
The More you Learn, the Less you Store: Memory-Controlled Incremental SVM

Andrzej Pronobis and Barbara Caputo
Computational Vision and Active Perception Laboratory

School of Computer Science and Communication
Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden

{pronobis,caputo}@nada.kth.se

Abstract

The capability to learn from experience and update in-
crementally its internal representation is a key property
for a visual recognition algorithm aiming to work in real-
-world scenarios. This paper presents a novel SVM-based
algorithm for visual object recognition, capable of learning
model representations incrementally. We combine an incre-
mental extension of SVMs [14] with a method which reduces
the number of support vectors needed to build the decision
function without any loss in performance [5]. The result-
ing algorithm is guaranteed to achieve the same recogni-
tion performance as the original incremental method while
reducing the memory requirements. We then introduce a pa-
rameter which permits a user-set trade-off between perfor-
mance and memory reduction. This property is potentially
useful in applications where the memory size of the visual
models must be kept under control. Results show that it is
possible to achieve a consistent reduction of the memory re-
quirements with only a moderate loss in performance. For
example, experiments show that when the user accepts a
reduction in recognition rate of 5%, this yields a memory
reduction of up to 50%.

1. Introduction

Basic visual operations such as categorization and com-
plex tasks such as scene interpretation have long been ma-
jor challenges in computer vision. A system able to per-
form these tasks should include facilities for understanding
and learning, where understanding here means both recog-
nition and categorization of objects and scenes. A system
with a realistic complexity cannot be engineered: this calls
for methods for automatic acquisition of models and rep-
resentations allowing the system to work in an open-ended
fashion, i.e. beyond initial specification. A highly desir-
able property for a visual recognition algorithm working
in realistic settings is the capability to learn from experi-

ence and update incrementally its internal representation.
The possibility to learn continuously is particularly impor-
tant for all those applications where, in spite of a vast batch
training set and unlimited training time, it is impossible to
provide a database which will remain representative of the
modeled visual class during time. For instance, some visual
categories like phones or computers have grown dramati-
cally over the last 20 years. New category members like
cell phones and laptops have appeared, changing our vi-
sual models of these categories. Another example is indoor
place recognition, where the variability of a room’s appear-
ance is so high (people using the room, furniture relocated
or changed, objects being taken out of drawers, illumination
changes and so forth) that is virtually impossible to collect
a training database covering all these possibilities.

Discriminative methods have become widely popular for
visual recognition, achieving impressive results on several
applications [16, 19, 8, 10]. Within discriminative classi-
fiers, SVM techniques provide powerful tools for learning
models with good generalization capabilities; in some do-
mains like object and material categorization, SVM-based
algorithms are state of the art [1, 6]. This makes it worth
to investigate whether it is possible to perform continuous
learning with this type of methods. Several incremental ex-
tensions of SVMs have been proposed in the machine learn-
ing community [4, 2, 14, 9, 15]. Between these methods,
the approximate techniques [4, 9, 14] seem better suited for
visual recognition because, at each incremental step, they
discard non-informative training vectors, thus reducing the
memory requirements. Other methods, such as [2], instead
require to store in memory all the training data, eventually
leading to a memory explosion; this makes them unfit for
continuous learning of visual patterns.

This paper presents a novel SVM-based incremental
method which performs like the batch algorithm while re-
ducing the memory requirements. We combine an approx-
imate technique for incremental SVM [14] with an exact
method that reduces the number of support vectors needed
to build the decision function without any loss in perfor-

mance [5]. This results in a novel algorithm performing
as the original incremental method with a reduction in the
memory requirements. We then present an extension of the
method for the exact simplification of the support vector
solution [5]. We introduce a parameter that links SVM’s
performance to the amount of vectors that is possible to dis-
card. This allows a user-set trade-off between performance
and memory reduction. The algorithms were tested on a
material categorization problem 1, showing a remarkable re-
duction of the memory requirements compared to standard
SVM. In summary, the contributions of this paper are:

• We implemented and tested the fixed-partition incre-
mental SVM [14] and benchmarked it against the batch
algorithm. Results show that their performance is sta-
tistically equivalent, but the incremental method does
not consistently achieve a memory reduction compared
to the batch model. To our knowledge, these experi-
ments constitutes the first application of an incremen-
tal SVM method to visual recognition.

