations in the un-
explored space. For each configuration, the categories of the
hypothesized rooms are calculated and the obtained proba-
bilities of existence of rooms of certain categories as well as
room attributes or objects potentially present in the hypoth-
esized rooms are summed over all possible configurations.
For details on real-time implementations, see (Pronobis and
Jensfelt 2012; Aydemir et al. 2013).

Language & Gesture
Our motivating scenario relies heavily on successfully un-
derstanding a user’s unscripted, natural input. This is inten-
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Figure 3: Examples of extensions of the conceptual map permitting
reasoning about unexplored space.

tional; as robots move into the real world, the importance of
enabling untrained users to interact with them in a natural
way can only increase. Unfortunately, human interactions
can be quite complex, even in a constrained task like “in-
dicating objects” (as in in Fig. 5). Here, someone referring
to a set of blocks as the “blue red (sic) rectangles”, while
sketching a rough circle above them, is comprehensible to a
person, but outside the scope of current user interfaces – a
situation which will become harder to accept as robots be-
come more widely deployed and capable.

In this section, we describe work on understanding two
human input modalities that appear in our example scenario.
We first briefly describe work on understanding indicative
gestures, such as pointing, which are intended to call atten-
tion to something tangible. We then describe a language
model suitable for interpreting the utterances.

Gesture Understanding

Because it is often natural to use gesture to direct atten-
tion (Topp et al. 2006), understanding such indicative ges-
tures is an appropriate first step for the proposed system.
Compare, for example, “Put the mug that’s on the table in
the cupboard to the left of the stove,” versus “Put this mug
in there.” The latter is a natural way of communicating a
need to a robot, set in a context where traditional input de-
vices such as keyboards are lacking.

Existing multimodal interfaces generally require the user
to learn how a system expects to be instructed, rather than
the system learning how the user naturally communicates.
Current gestural interfaces have primarily focused on ges-
ture recognition – that is, on identifying a lexicon of ges-
tures which the user must first learn. (Malizia and Bellucci
2012) Instead, we propose to learn to recognize (possibly
user-specific) gestures in the same fashion as (Matuszek et
al. ). The acquired knowledge that an object or landmark is
the subject of object-indicated event is then integrated
into the world model as shown in Fig. 6.
Here, a depth camera is used to extract spatial features, then
sparse coding (Yang et al. 2009) is used to learn Hierar-
chical Matching Pursuit features (Bo, Ren, and Fox 2011)
suitable for the binary object-indicated classification



go to the second junction and go left

S/NP NP/NP NP/N N S\S/S S
(move-to forward) [null] (do-n-times 2 x) (until (junction current-loc) y) (do-seq g f) (turn-left)

NP S\S
(do-n-times 2 (until (junction current-loc) y)) (do-seq g turn-left)

NP
(do-n-times 2 (until (junction current-loc) y))

S
(do-n-times 2 (until (junction current-loc) (move-to forward)))

S
(do-seq (do-n-times 2 (until (junction current-loc) (move-to forward))) (turn-left))

Figure 4: CCG parse of a test sentence performed by the learned parser. Here the natural language input is first, followed by alternating
syntactic categorization and λ-calculus logical forms. The bottom row shows the final representation that will be incorporated into the world
model as a user-provided goal.

Figure 5: Examples of unscripted references to objects. (a) A cir-
cular pointing motion; (b) pointing with multiple fingers and both
hands; (c) an open-handed sweep above objects. (d) and (e) give
examples of different language for the two scenarios shown.

task. Specifically, a sequence of vectors of spatial features is
extracted and coded as sparse linear combinations of code-
words selected from a codebook (Lai et al. 2013), which
is learned from example gestures. Data can then be repre-
sented by a sparse, linear combination of these codebook
entries. Logistic regression over this sequence of vectors
yields an indicated/not indicated classification, which can
then be integrated into the system’s beliefs.

Language Model

We treat understanding the language present in the human
interaction as a class of language grounding – using a phys-
ically grounded setting to provide information for connect
language and percepts. In order to understand language
about physical systems, we extract semantically meaningful
representations of language content by parsing, then map
those representations to the world model.

For this work, parsing is performed using an extended ver-
sion of the Unification-Based Learner, UBL (Kwiatkowski
et al. 2010). The grammatical formalism used by UBL is a
probabilistic version of combinatory categorial grammars,
or CCGs (Steedman 2000), a type of phrase structure gram-
mar. CCGs model both the syntax (language constructs such

as NP for noun phrase) and the semantics (expressions in λ-
calculus) of a sentence. UBL creates a parser by inducing a
probabilistic CCG (PCCG) from a set of training examples.
PCCG-based algorithms are able to efficiently generate n-
best parses, allowing for jointly considering a parse model
and a world model derived from sensor data; multiple parse
probabilities can be combined with the world model, allow-
ing the combined system to choose the language interpreta-
tion that makes the most sense given the context.

This approach has proven effective in interpreting in-
put for understanding imperatives (Matuszek et al. 2012b);
Fig. 4 shows how a navigation imperative can be parsed into
the formal representation underpinning our world model,
in a manner similar to understanding statements such as
“find the kitchen.” The same system has been used for
understanding descriptions of previously unfamiliar world
objects (Matuszek* et al. 2012a), and a similar but sim-
pler language model has been combined with world knowl-
edge to interpret indication speech ((Matuszek et al. )) –
that is, to determine whether a person is describing a par-
ticular object. Intuitively, an object o has been “referred
to” if it has attributes the user mentions; if parsed language
contains a reference to the attribute green-color, and ac-
quired world knowledge includes (has-color object1

green-color), then object1 is a likely referral target.

