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a b s t r a c t

An important competence for a mobile robot system is the ability to localize and perform context
interpretation. This is required to perform basic navigation and to facilitate local specific services. Recent
advances in vision havemade thismodality a viable alternative to the traditional range sensors, and visual
place recognition algorithms emerged as a useful andwidely applied tool for obtaining information about
robot’s position. Several place recognition methods have been proposed using vision alone or combined
with sonar and/or laser. This research calls for standard benchmark datasets for development, evaluation
and comparison of solutions. To this end, this paper presents two carefully designed and annotated image
databases augmented with an experimental procedure and extensive baseline evaluation. The databases
were gathered in an uncontrolled indoor office environment using two mobile robots and a standard
camera. The acquisition spanned across a time range of several months and different illumination and
weather conditions. Thus, the databases are very well suited for evaluating the robustness of algorithms
with respect to a broad range of variations, often occurring in real-world settings. We thoroughly
assessed the databaseswith a purely appearance-based place recognitionmethod based on support vector
machines and two types of rich visual features (global and local).

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A fundamental competence for an autonomous agent is to know
its position in the world. Providing mobile robots with abilities
to build an internal representation of space and obtain robust
information about their location therein can be considered as one
of the most urgent problems. The topic is vastly researched. This
resulted, over the years, in a broad range of approaches spanning
from purely metric [1–3] to topological [4–6] and hybrid [7,8]. As
robots break down the fences and start to interact with people [9]
and operate in large-scale environments [6,5], topological models
are gaining popularity for augmenting or replacing purely metric
space representations. In particular, the research on topological
mapping has pushed methods for place recognition. Scalability,
loop closing and the kidnapped robot problem have been at the
forefront of the issues to be addressed.

I A preliminary version of the experimental evaluation reported in this work
was presented in: A. Pronobis, B. Caputo, P. Jensfelt, and H.I. Christensen. A
discriminative approach to robust visual place recognition, in: Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS’06,
Beijing, China, October 2006.
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E-mail addresses: pronobis@csc.kth.se (A. Pronobis), bcaputo@idiap.ch

(B. Caputo), patric@csc.kth.se (P. Jensfelt), hic@cc.gatech.edu (H.I. Christensen).

Traditionally, sonar and/or laser have been the sensory modal-
ities of choice for place recognition and topological localization
[10,11]. The assumption that the world can be represented in
terms of two-dimensional geometrical information allowed for
many practical implementations. Yet, the inability to capturemany
aspects of complex realistic environments leads to the problem of
perceptual aliasing [12] and greatly limits the usefulness of purely
geometrical methods. Recent advances in vision have made this
modality emerge as a natural and viable solution. Vision provides
richer sensory input allowing for better discrimination. It opens
new possibilities for building cognitive systems, actively relying
on the semantic context. Not unimportant is the cost effective-
ness, portability and popularity of visual sensors. As a result, this
research line is attracting more and more attention, and several
methods have been proposed using vision alone [13–15,6], or com-
bined with more traditional range sensors [16–18].
In spite of large progress, vision-based localization still

represents a major challenge. First of all, visual information tends
to be noisy and difficult to interpret. The visual appearance of
places varies in time because of illumination changes (day and
night, artificial light on and off) and because of human activities
(furniture moved around, objects being taken out of drawers, and
so on). Thus, the solutions must be highly robust, provide good
generalization abilities and in general be adaptive. Additionally,
the application puts strong constraints on the computational
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complexity, and the increased resolution and dimensionality of the
visual data still constitute a problem.
The fact that so many different parameters influence the

accuracy of a vision-based localization system is another challenge
itself, especially burdensome at the design stage. As the results
depend greatly on the choice of training and test input data, which
are unstable over time, it is hard to measure the influence of the
different parameters on the overall performance of the system. For
the same reason, it becomes nearly impossible to compare fairly
solutions which are usually evaluated in different environments,
under different conditions and with different assumptions. This is
amajor obstacle slowing downprogress in the field. There is a need
for standardized benchmarks and databases which would allow
for fair comparisons, simplify the experimental process and boost
development of new solutions.
Databases are heavily exploited in the computer vision commu-