• We implemented a method for the exact simplification
of the support vector solution [5]. The algorithm was
further extended by introducing a parameter, to be set
by the user, which allows a trade-off between perfor-
mance and memory. Although our interest here was
in combining these algorithms with incremental SVM,
these methods can be used for any SVM-based classi-
fication algorithm. To our knowledge, this is the first
time that the method presented in [5] is tested on visual
data.

• We combined these algorithms obtaining a new incre-
mental SVM with a mechanism for memory control.
At each incremental step the number of support vectors
to be stored can be reduced, depending on the applica-
tion, (a) without any loss in performance, or (b) with a
controlled decrease in recognition rate which yields a
consistent memory reduction. Experiments show that
in the case (a) the algorithm achieves a reduction on
the number of stored support vectors of 32%. In the
case (b), results show that when it is acceptable a re-
duction in recognition rate of 5%, this yields a reduc-
tion of 50% in the number of stored support vectors.

The paper is organized as follows: section 2 reviews ap-
proximate techniques for incremental SVM and presents an
experimental evaluation of one of these methods. Section
3 describes the memory reduction algorithms and evalu-
ates their performance for different kernel types. Section

1A similar experimental evaluation, using both local and global de-
scriptors and several kernel types (including non-Mercer kernels [20] was
conducted in the domain of place recognition. The experimental findings
are similar to those reported here, and thus are omitted for space’s reasons.
The interested reader can find more details in [12].

4 presents our memory-controlled incremental SVM and
shows its effectiveness with a set of experiments. The paper
concludes with a summary discussion and possible direc-
tions for future work.

2 Incremental SVM

This section presents the incremental SVM technique
that will be one of the building blocks of our new memory-
-controlled algorithm. After a brief review of the theory
behind this type of algorithms (section 2.1), the remaining
of the section describes the approximate technique used in
this paper (section 2.2) and it presents an experimental eval-
uation of its performance against the batch method (section
2.3).

2.1 SVM: the batch algorithm

Support Vector Machines (SVMs, [3]) belong to the class
of large margin classifiers. Consider the problem of sepa-
rating the set of training data (x1, y1), . . . (xm, ym), where
xi ∈ <N is a feature vector and yi ∈ {−1, +1} its class
label. If we assume that the two classes can be separated by
an hyperplane w · x + b = 0, the optimal hyperplane is the
one which has maximum distance to the closest points in the
training set. The optimal values for w and b can be found by
solving a constrained minimization problem, which results
in a classification function

f(x) = sgn

(
m∑

i=1

αiyixi · x + b

)
, (1)

where αi and b are found by using an SVC learning algo-
rithm [3]. Most of the αis’ take the value of zero; those xi

with nonzero αi are the “support vectors”. The extension
to multiclass can be done following several strategies [3];
here we used the pairwise approach [3]. To obtain a non-
linear classifier, one maps the data from the input space <N

to a high dimensional feature space H by x → Φ(x) ∈ H,
such that the mapped data points of the two classes are lin-
early separable in the feature space. Assuming there exists
a kernel function K such that K(x, y) = Φ(x) · Φ(y),
then a nonlinear SVM can be construct by replacing the in-
ner product x · y in the linear SVM by the kernel function
K(x, y)

f(x) = sgn

(
m∑

i=1

αiyiK(xi, x) + b

)
(2)

This corresponds to constructing an optimal separating hy-
perplane in the feature space. In this paper we will use an
RBF kernel K(x, y) = exp{−γ||x− y||2}.

Figure 1. The variations within each category of the TIPS2 database. Each row shows one example
image from each of four samples of a category. In addition, each sample was imaged under varying
pose, illumination and scale conditions.

2.2 SVM: an Incremental Extension

Among all incremental SVM extensions proposed in the
machine learning literature so far [14, 4, 11, 2], approxi-
mate methods seem to be the most suitable for visual recog-
nition: firstly - as opposed to exact methods like [2]- they
discard a significant amount of the training data at each
incremental step. Secondly, they are expected to achieve
performances not too far from those obtained by an SVM
trained on the complete data set (batch algorithm), because
at each incremental step the algorithm remembers the es-
sential class boundary information regarding the data seen
so far (in form of support vectors). This information con-
tributes properly to generate the classifier at the next itera-
tion.