Collaboration Modes

Understanding Explicit Goal Statements Interactions
marked as ‘Goal’s in our scenario are focused on inter-
preting human statements that explicitly state location
and navigation goals for the robot. To interpret such an
utterance, the language parsing component first generates
several parses representing semantic interpretations, each
associated with a measure of uncertainty. From these, the
system extracts relevant spatial entities, the existance of
which should be evaluated in the world model. For exam-
ple, given the sentence “Let’s find the coffee room on the
second floor,” one possible interpretation is: (do-until

(and (is-room-type current-loc coffee-room)

(has-attribute current-loc level) (equals

level 2)) (create-event (explore-forward))).

Given this parse, the system is aware that we care about
a coffee room, and that it is on the second floor. Using
the world model constructed for a partially explored en-
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vironment, we produce the probability that there exists a
world structure that matches the goal. This can be done
by combining the knowledge about already explored space
and the predictions for yet unexplored space as described
in Section . Additional clarifying dialog might yield the
belief (subtype coffee-room kitchen). Inference is
performed by combining the probabilities inferred for room
category and room property variables to achieve the prob-
ability of an event such that, over all places in unexplored
space, there exists a place of category room and type kitchen.

Clarifying Robot Belief State The purpose of the ‘Clar-
ify’ collaboration mode is to allow the robot to increase the
certainty in its internal beliefs about the world by using a
human as a source of information. Such interaction might
require careful planning and trading the benefits and costs
of a dialogue with a human versus using direct robot per-
ception. This topic has been explored before in the context
of planning (Hanheide et al. 2011). Here, we analyze the
problem from the point of view of the world model and its
interaction with language and gesture understanding. The
interaction consists of two elements:

1. Uncertainty-driven query initiated by the robot, e.g.
“What room are we in?” or “What floor are we on?”

2. Assertion about the world state provided by the human,
e.g. “We are in a kitchen” or “on the ground floor.”

The first step is to realize that there is a gap in the robot’s
knowledge, in order to initiate the dialogue. Such gaps in
knowledge can be identified based on the probability of the
most likely concept associated with the spatial entity in the
world model. This in turn, might result in the robot gener-
ating a templated language query based on the taxonomy of
concepts associated with the spatial entity, e.g. “What is the
size of this room?” for the room size attribute.

In order to incorporate the human assertion into the world
state, we propose the integration between the world model
and the language and gesture models shown in Figure 6. For
every human-robot interaction event and a potential spatial
entity of interest, we generate a set of random variables (en-
closed in a yellow rectangle). First, we use the gesture and
language understanding to infer whether the spatial entity
was indicated during the event (e.g. the user pointed at an
object and said “This”). We combine this information with
the inferred content of the assertion extracted using the lan-

guage model (e.g. “is a cup”). This allows us to reason
about the influence of the event on the value of the variable
describing the spatial entity. In order to represent the uncer-
tainty in that association, similar variables can be created for
the same event and other spatial entities which were poten-
tially indicated.

Responding to Human World-state Query Knowing
what a user should be informed of is a difficult problem.
Having a robot continuously explain everything about the
world state is obviously impractical; however, the human
may request specific information. In this mode, the robot
should ‘Respond’ effectively but concisely.

The first step is to parse a question correctly: “Is this de-
caf?” calls for a different type of response than “Where is
the elevator button?” Once the robot has committed to a
parse, possibly after asking clarifying questions, the answer
and the appropriate mechanism for providing it can be cho-
sen by analyzing object category variables. While the first
question can be satisfied by a spoken response, the inter-
nal representation of a location may be difficult to convey in
a linguistically appropriate frame of reference, causing the
robot to respond by adding a lead-to-place action.

Clarifying Human Input In the ‘Explain’ interaction, the
robot seeks assistance from a user on understanding input.
We discuss the case of input containing an unfamiliar word
(here, ‘decaf’ may be a previously non-encountered abbre-
viation). If the parser partially succeeds, the robot can be
aware that a sentence requires a noun phrase for completion.
This provides enough information to induce a templated re-
sponse, e.g., “What is a decaf?” –which, while not perfectly
grammatical, is comprehensible.

When the user responds by identifying attributes the ob-
ject may have (e.g., “It would have a green lid,”) , the parsing
and disambiguation of (Matuszek* et al. 2012a) can be in-
voked, in which hypothetical interpretations of the world are
combined with beliefs about the world state to select objects.
In the context of this integration, this entails, for the object o,
redefining the probability distribution describing the depen-
dency between object of a certain category and its attributes
(poaI , I = green-color).

Conclusions

In this work, we addressed the problem of enabling realistic
robotic applications through human-robot collaboration. We
built on top of two existing components, both of which were
implemented on robotic hardware employing standard sen-
sors and demonstrated in realistic scenarios. We analyzed a
scenario in which human-robot collaboration is crucial and
showed how various collaboration modes present in this sce-
nario can be realized using the intersection of a semantic
world model and language/gesture interaction models. Our
analysis indicate that such scenario is within the reach of
current robotic technologies; we intend to continue the work
on integrating perception, reasoning and interaction in order
to demonstrate the proposed solutions in practice.
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