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Abstract— A distinctive feature of intelligent systems is their
capability to analyze their level of expertise for a given task;
in other words, they know what they know. As a way towards
this ambitious goal, this paper presents a recognition algorithm
able to measure its own level of confidence and, in case of
uncertainty, to seek for extra information so to increase its
own knowledge and ultimately achieve better performance. We
focus on the visual place recognition problem for topological
localization, and we take an SVM approach. We propose a new
method for measuring the confidence level of the classification
output, based on the distance of a test image and the average
distance of training vectors. This method is combined with a
discriminative accumulation scheme for cue integration. We
show with extensive experiments that the resulting algorithm
achieves better performances for two visual cues than the
classic single cue SVM on the same task, while minimising
the computational load. More important, our method provides
a reliable measure of the level of confidence of the decision.

I. INTRODUCTION

A key competence for an autonomous agent is the ability

to localize itself in the world. Vision-based localization rep-

resents a challenge for the research community, because the

visual information tends to be noisy and difficult to analyze.

Still, this research line is attracting more and more attention,

and several methods have been proposed using vision alone

[1], [2], [3], or combined with more traditional range sensors

[4], [5]. The increasing activity in this research area comes

firstly from the portability and cost-effectiveness of visual

sensors; secondly, from the specific type of information that

only these sensors can bring. This is the case for instance

in place categorization or understanding, where the semantic

information plays a crucial role. Furthermore, visual place

recognition can be applied as a method for loop closing, scal-

ability issues, or recovery from the kidnapped robot problem.

A vast majority of algorithms proposed so far were

designed to provide as output a hard decision: the sys-

tem is trained to recognize a fixed and pre-defined set of

environments (e.g. kitchen, corridor, office etc.) and then,

when presented with a test image, it classifies it as one of

the possible places, but little or nothing is generally said

regarding the confidence of this decision or other possible hy-

potheses. Measuring confidence, or knowing what is known,

is a fundamental concept for autonomous robots. Indeed, in

many real-world applications it is more desirable to abstain
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from action because of a self-recognized lack of confidence,

rather than take a hard decision which might result in a

costly error. Thus, introducing a confidence measure in a

recognition algorithm allows to provide reliability despite

constrained performance of the algorithm or lack of updated

information, and makes it possible to evaluate when it is

necessary to seek for extra information (e.g. from multiple

cues or modalities) in order to achieve a confident decision.

It is possible to define a confidence measure for any pattern

recognition algorithm: for probabilistic methods, it will be

related to the posterior probability of the image at hand; for

discriminative classifiers, it will be related to the distance

from the separating hyperplane. In this paper, we will focus

on large margin classifiers, specifically on Support Vector

Machines (SVMs), even if most of the concepts and ideas we

will propose can be easily extended to any margin-based dis-

criminative method. We build on our previous work on place

recognition, where we presented an SVM-based method able

to recognize indoor environments under severe illumination

changes and across a time span of several weeks [3]. Our first

contribution is the introduction of a method for ranking the

hypotheses generated by the classifier and measuring their

confidence. The method is based on the distance from the

hyperplane and the average distance of each training class.

We present experiments showing that our confidence measure

gives a better performance compared with the classic hard

decision SVM and, more important, a decision that is more

informative of the level of knowledge of the robot.

Once a system is able to output not only its guess, but

also the level of confidence of the guess, action should

be taken. Indeed, we can expect that when an image is

classified with a low level of confidence, it is because the

algorithm doesn’t have enough information. A possible way

to increase the knowledge, and thus the confidence, is to use

additional information such as both global and local visual

descriptors, or laser-based geometrical data, and combine

them through an integration scheme. An effective method

for visual cue integration using SVMs has been proposed in

[6], called Discriminative Accumulation Scheme (DAS). A

second contribution of this paper is to apply that algorithm

to the domain of vision for robotics. We also propose its

generalized version (Generalized DAS), that can be built

on top of our confidence estimation method. Experiments

confirm the effectiveness of the approach and show that G-

DAS consistently outperforms the original DAS.
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While using multiple visual cues improves both classifica-

tion accuracy and relative confidence, it is computationally

expensive (more features to compute and classify), which

is undesirable for an autonomous agent. Ideally, a system

should use additional information only when necessary, i.e.

only when the level of confidence of a single cue is not

such to obtain a reliable decision. The final contribution of

this paper is to combine the G-DAS framework with the

confidence estimation approach, so that multiple cues are

used only when they are necessary to disambiguate low-

confidence cases. Our experiments on local and global visual

cues show that the proposed approach reduces the compu-

tational load of about 55% in average, achieving the same

performance obtained by using G-DAS on all the images.