Once a new batch of data is loaded into memory, there
are different possibilities for the updating of the current
model, which might discard a part of the new data according
to some fixed criteria [4, 14]. In this paper we use the fixed-
-partition technique, which was introduced first in [14]. In
this method the training data set is partitioned in batches of
fixed size k:

T = {(x1, y1), . . . , (xm, ym)} = {T 1, T 2, . . .T n},

with

T i = {(xi
j , y

i
j)}

k
j=1.

At the first step, the model is trained on the first batch of
data T 1, obtaining a classification function

f1(x) = sgn

(
m1∑

i=1

α1
i y

1
i x1

i · x + b1

)
.

At the second step, a new batch of data is loaded into mem-
ory; then, the new training set becomes

T inc
2 = {T 2 ∪ SV 1}, SV 1 = {x1

i }
m1

i=1
,

where SV 1 are the support vectors learned at the first step.
The new classification function will be:

f2(x) = sgn

(
m2∑

i=1

α2
i y

2
i x2

i · x + b2

)
.

Thus, as new batches of data points are loaded into mem-
ory, the existing support vector model is updated, so to gen-
erate the classifier at that incremental step. Note that this
incremental method can be seen as an approximation of the
chunking technique used for training SVM [3]. Indeed,
the chunking algorithm is an exact decomposition which
iterates through the training set to select the support vec-
tors. The fixed-partition incremental method instead scan
through the training data just once, and once discarded, does
not consider them anymore. The fixed-partition incremental
algorithm has been tested on several benchmark databases
commonly used in the machine learning community [4] and
on a simple optical character recognition problem [11], ob-
taining good performances compared to the batch algorithm
and other approximate methods.

2.3 Experimental Evaluation

In order to evaluate the fixed-partition incremental SVM,
we performed a set of experiments on the TIPS2 database
[1]. This database contains 11 material categories (4 planar
samples for material, Fig 1). Many of the materials have
3D structure, implying that their appearance can change

Figure 2. Results on the TIPS2 database using incremental SVM and the batch algorithm. The in-
cremental method achieves a memory reduction while obtaining the same performance as batch
SVM

considerably as pose and lighting are changed. TIPS2 con-
tains images at 9 scales equally spaced logarithmically over
two octaves. At each scale, materials were imaged under
3 poses (frontal, rotated 22.5◦ left and 22.5◦ right) and 4
illumination conditions (frontal, 45◦ from the top and 45◦

from the side, all taken with a desk-lamp with a Tungsten
light bulb; the fourth illumination condition consisted of
the fluorescent lights in the laboratory). In total there are
9×3×4 = 108 images per sample. As descriptors we used
the rotationally invariant MR8 [18] which has shown good
performances on this database [1]. For these experiments
we used our extended version of the libsvm software, and
we set C = 100. Kernel parameters were determined via
cross-validation. We splitted the database in a training and
test set, with the training set consisting of three samples per
material, and the test set consisting of the remaining fourth
material; as in [1], we considered 4 possible splits. The
training set was further divided in three subsets, each con-
sisting of all the views for one sample per material. Each
subset was added to the model during each incremental step.
For each partition, we performed experiments on four dif-
ferent orderings of the incremental steps. For instance, for
the partition with sample 1, 2, 3 into the training set we
ran 4 different experiments considering the incremental se-
quences (a) 1, 2, 3; (b) 2, 1, 3; (c) 2, 3, 1 (d) 3, 2, 1. Thus,
in total we ran 16 different experiments; here we report the
averaged results with standard deviations. Fig 2, left, shows
the recognition rates obtained, at each step of the incremen-
tal update, using the batch SVM on the whole training data
and the fixed-partition incremental algorithm. Fig 2, right,
shows the number of support vectors stored by both algo-
rithms at each step of the incremental procedure. We see

that there is no loss in performance of the incremental al-
gorithm compared to the batch one, while there is a statisti-
cally significant reduction of the number of support vectors
in the incremental algorithm. These results are in agreement
with those reported in [4], where only two-class problems
were considered.