nity, especially for object recognition and categorization [19–21].
As the community acknowledges the need for benchmarking, a
lot of attention is directed towards designing new datasets, re-
flecting the increasing capabilities of visual algorithms [22]. Also
in robotics, research on simultaneous localization and mapping
(SLAM) makes use of several publicly available datasets [23,24].
Still, no database emerged as a standard benchmark for visual place
recognition applied to robot localization.
This paper aims at filling this gap and presents a benchmark

consisting of two different image databases gathered in the
same indoor environment. The databases are augmented with an
experimental procedure as well as extensive baseline evaluation.
The datasets were carefully designed and later annotated. Three
different imaging devices were used for acquisition (two mobile
robot platforms and a standard camera), resulting in data
of different characteristics and quality. In order to create a
realistic and challenging test bed, the acquisition process was
performed in an uncontrolled typical office environment, under
various illumination andweather conditions (sunny, cloudy, night)
and over a significant span of time. All of these make the
databases verywell suited for evaluating robustness of visual place
recognition algorithms, applied to the problemof robot topological
localization, in the presence of different types of variations often
occurring in real-world indoor settings.
An important component when providing the community with

a new collection of data is to provide a baseline evaluation that il-
lustrates the nature of the dataset (see Section 5.1 for explanation).
We thoroughly assessed the databases with a purely appearance-
based place recognition method. The method uses two types of
image descriptors, local and global, in order to extract rich vi-
sual information. Both descriptors have shown remarkable per-
formances, coupled with computational efficiency on challenging
object recognition scenarios [25,26]. The classification step is per-
formed using support vectormachines (SVMs) [27] and specialized
kernels are used for each descriptor. Results show that the method
is able to recognize places with high precision and robustness un-
der varying illumination conditions, evenwhen training on images
from one camera device and testing on another.
The rest of the paper is organized as follows: after a review

of the related literature (Section 2), we discuss the problem and
challenges we addressed with the benchmark (Section 3). Then,
Section 4 gives a detailed description of the data acquisition
process and scenario and presents the acquisition results. Finally,
the algorithm used for the baseline evaluation as well as the
experimental procedure are described in Section 5, and the
experimental results are given in Section 6. The paper concludes
with a summary (Section 7).

2. Related work

Place recognition and topological localization are vastly re-
searched topics in the robotic community,where vision and laser

range sensors are usually the privilegedmodalities. Although laser-
based solutions have proven to be successful for certain tasks [11],
their limitations inspired many researchers to turn towards vi-
sion which nowadays becomes tractable in real-time applications.
The availablemethods employ either perspective [13,28,29] or om-
nidirectional cameras [30,31,4,32–35]. The main differences be-
tween the approaches relate to the way the scene is perceived and
thus the method used to extract characteristic features from the
scene. Landmark-based techniques make use of either artificial or
natural landmarks in order to extract information about a place.
Mata et al. [36] proposed a system able to interpret information
signs through its ability to read the text and recognize icons. Visu-
ally distinctive image regions were also used as landmarks [15].
Other solutions employed mainly local image features such as
SIFT [25,33,14], SURF [37,34,35], also using the bag-of-words ap-
proach [29,38,6], or representation based on information extracted
from local patches using Kernel PCA [28]. Global features are also
commonly used for place recognition. Torralba et al. [39,13,40]
suggested to use a representation called the ‘‘gist’’ of the scene,
which is a vector of principal components of outputs of a bank of
spatially organized filters applied to the image. Other approaches
use color histograms [4,31], gradient orientation histograms [41],
eigenspace representation of images [30], or Fourier coefficients of
low frequency image components [32]. Recently, several authors
observed that robustness and efficiency of the recognition sys-
tem can be improved by combining information provided by both
types of visual cues (global and local) [14,15,42]. Although vision-
based localization methods are now commonly applied, it remains
extremely difficult to compare the different approaches, as the
evaluations presented by the authors usually follow different pro-
cedures and are performed on different sets of visual data.
There are a number of heavily used standard databases in

robotics and computer vision. In robotics, these databases are used
mainly for testing algorithms for SLAM [23,24] and mostly contain
odometry and range sensor data. In the case of the computer
vision community, the effort concentrated on creating standard
benchmarks for such problems as object [19,20,22], action [43],
scene [21], or texture recognition and categorization [44]. TheMIT-
CSAIL Database of Objects and Scenes [21] is a notable exception as
it provides several image sequences acquired in both indoor and
outdoor environments and was used to evaluate the performance
of a visual place recognition system.
This paper makes an important contribution by providing