The rest of the paper is organized as follows: after an

overview of previous work on confidence measures and cue

integration (Section II), Section III gives a brief description

of the methodology used further. Section IV describes our

confidence estimation method and evaluates its effective-

ness for visual place recognition. Section V reviews DAS,

presents our generalized version of the algorithm and as-

sesses its performance; Section VI shows how by combining

the two techniques we achieve a better overall performace

while reducing the computational load. The paper concludes

with a summary and possible avenues for future research.

II. RELATED WORK

We are not aware of confidence estimation and/or cue

integration methods within the robotics literature for visual

place recognition. However, computing confidence estimates

for discriminative classifiers is an open problem in machine

learning. Although classifiers like K-NN, ANN, or SVM out-

put numeric scores for class membership, some experiments

show that, when used directly, they are not well correlated

with classification confidence [7]. Several authors attacked

this problem by developing more sophisticated measures

such as probability estimates obtained by trained sigmoid

function [8] with extensions for multi-class problems [9], or

relative distance from the separating hyperplane, normalized

with the average class distance from the plane [10]. More

comments on their performance can be found in Section IV.

Visual cue integration via accumulation was first pro-

posed in a probabilistic framework by Poggio et al.[11],

and then further explored by Aloimonos and Shulman [12].

The idea was then extended to SVMs by Nilsback and

Caputo [6] (DAS). The resulting method showed remarkable

performances on object recognition applications and together

with its generalized version (G-DAS) is used here as a

cue integration scheme for disambiguating classes with low

confidence estimate.

III. A FEW LANDMARKS

This section serves as a base for the results and theory

presented further. We describe the common scenario and

methodology used during all experimental evaluations (Sec-

tions III-A and III-B), we briefly review SVMs (Section III-
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Fig. 1. Example pictures taken from the IDOL database showing the
interiors of the rooms, variations occurring across platforms, as well as
introduced by illumination changes and natural activity in the environment.

D) and the visual descriptors used throughout the paper

(Section III-C).

A. Experimental Scenario

The algorithms presented in this paper have been tested

in the domain of mobile robot topological localization. As

benchmarking data we used the IDOL (Image Database

for rObot Localization [13]) database which was introduced

in [3] in order to test robustness of our discriminative

approach to visual place recognition in real-world scenario

and under varying illumination conditions. The database

comprises sequences of images of places acquired using

cameras of resolution 320x240 pixels mounted at different

heights (98cm and 36cm) on two mobile robot platforms, the

PeopleBot Minnie and the PowerBot Dumbo. The acquisition

was performed in a five room subsection of a larger office

environment, selected in such way that each of the five rooms

represented a different functional area: a one-person office,

a two-persons office, a kitchen, a corridor, and a printer area

(part of the corridor). Example pictures showing interiors of

the rooms are presented in Fig. 1.

The appearance of the rooms was captured under three

different illumination conditions: in cloudy weather, in sunny

weather, and at night. The robots were manually driven
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through each of the five rooms while continuously acquiring

images at the rate of 5 frames per second. Each image was

then labelled as belonging to one of the rooms according

to the position of the robot estimated using a laser-based

localization method. The acquisition was performed twice for

each robot and illumination condition, resulting in 12 image

sequences in total over a span of time of more than two

weeks. Thus, the sequences captured variability introduced

not only by illumination but also natural activities in the

environment (presence/absence of people, furniture relocated

etc.). Example images illustrating the captured variability for

both robot platforms are shown in Fig. 1.

B. Experimental Procedure

As a basis for the experiments, we used the place recog-

nition system presented in [3], which is built around Support

Vector Machines [14], and a rich global descriptor [15].

While designing the system, we followed the assumption

that the global configuration of a scene is informative enough

for recognition and obtained good performance despite varia-

tions captured in the IDOL database. In this work, in order to

increase robustness, we additionally used the SIFT descriptor

[16] that has already been proved successful in the domain

of vision-based localization [1].

Following [3], we took a fully supervised approach and

assumed that during training each room is represented by a

collection of images capturing its visual appearance under

various viewpoints, at fixed time and illumination setting.