From these results, and from those reported in [4, 14,
11], we can conclude that the fixed-partition incremental
SVM performs as the batch algorithm. A significant draw-
back of the method is that it does not guarantee a reduction
of the number of stored support vectors; this is a serious
issue, as it may lead to a memory explosion. In the next
section we will present a method for the reduction of the
memory requirements of the support vector solution. As it
will be shown in section 4, this method, combined with the
fixed-partition approach, can be used to design a memory-
controlled incremental SVM.

3 Exact Simplification of SVM Solution

Experiments presented in section 2.3 showed that the
fixed-partition incremental SVM can achieve the classifica-
tion performance of the batch algorithm while using fewer
support vectors. While this suggests that the solution found
using the standard SVC learning algorithm is not always
minimal, experiments presented in [14] showed that reject-
ing even a small amount of support vectors may cause a
strong decrease in performance. This raises the question
of whether the complexity of the support vector solution
can be reduced while preserving its optimal performance.
A possible solution has been proposed by Downs et al [5].
Their method reduces the number of support vectors of a

trained classifier, eliminating those which can be expressed
as a linear combination of the others in the feature space.
The weights are updated accordingly, which ensures that
the decision function is exactly the same as the original.
This results in a reduction of the complexity of the classi-
fier, without any loss in performance.

The rest of this section is organized as follows: section
3.1 reviews the method presented in [5], gives some details
on its implementation and presents an extension of the algo-
rithm that allows the user to trade performance for memory
requirements, when necessary. Section 3.2 describes a se-
ries of experiments evaluating both methods. Although we
developed the algorithm having in mind its integration with
incremental SVM techniques, it can be used for reducing
the memory requirements (as well as speed during recogni-
tion) of any SVM-based classification method.

3.1 The Algorithm

The idea behind the algorithm by Downs et al [5] is that
the set of support vectors X = {xi}

m
i=1 is not guaranteed

to be linearly independent. Let us suppose that the first r

support vectors are linearly independent, and the remaining
m − r depend linearly on those in the feature space: ∀j =
r + 1, . . .m, xj ∈ span{xi}

r
i=1. Then it holds

K(x, xj) =

r∑

i=1

cijK(x, xi), (3)

and the classification function (2) can be rewritten as

f(x) = sgn (
r∑

i=1

αiyiK(x, xi)+

m∑

j=r+1

αjyj

r∑

i=1

cijK(x, xi) + b). (4)

If we define the coefficients γij such that αjyjcij = αiyiγij

and γi =
∑m

j=r+1
γij , then eq. (4) can be written as

f(x) = sgn (

r∑

i=1

αiyiK(x, xi)+

r∑

i=1

αiyi

m∑

j=r+1

γijK(x, xi) + b)

= sgn

(
r∑

i=1

α̂iyiK(x, xi) + b

)
(5)

where

α̂i = αi(1 + γi) = αi

1 +

m∑

j=r+1

αjyjcij

αiyi

 . (6)

Thus, the resulting classification function (eq. (5)) requires
now m− r less kernel evaluations than the original one (eq.
(2)). In order to find the linearly independent subset of the
support vectors and the values of the cij coefficients, we ap-
plied the QR factorization algorithm with column pivoting
[7] to the support vector matrix.
Two interesting points can be made on the QR factorization
and the column pivoting strategy: first, it allows to reveal
the numerical rank of the matrix with respect to a parame-
ter τ , which acts as a threshold in defining the condition of
linear dependence. Second, the algorithm performs a per-
mutation of the columns of the matrix such that, if for a
given value of τ the rank of the matrix is r, then the linearly
independent columns will occupy the first r positions. Also,
these r columns will be ordered according to the degree of
their relative linear independence. On the basis of these ob-
servations, we propose to consider the threshold τ as a pa-
rameter of the algorithm that allows the user to control the
number of support vectors to be kept in memory. Clearly,
as the value of τ grows, eq. (5) will become more and more
an approximation of the exact solution. Anyway, we want
to underline that the informative content of a discarded sup-
port vector xj is not completely lost, as its weight αj is
used to compute the updated value of the weights α̂i for the
remaining support vectors. This should result in a graceful
decrease of classification performance compared to the op-
timal solution. Thus, the parameter τ can be used as an ef-
fective way to trade performance for memory requirements
and speed during classification, depending on the task at
hand.