annotated data from visual and laser range sensors together with
an experimental procedure that can be followed in order to
evaluate place recognition and localization systems. In contrast
to the previously available benchmarking solutions, the databases
contain several sets of images and image sequences acquired
in the same environment under various conditions and over a
significant span of time. This makes them perfect for evaluating
robustness of the algorithms under dynamic variations that often
occur in realistic settings. The introduction of standard benchmark
databases has made an impact on the research on such problems
as object categorization or SLAM, allowing different methods to be
more fairly compared in the same scenario. The authors hope that
the benchmark proposed in this paper will similarly influence the
research on visual place recognition in the context of mobile robot
localization.

3. Design strategy

This section defines and characterizes the problem that we
address with the benchmark (Section 3.1) and analyzes the
difficulties and open challenges in visual place recognition that
have to be considered in a realistic scenario (Section 3.2).



Author's Personal Copy

A. Pronobis et al. / Robotics and Autonomous Systems 58 (2010) 81–96 83

3.1. Problem statement

Let us begin with a brief definition of a place and the place
recognition problem that we will use throughout this paper. A
place can be regarded as a usually nameable segment of a real-
world environment distinguished due to different functionalities,
appearances or artificial boundaries. In view of this definition, the
place recognition or identification problem can be characterized
as follows. Given a set of training sensory data, captured in each
of the considered places, build models of the places reflecting
their inherent properties. Next, when presented with new test
data, unavailable during training, acquired in one of the same
places, identify the place where the acquisition was performed
(e.g. Barbara’s office) based on the knowledge encoded in the
models. This is different from the problem of place categorization
where the task is to classify test data captured in a novel place
as belonging to one of the place categories (e.g. an office). As
the partition of space into different places can be based on
several criteria, here we consider a supervised scenario where
the algorithm has to distinguish between five areas of different
functionalities, selected by a teacher.
This benchmark is designed to test the performance of a visual

place recognition system on images acquired within an indoor
office environment. As the primary scenario, we consider the case
where a place recognition system is used to provide amobile robot
with information about its location. For this reason, part of the
data presented in this paper was acquired using cameras mounted
on mobile robot platforms. While designing the benchmark, we
concentrated on testing the ability of a visual recognition system to
identify a place based on one image only. This makes the problem
harder, but also makes it possible to perform global localization
where no prior knowledge about the position is available (e.g. in
the case of the kidnapped robot problem). Spatial or temporal
filtering can be used together with the presented methods to
enhance performance.
We concentrate on indoor environments since in the considered

scenario, they play a crucial role, being typical spaces for
the interaction between humans and service robots or robotic
assistants [9]. At the same time, office environments, just like
home environments, constitute an important class of indoor
spaces for robotic companions. In this benchmark, our aim is
to provide datasets and experimental procedures that will allow
for evaluating robustness of place recognition systems based on
different types of visual cues to typical variations that occur in
an indoor environment for the considered scenario. These include
illumination changes, variations introduced by human activity and
viewpoint changes. As a consequence, instead of providingdatasets
spanning over a very large portion of space, we provide image
sequences acquired over a time span of several months, under
various illumination conditions and using different devices. The
proposed evaluation framework should allow for concluding that
an algorithm robust to the variations captured in the benchmark
data will be robust to similar types of variations within other
indoor office environments.
The benchmark is designed for evaluating vision-based meth-

ods.We choose vision as sensorymodality for several reasons. First,
the visual sensor is very rich and, although also very noisy, pro-
vides great descriptive capabilities. This is crucial in indoor envi-
ronments where other sensors, such as a laser range finder, suffer
from the problem of perceptual aliasing (different places look the
same [12]). Furthermore, the visual appearance of places encodes
information about their semantics, which plays a major role in en-
abling systems to interact with the environment. Finally, in the era
of cheap portable devices equipped with digital cameras, it is also
one of the most affordable and commonly available solutions.