During testing, the algorithm is presented with images of the

same rooms, acquired under roughly similar viewpoints but

possibly under different illumination conditions, and after

some time. The goal is to recognize each single image

seen by the system. As in [3], we considered three sets

of experiments for three types of problems of different

complexity. In case of each single experiment, training was

always performed on one image sequence subsampled to

1 fps (every fifth image), and testing was done using a

full sequence. The first set consisted of 12 experiments

performed on different combinations of training and test data,

acquired using the same robot platform and under similar

illumination conditions. For the second set of experiments,

we used 24 pairs of sequences captured under different

illumination conditions. Finally, the third set was performed

on 24 pairs of training and test sequences acquired under

similar illumination settings but using a different robot. As a

measure of performance we used the percentage of properly

classified images calculated separately for each of the rooms

and then averaged with equal weights independently of the

number of images acquired in each room.

C. Image Representations

In this work, we employed two types of visual cues, global

and local, extracted from the same image frame. As global

representation we used the Composed Receptive Field His-

tograms (CRFH) [15], a multi-dimensional statistical repre-

sentation of responses of several image filters. Computational

costs were reduced by using a sparse and ordered histogram

representation, as proposed in [15]. Following [3], we used

histograms of 6 dimensions, with 28 bins per dimension,

computed from second order normalized Gaussian derivative

filters applied to the illumination channel at two scales.

We used the SIFT descriptor [16] in order to obtain the

local image representation. SIFT represents the local image

patches around interest points characterized by coordinates

in the scalespace in the form of histograms of gradient

directions. In order to find the coordinates of the interest

points, we used the Harris-Laplacian detector [17], a scale

invariant extension of the Harris corner detector.

D. Support Vector Machines

Consider the problem of separating the set of training

data (x1, y1), (x2, y2), . . . , (xn, yn) into two classes, where

xi ∈ ℜN is a feature vector and yi ∈ {−1,+1} its class

label. If we assume that the two classes can be separated

by a hyperplane in some Hilbert space H, then the optimal

separating hyperplane is the one which has maximum dis-

tance to the closest points in the training set resulting in a

discriminant function

f(x) =

n∑

i=1

αiyiK(xi,x) + b. (1)

The classification result is then given by the sign of f(x).
The values of αi and b are found by solving a constrained

minimization problem, which can be done efficiently using

the SMO algorithm [14]. Most of the αi’s take the value of

zero; those xi with nonzero αi are the “support vectors”. In

case where the two classes are non-separable, the optimiza-

tion is formulated in such way that the classification error is

minimized and the final solution remains identical.

The mapping between the input space and the usually high

dimensional feature space H is done using the kernel func-

tion K(xi,x). Several kernel functions have been proposed

for visual applications; in this paper we will use the χ2

kernel [18] for the global CRFH descriptors, and the match

kernel proposed in [19] for the local SIFT descriptors. Both

have been used in our previous work on SVM-based place

recognition, obtaining good performances.

The extension of SVM to multi class problems can be

done mainly in two ways:

1) One-against-All (OaA) strategy. If M is the number of

classes, M SVMs are trained, each separating a single

class from all remaining classes. The decision is then

based on the distance of the classified sample to each

hyperplane. Typically algebraic distance (f(x)) is used

and the final output is the class corresponding to the

hyperplane for which the distance is largest.

2) One-against-One (OaO) strategy. In this case, M(M −
1)/2 two-class machines are trained for each pair of

classes. The final decision can then be taken in different

ways, based on the M(M − 1)/2 outputs. A popular

choice is to consider as output of each classifier the class

label and count votes for each class; the test image is then

assigned to the class that received more votes. Another

alternative is to use signed distance from the hyperplane
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and sum distances for each class. Other solutions based

on the idea to arrange the pairwise classifiers in trees,

where each tree node represents an SVM, have also been

proposed [20], [14]. In this paper, we will use the voting-

based method, which we found to constantly outperform

the second alternative in our preliminary experiments.

IV. CONFIDENCE ESTIMATION

This section presents our approach to the problem of

ranking hypotheses generated by the classifier and measuring

their confidence. We first describe two methods based on

the standard OaO and OaA multi-class extensions and our

modified version of the OaA principle. Then, we show

benchmark experiments evaluating the performance of the

methods on visual data. The algorithms presented here will

be one of the building block of the confidence-based cue

integration scheme we will introduce in Section VI.