3.2 Experimental Evaluation

We tested the algorithm with an extensive set of exper-
iments on the TIPS2 database. For each experiment, we
first trained the classifier using the standard SMO algorithm.
Then, starting from the obtained decision function, we ap-
plied the reduction algorithm increasing the value of the τ

parameter, which led to a progressive reduction of the clas-
sification rates and of the number of support vectors. Ta-
ble 1 shows the results obtained for a series of experiments
where the training set consisted of 3 samples per material,
and the test set consisted of the remaining sample. As in
section 3.2, experiments were performed on 4 different par-
titions and we report here the averaged results (the symbol
Θ was used to denote the percentage of the original clas-
sification rate that is guaranteed to be preserved after the
reduction 2). We see that the algorithm achieves a reduction
in the number of stored vectors of ∼ 47%, while keeping

2In the experiments presented here, we considered the classification
rate of the resulting solution as a constraint on the amount of reduced sup-
port vectors. However, depending on the application, the problem may be
reformulated to provide the amount of desired memory reduction.

Θ (%) Class. rate (%) No. of SVs Red. rate (%)

ORIG. 69.32±6.67 1518±34 —

R
E
D
U
C
E
D

100 69.32±6.67 805±111 46.95±7.03
98 67.93±6.54 744±56 50.98±3.31
95 65.85±6.34 616±77 59.43±4.65
90 62.39±6.01 539±82 64.46±5.13
80 55.45±5.34 428±83 71.82±5.24

Table 1. Average results of the evaluation
of the reduction algorithm on the TIPS2
database. The Θ parameter denotes a per-
centage of the original classification rate,
that is guaranteed to be preserved after the
reduction. The uncertainties are given as one
standard deviation.

the classification rate intact. When the application allows
a small loss in performance, memory requirements may be
further reduced by exploiting the ability of the algorithm to
approximate the solution. Note that the classification rate
decreases monotonically with the number of support vec-
tors.

Results presented in Table 1, left, were obtained us-
ing a Gaussian kernel. The experiments were repeated for
other kernel types (polynomial and χ2 kernels), and differ-
ent number of training samples per material (1 or 2), yield-
ing results consistent with those reported here. It is inter-
esting to observe that the reduction rate in support vectors
grows with the dimension of the training set. For instance,
the average reduction rate obtained training on one sample
per material is ∼44% when it is acceptable a decrease in
recognition rate of 5%. This value is considerably lower of
the ∼59% in reduction rate obtained under similar condi-
tions, using 3 samples per material during training (Table
1).

4 Memory-controlled Incremental SVM

The fixed-partition incremental learning algorithm de-
scribed in section 2 was shown to perform well on visual
data. However, experiments revealed that at each incremen-
tal step the memory requirements can grow considerably.
This is a serious limitation for an incremental method aim-
ing to work in a cognitive visual system. In section 3 we
presented a technique for controlling the amount of stored
support vectors in a principled way, and we extended it so to
obtain an even greater reduction rate when the user accepts a
fixed decrease in performance. This is a reasonable assump-
tion, particularly for multi-sensory systems. Our idea is to
combine these two algorithms together, obtaining a new in-
cremental SVM method with a mechanism for a controlled

growth of the memory requirements. We propose to apply
the reduction algorithm at each incremental step. The new
representation of the data is then built from the remaining
support vectors. We will show through experiments that this
approach can successfully control the amount of vectors to
be kept in memory.

We benchmarked our new algorithm against the fixed-
-partition incremental SVM by repeating the experiments
described in section 2.3. Fig 3 reports the obtained results:
on left, it shows the recognition rates achieved using dif-
ferent values of the parameter Θ, and on right it shows the
reduction rates obtained at each incremental step. Note that
the parameter Θ decides the amount of discarded support
vectors at each incremental step.

We first observe that our new method controls the mem-
ory growth much more successfully than the original incre-
mental technique (Fig 3, top right). This is especially true
when it is accepted a reduction Θ in classification rate (Fig
3, middle and bottom right). It is interesting to note that, for
Θ = 95% and Θ = 90%, the gain in memory compression
is always greater than the overall reduction in performance.
A last word should be said regarding the training time at
each incremental step. On one side, our method uses two
algorithms in cascade while the original incremental tech-
nique uses just one. On the other side, the training time for
an SVM depends on the dimension of the training set, and
we have shown experimentally that our method yields far
more consistent reductions. Thus, as the incremental learn-
ing proceeds, the training time of our algorithm actually be-
comes comparable, and eventually lower, than the original
methods.