3.2. Challenges

Recognizing indoor places based on their visual appearance
is a particularly challenging task. First of all, in the case of
indoor environments, there is no obvious spatial layout that
once observed could be used to distinguish between different
places. Moreover, viewpoint variations cause the visual sensor
to capture different aspects of the same place, which often can
only be learned if enough training data are provided. At the
same time, real-world environments are usually dynamic and their
appearance changes over time. The visual recognition systemmust
be robust to variations introduced by changing illumination as
well as human activity. For a visual sensor, the same room might
look different during the day, during sunny weather, under direct
natural illumination, and at night with only artificial light turned
on. Moreover, if the environment is being used, the fact that
people appear in the images, objects are being moved or furniture
relocated may greatly influence the performance of the system.
All these issues were taken into consideration while designing this
benchmark in order to create a realistic test bed.

4. Data acquisition

Based on the analysis of the problem presented in the previous
section, we carefully designed and acquired two databases
comprising images captured in the same indoor environment, but
using different devices: the INDECS (INDoor Environment under
Changing conditionS) database [45] and the IDOL (Image Database
for rObot Localization) database [46]. This section describes the
resulting data acquisition procedure. In the case of INDECS, we
acquired images of the environment from a fixed set of points
using a standard camera mounted on a tripod. The resolution of
the images is high; this makes this database suitable for context-
based object recognition. The IDOL database, instead, consists
of image sequences recorded using two mobile robot platforms
equipped with perspective cameras, and thus is well suited for
experiments with robot localization. All three devices are shown
in Fig. 1. The databases represent a different approach to the
problem and can be used to analyze different properties of a place
recognition system. The acquisition was performed under several
different illumination settings and over a significant span of time.
Both databases are publicly available and can be downloaded from
http://www.csc.kth.se/~pronobis.
The rest of the section is organized as follows: Section 4.1

presents the acquisition scenario, as to say the environment
where both databases were acquired. Then, Section 4.2 provides a
description of the INDECS database, and Section 4.3 gives detailed
information on the robot platforms and IDOL. Finally, we perform
an analysis of the obtained data in Section 4.4.

4.1. Acquisition scenario

The acquisition was conducted within a five room subsection
of a larger office environment of the Computer Vision and Active
Perception Laboratory at the Royal Institute of Technology in
Stockholm, Sweden. Each of the five rooms represents a different
type of functional area: a one-person office, a two-person office,
a kitchen, a corridor and a printer area (in fact a continuation
of the corridor). The function that a room fulfills determines the
furniture, objects and activity that is likely to be found there. Places
like the corridor, the printer area and the kitchen can be regarded
as public which implies that various people may be present. On
the other hand, offices were imaged usually empty or with their
owners at work. In the corridor and the printer area, furniture
is mostly fixed and objects are less moveable. As a result, these
areas were less susceptible to variations caused by human activity
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(a) Minnie. (b) Camera. (c) Dumbo.

Fig. 1. Devices employed in the acquisition: the two mobile robot platforms ‘‘Minnie’’ (a) and ‘‘Dumbo’’ (c) as well as the standard camera on a tripod (b).

Fig. 2. A general map of the part of the office environment that was imaged during acquisition of the INDECS and IDOL databases. Boundaries between the five rooms
were marked with dashed lines. Dotted lines were used to draw an approximate outline of furniture. Moreover, the location of points at which the tripod was placed while
recording the INDECS database were marked. The pictures are taken from the database and show the interiors of the five rooms. The small arrows were used to indicate the
viewpoints at which the presented pictures were taken.

in comparison with the kitchen or the offices, where furniture
(e.g. chairs) is relocated more often and objects (e.g. cups, laptops,
etc.) are frequently moved.
The rooms are physically separated by sliding glass doors.

The printer area is an exception and was treated as a separate
place only due to its different functionality (the border between
the corridor and the printer area was arbitrarily defined). The
laboratory contains additional rooms which were not taken into
considerationwhile creating thedatabase. However, because of the
glass door, other parts of the environment can still be visible in the
images. Examples of pictures showing the interior of each room as
well as a general map of the environment are presented in Fig. 2.

As already mentioned, the visual data were acquired with
three different devices. In each case, the appearance of the rooms
was captured under three different illumination and weather
conditions: in cloudy weather (natural and artificial light), in
sunny weather (direct natural light dominates) and at night (only
artificial light). Since all the rooms have windows, the influence
of natural illumination was significant. The image acquisition was
spread over a period of time of 3 months, for the INDECS database,
and over 2 weeks for the IDOL database. Additionally, the INDECS
databasewas acquired 10months before the experiments with the
robots. In this way, we captured the visual variability that occurs
in realistic environments due to varying illumination and natural
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(a) Corridor. (b) Kitchen.