A. The algorithms

As already mentioned, discriminative classifiers do not

provide any out-of-the-box solution for estimating confi-

dence of the decision; however, it is possible to derive

confidence information and hypotheses ranking from the

distances between the samples and the hyperplanes. In case

of SVMs, this can be done very efficiently thanks to the use

of kernel functions and does not require additional processing

in the training phase (as opposed to probability estimation

methods like [8]). As it will be shown by experiments,

despite its simplicity, such approach can yield good results

when applied to complex problems such as visual place

recognition. We stress that, since it is based on the generated

hyperplanes, performance will depend on how well the model

reflects the statistics of the test data. In other words, the

approach will work best for cases where the difficulty comes

from the inability to perfectly separate the training samples

and still provide good generalization capabilities.

It is straightforward to extend the standard OaO and OaA

multi-class methods so that additional information about

the decision becomes available. Let us present the methods

using a more general notation and introduce a variable

Vh(x), which will be a distance-based score assigned by the

hyperplane h to the sample x. In case of the two standard

algorithms, the score will just be equal to the distance

of the test sample to the hyperplane: Vh(x) = Dh(x).
Typically, the value of the discriminant function is used as a

distance measure (Dh(x) = fh(x)). In order to find the best

hypothesis j∗, we follow the rules described in Section III-D:

• for the OaO strategy:

j∗ = argmax
j=1...M

|{i : i ∈ {1 . . .M}, i 6= j, Vi,j(x) > 0}| ,

where the indices i, j are used to denote the hyperplane

separating class i from class j.

• for the OaA strategy:

j∗ = argmax
j=1...M

{Vj(x)} ,
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Fig. 2. Artificial classification problem illustrating the way the scores
Vj(x) are calculated for classified samples in case of the modified OaA
approach. We can observe that although the points x2 and x3 are located
approximately in the same distance from two hyperplanes, they are classified
as belonging to class B and C respectively with high confidence.

where Vj is the score assigned by the hyperplane separat-

ing class j from the other classes.

If now we think of the confidence as a measure of unambi-

guity of the decision, we can define it as:

• for OaO, the minimal score (distance) to the hyperplanes

separating the first hypothesis and the other classes:

C(x) = min
j=1...M, j 6=j∗

{Vj∗,j(x)}

• for OaA, the difference between the maximal and the next

largest score:

C(x) = Vj∗(x) − max
j=1...M, j 6=j∗

{Vj(x)}

The value C(x) can be thresholded for obtaining a bi-

nary confidence information. Confidence is then assumed if

C(x) > τ for threshold τ . The values Vj∗,j(x) (for OaO)

and Vj(x) (for OaA) can also be used to rank the hypotheses

and find between which of them the classifier is uncertain.

The output of the algorithms described above depends only

on the distances of the test sample to the hyperplanes, that for

SVMs is determined by the vectors lying close to the class

boundaries (the support vectors). To make it more dependent

on the distribution of all available training data, we suggest

to use the OaA principle and redefine the score Vj(x) to be

equal to the distance from the average distance of the training

samples to the hyperplane (see Fig. 2 for an illustration):

Vj(x) =
∣∣∣D̂j − Dj(x)

∣∣∣ .

Thus, we do not measure how far the test sample is from the

hyperplane, but how close it is to the training data belonging

to one of the classes. The best hypothesis can be determined

by the following rule:

j∗ = argmin
j=1...M

{Vj(x)} . (2)

Using the same definition of confidence as above, we get:

C(x) = min
j=1...M, j 6=j∗

{Vj(x)} − Vj∗(x). (3)

As in case of the previous algorithms, we can order the
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Fig. 3. Real confidence estimates obtained using the modified OaA
algorithm for four images acquired by the robot Minnie turning from
the corridor towards the kitchen. According to the laser-based localization
system used as ground truth, the first three images were acquired in the
corridor, while the fourth image was already captured in the kitchen. The bar
charts show the ranking of hypotheses (top axis), the estimated confidence of
the decision (shaded bar), and the difference between the score for the best
hypothesis and the others (remaining bars). For the confidence threshold set
as shown in the figure, we obtain two soft decisions (suggesting the correct
hypothesis) for the cases of lowest confidence.

hypotheses using the values of Vj(x) and obtain hard confi-

dence information by thresholding. An explanation on a real

example from one of our experiments is shown in Fig. 3.