5 Conclusions

In this paper we explored the possibility to extend SVMs
to incremental learning for visual recognition. Starting from
an existing incremental SVM algorithm, we proposed a new
method which is capable of learning model representations
incrementally while controlling the number of support vec-
tors to be stored. This is obtained combining the fixed-
-partition incremental technique with a method which re-
duces the number of support vectors needed to build the de-
cision function without any loss in performance. A further
extension of the algorithm permits a user-set trade-off be-
tween performance and memory reduction. An experimen-
tal evaluation of the method shows its potential for com-
puter vision applications.

This work can be extended in many ways. First, here we
chose the fixed partition technique for incremental SVM,
but other approximate methods might be more suitable
and/or perform better. Thus, we plan to develop memory-
-controlled version of those algorithms and to benchmark
them with our method. These methods should also be com-

pared with other incremental methods presented in the vi-
sion literature, like for instance [13]. Second, we would
like to study the algorithm’s performance as the dimension
of the batch set changes, with respect to different multi-
class extension, and to test it on the domain of human action
recognition. Finally, we plan to speed-up our algorithm by
incorporating fast training techniques like [17], so to move
towards on-line, continuous learning using SVMs.

Acknowledgments

This work has been supported by the EU project FP6-IST-
0042500 CoSy.

References

[1] B. Caputo, E. Hayman, P. Mallikarjuna. Class-specific mate-
rial categorisation. Proc ICCV05.

[2] G. Cauwenberghs, T. Poggio. Incremental and decremental
support vector machine learning. Proc NIPS00.

[3] N. Cristianini, J. S. Taylor, “An introduction to support vector
machines and other kernel-based learning methods”, Cam-
bridge university press, 2000.

[4] C. Domeniconi, D. Gunopulos. Incremental support vector
machine construction. Proc ICDM01.

[5] T. Downs, K. E. Gates, A. Masters. Exact simplification of
support vector solutions. JMLR, 2: 293-297, 2001.

[6] M. Fritz, B. Leibe, B. Caputo, B. Schiele. Integrating repre-
sentative and discriminant models for object category detec-
tion. Proc ICCV05.

[7] G. H. Golub, C. F. Van Loan. Matrix computations (3rd ed.).
Johns Hopkins University Press, 1996.

[8] K. Grauman, T. Darrell. The Pyramid Match Kernel: Dis-
criminative Classification with Sets of Image Features. Proc
ICCV05.

[9] P. Mitra, C. A. Murthy, S. K. Pal. Data condensation in large
databases by incremental learning with support vector ma-
chines. Proc ICPR00.

[10] A. Opelt, A. Pinz, M. Fussenegger, P. Auer. Generic object
recognition with boosting. IEEE Tran on PAMI, Vol 28, N 3,
March 2006.

[11] B. Peng, J. Xiaugyn, Z. Sun, L. Wenyin. Study of SVM-
-based incremental learning for user adaptation in multi-class
classification environment. Proc ICONIP02.

[12] A. Pronobis. Indoor Place Recognition Using Support Vec-
tor Machines. M. Sc Thesis, NADA/CVAP, KTH, Dec 2005.
Available at http://www.nada.kth.se/ pronobis/

[13] D. Skocaj, A. Leonardis. Weighted and robust incremental
method for subspace learning. Proc ICCV03

[14] N. A. Syed, H. Liu, K. K. Sung. Incremental learning with
suppoert vector machines. Proc IJCAI99.

[15] S. Tong, D. Koller. Support Vector Machine Active Learn-
ing with Applications to Text Classification. JMLR, 2: 45-66,
2001.

[16] A. Torralba, K. Murphy, W. Freeman. Sharing features: ef-
ficient boosting procedures for multiclass object detection.
Proc CVPR04.

[17] I. W. Tsang, J. T. Kwok, P.-M. Cheung. Core vector ma-
chines: fast SVM training on very large data sets. JMLR, 6:
363-392, 2005.

[18] M. Varma, A. Zisserman. Classifying images of meterial:
achieving viewpoint and illumination independence. Proc
ECCV02.