(c) Two-person office.

Fig. 3. Example pictures taken from the INDECS and IDOL databases acquired with the camera and the two robot platforms under various illumination conditions. The
pictures show the influence of illumination (especially (a) and (c)) and illustrate the differences between images acquired in a cluttered environment using different devices
(b). Additional variability caused by natural activities in the rooms is also apparent (presence of people, relocated objects and furniture).

activities in the rooms. Fig. 3 presents a comparison of images
taken under different illumination conditions and using various
devices.

4.2. The INDECS database

The INDECS database consists of pictures of the environment
described above, gathered from different viewpoints using a
standard cameramounted on a tripod.Wemarked several points in
each room (approximately one meter apart) where we positioned
the camera for each acquisition. The rough positions of all points
are shown on the map in Fig. 2. The number of points changed
with the dimension of the room, from aminimum of 9 for the one-
person office to a maximum of 32 for the corridor. At each location
we acquired 12 images, one every 30◦, even when the tripod
was located very close to a wall or furniture. Examples of images
taken at the same location and from several angles are presented
in Fig. 4. Images were acquired using an Olympus C-3030ZOOM
digital camera and the height of the tripod was constant and equal
to 76 cm. All images in the INDECS database were acquired with a

resolution of 1024× 768 pixels, the auto-exposure mode enabled,
flash disabled, the zoomset towide-anglemode and the auto-focus
enabled. In this paper, the INDECS images were subsampled to
512× 386 before being used in the experiments. The images were
labeled according to the position of the pointwhere the acquisition
happened. As a consequence, images taken, for example, from the
corridor but looking into a room are labeled as the corridor. The
images were acquired across a time span of 3 months and under
varying illumination conditions (sunny, cloudy andnight). For each
illumination setting, we captured one full set of images. In total,
there are 3264 images (324 for the one-person office, 492 for the
two-person office, 648 each for the kitchen and the printer area
and 1152 for the corridor) in the INDECS database.

4.3. The IDOL database

The IDOL database was acquired using cameras on two mobile
robot platforms. Both robots, the PeopleBot Minnie and the
PowerBot Dumbo, were equipped with a pan-tilt-zoom Canon VC-
C4 camera, a SICK laser range finder andwheel encoders. However,
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Fig. 4. Pictures from the INDECS database taken from several angles at the same location in the two-person office.

as it can be seen from Fig. 1, the camerasweremounted at different
heights. OnMinnie, the camerawas 98 cmabove the floor, whereas
on Dumbo it was 36 cm. Furthermore, the camera on Dumbo
was tilted up approximately 13◦, to reduce the amount of floor
captured in the images. The selected positions of the cameras result
in different characteristics of the environment being captured in
the images. Due to the low placement of the camera on Dumbo,
the captured images are less susceptible to variations introduced
by human activity in the environment and direct sunlight coming
through the windows. At the same time, the camera on Minnie
was able to capture the appearance of objects located on the desks
and provide more information about the semantics of a place. All
images were acquired with a resolution of 320 × 240 pixels, with
the zoom fixed to wide angle (roughly 45◦ horizontal and 35◦
vertical field of view), and the auto-exposure and the auto-focus
modes enabled.
We followed the same procedure during image acquisitionwith

both robot platforms. Each robot was manually driven (average
speed around 0.3–0.35 m/s) through each of the five rooms while
continuously acquiring images at the rate of five frames per second.
The path was roughly planned so that the robots could capture the
visual appearance of all the rooms. For the different illumination
conditions (sunny, cloudy, night), the acquisition procedure was
performed twice, resulting in two image sequences acquired one
after another giving a total of six sequences for each robot platform
across a span of over 2 weeks. Each of the image sequences in the
database is accompanied by laser scans and odometry data. Due
to the manual control, the path of the robot was slightly different
for every sequence. Examples of paths are presented in Figs. 7–9.
Each image sequence consists of 1000–1300 frames. To automate
the process of labeling the images for the supervision, the robot
pose was estimated during the acquisition process using a laser-
based localization method [47]. Again, each image was labeled as
belonging to one of the five rooms based on the position from
where it was taken.