B. Experimental Evaluation

We preformed a benchmark evaluation of the three con-

fidence estimation methods (the two methods based on

the standard OaO and OaA multi-class extensions and the

method based on the new modified version of OaA) on the

IDOL database. As described in Section III-B, we performed

three sets of experiments: training and testing under stable

illumination conditions, varying illumination conditions, and

recognition across different robotic platforms. For all exper-

iments we measured the performance of the algorithms for

a range of values of the confidence threshold. We used two

measures of performance in order to analyse different prop-

erties of the methods. First, for each value of the confidence

threshold, we calculated the classification rate (percentage of

properly classified test images) only for those test samples for

which the decision was regarded as confident. As a second

measure we used the classification rate calculated for all

samples and including additional hypotheses between which

the algorithm was unsure when the confidence was below the

threshold. For example, if for a given threshold, the decision

was “kitchen or corridor” and the test image was acquired

in one of these rooms, the decision was counted as correct.

The average results obtained for the global features

(CRFH) are presented in Fig. 4. The experiments were

repeated also for local features (SIFT); however, the results

showed the same trends and thus are omitted for space

reasons (classification rates for local features and hard-

decision SVMs can be found in Section V). To obtain these

results, we used the value of the discriminant function as a

distance measure (Dh(x) = fh(x)). We performed identical

experiments for two other distance measures: the distance of

a sample to its normal projection onto the hyperplane and

relative distance normalized by the average class distance

to the plane [10]; however, the results clearly showed the

advantage of the solutions based on the value of f(x).

The plots presented in Fig. 4 show the dependency be-

tween the classification rates and the percentage of images

of the test sequence for which the classifier was not con-

fident, given some value of threshold. The classification

rates for hard-decision SVM are marked on the vertical

axis (initial values, all decisions treated as confident). It

can be observed that the classification rate calculated for

the confident decisions only (Fig. 4a) is increasing for all

methods as the percentage of unsure decisions grows. This

means that the algorithms tend to eliminate the misclassified

samples. It is clear that the modified OaA approach performs

best with respect to this measure. Moreover, we can see

that the method consistently delivers best classification rates

when hard decisions are considered. The advantage in terms

of classification rate varyes from +0.4% to +3.5% with

respect to standard OaA and +1.5% to +5.7% with respect to

standard OaO and grows with the complexity of the problem.

Additional conclusions can be drawn from the analysis

of the second performance measure (Fig. 4b). First, we see

that if we tolerate soft decisions in e.g. 30% of cases, the

resulting classification rate increases from +5.2% (Fig. 4b,

left) to +12% (Fig. 4b, right) and can even reach 99%

in case of experiments performed for similar illumination

conditions. Second, it is still visible that both OaA-based

methods consistently outperform the OaO-based algorithm,

and the modified version of the OaA strategy in general

achieves the best performance. This time, however, the

advantage of the modified OaA with respect to the algorithm

based on the standard approach is smaller and decreases

as the number of unsure decisions grows. This makes us

conclude that the modified OaA method is better when

it comes to finding and estimating confidence of the best

hypothesis. However, the standard OaA-based algorithm is

similarly or even more (Fig. 4b, right) efficient for ranking

hypotheses. This property of the modified algorithm may

become important if additional information could be used to

improve classification results for the decisions in cases when

the classifier is not confident enough.

V. CUE INTEGRATION

Last section showed the importance of defining an ef-

fective confidence measure for SVM, and its impact on

classification accuracy. Still, once the algorithm is able to

measure an unsatisfactory level of confidence, it should react

accordingly. The most desirable action should of course

lead to higher confidence and accurate classification; one of

the possible way to achieve this result is to use effectively

multiple cues. In this section, we introduce a generalization

of the integration scheme proposed in [6] to a wider class of

multi-class extensions, and we present experimental evidence

of its efficiency. How to combine these cue integration

schemes with confidence-based classification approach will

be the subject of Section VI.

A. Generalized Discriminative Accumulation Scheme

Suppose we are given M visual classes and, for each

class, a set of nj training images {Ij
i }

nj

i=1, j = 1, . . . ,M .
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Fig. 4. Results of evaluation of the three confidence estimation algorithms on three types of problems.