[19] P. Viola, M. Jones. Rapid object detection using a boosted
cascade of simple features. Proc CVPR01.

[20] C. Wallraven, B. Caputo, A. Graf, “Recognition with local
features: the kernel recipe”, Proc ICCV03.

��� ������� �	�
����� ��������������������� �! #"$

% & '(*),+.-
/10

210

3 0

410

5 0

6 0

78 9
::;<
; =9
>; ?@
A9
> BCDE

F�GIHKJMLN OPJMQ R�STR�OPHKG�U,V WYX HZLP[�\PH]Q RI^1\PJ_HZX [.O	`N OPJMQ R�STR�OPHKG�U,V WYX HZLaQ RI^1\PJ_HZX [�O*`

b!c�dfe�g�h�ikj�l!lmd�encfoTgkpmc�dfe�irq�s�t�tvu w!x#yz

{ | }~*�I�.�
|��1�
���1�
� �1�
� �1�
{1�1�1�
{1|1�1�
{1�1�1�
{ � �1�

� �Z��
� �
�����
� �
��� ��
�

�_�I�K�M�� �P�M� ���T���P�K���,� �Y� �Z�Z .¡Z�]� �I¢1¡P�_�£� ��*¤� �P�M� ���T���P�K���,� �Y� �Z�a� �I¢1¡P�_�Z� .�	¤

¥§¦ ¨�©�©�ª «	ª ¬m¨�ª ®�¯�°�¨��±�²´³¶µ�·!¸#¹º

» ¼ ½¾*¿,À.Á
Â1Ã

Ä1Ã

Å Ã

Æ1Ã

Ç Ã

È Ã

ÉÊ Ë
ÌÌÍÎ
Í ÏË
ÐÍ ÑÒ
ÓË
Ð ÔÕÖ×

Ø�ÙIÚKÛMÜÝ ÞPÛMß à�áTà�ÞPÚKÙ�â,ã äYå ÚZÜPæ�çPÚ]ß àIè1çPÛ_ÚZå æ.Þ	éÝ ÞPÛMß à�áTà�ÞPÚKÙ�â,ã äYå ÚZÜaß àIè1çPÛ_ÚZå æ�Þ*é

ê!ë�ìfí�î�ï�ðkñ�ò!òmì�ínëfóTîkômë�ìfí�ðrõ�ö�÷�ø!ù#úû

ü ý þÿ������
ý����
	����

 ���

� ���

ü������
ü1ý����
ü�	����
ü
 ���

� ��
� �
���

�� �
���
��

������� �! "#� $ %'&(%'"#���')+* ,.- ����/�0��1$ %�2�0#���3- /'"�4! "#� $ %'&(%'"#���')+* ,.- ���5$ %�2�0#����- /�"64

798 :<;';<= >6= ?@:<AB= CEDGFH:<AJILKNMPORQTSVUW

X Y Z[�\+]�^
_�`

a�`

b `

c�`

d `

e `

fg h
iijk
j lh
mj no
ph
m q
rst

uJv�w�x yz {#x | }'~(}'{#w�v'�+� �.� w�y#�'�#w1| }����#x�w�� ��{6�z {#x | }'~(}'{#w�v'�+� �.� w�y5| }����#x�w�� �'{��

�T�J���H�<�G���R�T�@�E�����(���@�J���H�������R�T�V��

� ¡¢�£�¤�¥
 �¦�¦

§�¦�¦

¨ ¦�¦

© ¦�¦

��¦�¦�¦

�� �¦�¦

��§�¦�¦

� ¨ ¦�¦

ª «�¬
« ®
¯°°
«±
² ³
´µ² «±
®

¶�·�¸�¹ º» ¼#¹ ½ ¾'¿(¾'¼#¸�·'À+Á Â.Ã ¸�º�Ä�Å�¸1½ ¾�Æ�Å#¹�¸3Ã Ä'¼�Ç» ¼#¹ ½ ¾'¿(¾'¼#¸�·'À+Á Â.Ã ¸�º5½ ¾�Æ�Å#¹�¸�Ã Ä�¼6Ç

Figure 3. Results on the TIPS2 database obtained using batch SVM, the fixed-partition incremental
method, and the memory controlled incremental algorithm.