Suppose also that, from each image, we extract a set of P
different cues {Tp(I

j
i )}P

p=1 (the cues could also be different

modalities). The goal is to perform recognition using all the

cues. The original DAS algorithm consists of two steps:

1) Single-cue SVMs. From the original training set

{{Ij
i }

nj

i=1}
M
j=1, containing images belonging to all M

classes, define P new training sets {{Tp(I
j
i )}

nj

i=1}
M
j=1,

p = 1, . . . , P , each relative to a single cue. For each

new training set train a multi-class SVM. In general,

kernel functions may differ from cue to cue. Model

parameters can be estimated during the training step via

cross validation. In case of the original DAS algorithm,

the standard OaA multi-class extension was used. Then,

given a test image I , for each single-cue SVM the

algebraic distance to each hyperplane fp
j (Tp(I)), j =

1, . . . ,M was computed according to Eq. 1.

2) Discriminative Accumulation. After all the distances were

collected {fp
j }

P
p=1, for all the M hyperplanes and the

P cues, the image I was classified using their linear

combination:

j∗ =
M

argmax
j=1

{
P∑

p=1

apf
p
j (Tp(I))

}
, ap ∈ ℜ+.

The coefficients {ap}
P
p=1 can also be evaluated via cross

validation during training.

The original algorithm performed accumulation at the level

of algebraic distances from the hyperplanes fp
j , obtained

from a standard OaA multi-class SVM. As shown in Sec-

tion IV, there are other methods available, and it is possible

to introduce more effective multi-class algorithms based on

the OaA principle. We thus propose to extend the DAS

framework to be applicable also for the other methods; we

call this extension the Generalized Discriminative Accumu-

lation Scheme (G-DAS). The discriminative accumulation is

here performed at the level of the scores Vh (see Section IV):

V ΣP
h (I) =

P∑

p=1

apV
p
h (Tp(I)), ap ∈ ℜ+. (4)

As a result, any multi-class extension can be used within the

G-DAS framework (both OaA and OaO based).

B. Experimental Evaluation

We evaluated the effectiveness of G-DAS for the visual

place recognition problem by running the three series of

experiments described in Section III-B. SIFT and CRFH

were used as features, χ2 and match kernel as similarity

measures for the nonlinear SVMs, and kernel parameters as

well as weighting coefficients for the accumulation schemes

were determined via cross validation.

Fig. 5 shows the recognition results obtained using a single

cue SVM, with global or local descriptors, and those obtained

using the G-DAS algorithm. For all those three different

approaches, we used three different multi-class extensions:

standard OaO, standard OaA and our new modified OaA.

Note that, when using standard OaA, G-DAS corresponds to

the original DAS algorithm.

A first comment is that for all three different multi-

class extensions, for all the three series of experiments,
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(a) Stable illumination conditions (b) Varying illumination conditions (c) Recognition across platforms

Fig. 5. Average results for G-DAS based on different multi-class extensions, for three different series of experiments.

the accumulation scheme clearly achieves consistently bet-

ter results than the single cues approaches. The gain in

performance goes from a minimum of +1.9% in accuracy,

obtained for the stable illumination condition experiments

(Fig. 5a) to a maximum of +7.8%, obtained for the varying

illumination (Fig. 5b), with respect to the CRFH only, using

the modified OaA approach. The increase in performance

grows with the difficulty of the task and is on average a +2%

for stable illumination, +5% for varying illumination and

+6% for recognition across platforms. A second comment is

that G-DAS with our modified OaA consistently performs

better than the original DAS, for all the three scenarios;

this confirms the effectiveness of this confidence measure

for visual recognition. An important property of the DAS

algorithm, which is also preserved by G-DAS, is the ability

to classify correctly images even when each of the single

cues used gives misleading information. Fig. 6 shows an

example of this behavior: the test image is misclassified as

’one-person office’ by using CRFH, and as ’corridor’ by

using SIFT; by combining these two cues in G-DAS, the

image is correctly classified as ’two-persons office’. We can

then conclude that G-DAS is an effective method for cue

integration for visual place recognition in realistic settings.

VI. CONFIDENCE-BASED CUE INTEGRATION

As motivated in Section V, a desirable behaviour of a

system aware of its own ignorance would be to search for

additional sources of information in order to achieve higher

confidence. We showed that G-DAS can be effectively used

for visual cue integration; however, it requires that both cues

Fig. 6. An example of test image misclassified by using a single cue,
but classified correctly by using G-DAS with modified OaA multi-class
extension (see Fig. 3 for an explanation of the bar charts).

are available and used for classification even in cases when

one cue is sufficient to obtain correct result, and the addi-

tional computational effort could be avoided. In this section,

we present and experimentally evaluate a strategy allowing

to greatly decrease this computational load and still maintain

the high level of accuracy provided by multiple cues. We

propose to employ G-DAS for cue accumulation and extract

the additional information only in cases when the confidence

of a decision based on the cues available is not satisfactory.

A. The method

It is reasonable to assume that the confidence estimation

methods presented in Section IV can be used as efficient

filters, filtering out the images for which G-DAS would be

either not required or not effective. First, the experiments

reported in Section IV proved that the confidence estimation

methods are able to eliminate the incorrect decisions. Second,

both methods and the G-DAS framework operate on the

distances calculated in the high dimensional feature space,

and G-DAS is expected to be most effective in cases of low

confidence (see the example in Fig. 6).

Suppose again that we are able to extract P different cues

{Tp(I)}P
p=1 from the input image I . Let us assume that the

cues are ordered. The order of the cues can be motivated

by the computational cost associated with feature extraction

and classification. To obtain the final decision we use the

following algorithm:

1) Set k = 1.

2) Extract features for the kth cue (Tk(I)).
3) Perform classification for the kth cue and obtain the

scores V k
h (Tk(I)) for all hyperplanes.

4) Perform cue integration for the cues 1 . . . k according

to Eq. 4 and obtain the accumulative scores V Σk
h (I).

5) Find the best hypothesis j∗k and confidence estimates

Ck(I) based on the scores V Σk
h (I).

6) If the confidence is below the threshold (Ck(I) < τ )

and k < P , increment k and go to step 2. Otherwise,

use the obtained hypothesis as final decision (j∗ = j∗k).

The threshold τ is a parameter of the algorithm and allows

to trade the accuracy for computational cost.

B. Experimental Evaluation

We performed an experimental evaluation of the

confidence-based cue integration strategy for the global
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Fig. 7. Dependencies between the average classification rates obtained for the confidence-based cue integration strategy with CRFH used as a primary
cue and the percentage of test samples for which both cues were used. The horizontal lines indicate the performance of CRFH only and G-DAS.

(CRFH) and local (SIFT) visual cues. We tested solutions

based on both CRFH and SIFT used as a primary cue.

The experiments showed the advantage of the CRFH-based

solution in terms of the number of images for which both

cues had to be used to obtain accuracy identical with the one

offered by G-DAS. Moreover, the local features are much

more computationally expensive mainly due to matching

process performed during classification.

In this paper, we report results for CRFH used as a primary

cue. The plots presented in Fig. 7 clearly show that in

order to obtain accuracy comparable with the one delivered

by G-DAS used for all test images, it is necessary to use

the second cue only in approximately 40% of cases. This

is for the modified OaA multi-class extension, which once

more outperformed the other confidence estimation methods.

As already mentioned, in our case, feature extraction and

classification was more costly for the local cue. As a result,

the strategy presented here allowed to reduce the amount

of computations by about 55% in average compared to G-

DAS. Since the dependency between the number of images

for which the second cue is used and the classification rate

is highly non-linear, it can be advantageous to trade the

accuracy for computational cost; e.g. to achieve gain of

70% of the one provided by G-DAS, the second cue should

be used in 7% (stable illumination conditions, Fig. 7a) to

22% (varying illumination conditions, Fig. 7b) of cases only.

Concluding, the power of multiple cues can be achieved

for much lower computational cost, if information about the

classifier’s confidence is exploited.

VII. SUMMARY AND CONCLUSION

This paper presented an effective approach to the prob-

lems of confidence estimation and cue integration for large-

margin discriminative classifiers. We showed by extensive

experiments, on problems of different complexity from the

domain of visual place recognition, that exploiting available

confidence information encoded in the classifier’s outputs

can greatly increase reliability of a system. When combined

with a cue integration scheme, this results in a significantly

increased performance for a relatively low computational

cost. We used SVMs and combined local and global cues

extracted from the same visual stimuli; all the presented

methods could easily be extended to other large margin

classifiers and to multiple modalities.

The potential of this approach can be used in many ways.

First, we plan to incorporate confidence information to an

incremental learning framework and use it to trigger the

learning procedure. Second, we want to create an active sys-

tem able to autonomously search for cues in order to obtain

confident result. Finally, we will test our method in a multi-

modal system and for integration of a larger number of cues.
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