4.4. Acquisition results

Examples illustrating the properties of images that can be
found in both databases are given in Fig. 3. First of all, we can
observe a significant influence of illumination. The appearance
of the rooms is affected by highlights, shadows and reflections,
especially in the case of strong direct sunlight. Moreover, the fact
that the auto-exposure mode was on, resulted in a lower contrast
in the informative parts of images, when the camera was directed
towards a bright window in sunny weather. At the same time,
the conditions observed during cloudy weather were much more
stable and could be seen as intermediate between those during
sunny weather and at night. A second important type of variability
was introduced by the human presence and activities. In some
cases, people partially occluded the view. Furthermore, the fact
that the environment was observed for some time allowed to
capture different configurations of furniture or objects placed on
the desks or kitchen tables. The fact that objects could be observed
in the images makes it possible to use the database in more
complex scenarios where place recognition and object recognition
complement each other, e.g. by contextual priming [13,40]
(especially in the case of the high resolution images in the INDECS

database). Finally, we can compare the images acquired using the
three different devices. We see that each device captures different
aspects of the same environment, mainly due to the variations
in viewpoints caused by the different heights of the cameras.
The influence of viewpoint is substantial, especially for cluttered
scenes, when the camera was close to the furniture.
For both databases, the environment was observed from

multiple viewpoints. For INDECS, the viewpoints are stable over
different weather conditions, but the appearance of the rooms is
almost fully captured as the images were taken in 12 directions.
In the case of IDOL, we observe changes in the viewpoint due
to manual control of the robot, but since the robot was driven
in a particular direction, parts of the environment might not be
observed. As previously mentioned, labeling was based on the
position of the camera rather than contents of the images, and
acquisition was performed even close to walls or furniture. As a
result, both databases contain difficult cases, where the contents
of the image is either non-informative or is weakly associatedwith
the label.
To summarize, despite the fact that the acquisition was

performed in a relatively small environment (consisting of five
different rooms), there are several types of variability captured
which pose a challenge to a recognition system. These range
from different acquisition conditions to large viewpoint variations
across the devices. Moreover, the acquisition procedure was
carefully designed, and each single dataset offers different, but
usually well-specified, type of variability. As a result, the influence
of different factors on the accuracy of the system can be isolated
and preciselymeasured. The relatively small environment does not
allow for concluding that a system evaluated on the data will offer
similar absolute performance in a different environment. However,
since the data capture the influence of a large amount of variations
on the appearance of a standard office environment, we can expect
that an algorithm robust to those variations will be robust to
similar types of variationswithin other indoor office environments.

5. Baseline evaluation

This section presents the visual place recognition system with
which we assessed the INDECS and IDOL databases. We applied a
fully supervised, appearance-based method. It assumes that each
room is represented, during training, by a collection of images
capturing its visual appearance under different viewpoints, at
a given time and illumination. During testing, the algorithm is
shown images of the same rooms, acquired under roughly similar
viewpoints but possibly under different illumination conditions
and after some time (where the time range goes from some
minutes to several months). The goal is to recognize correctly
each single image seen by the system. The method is based on a
large-margin discriminative classifier, namely SVMs [27] and two
different image representations. We use global and local image
features, and we combine them with SVMs through specialized
kernels. As a result, the recognition process always consists of two
steps: feature extraction and classification.
In the rest of this section, we first motivate the decision to

provide a baseline evaluation with the presented datasets (Sec-
tion 5.1). Then, we describe the employed image representations
(Section 5.2) and the classifier (Section 5.3). Finally, we explain the
procedure followed in our experiments (Section 5.4).
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5.1. Motivation

An important component when providing the community with
a new collection of data is to give a quantitative measure of
how hard the database is. Benchmark databases have become
a very popular tool in several research communities during the
last years [19,43] because they provide at the same time an
instrument to develop new state-of-the-art algorithms, and a way
to call attention on a research topic. When a database is used
for developing a new algorithm, it is extremely useful to be able
to compare the obtained results with those obtained by some
other established technique: this permits to understand what are
the advantages of the new method over existing approaches. At
the same time, presenting a new corpus together with a baseline
evaluation helps the community to quickly identify the open
challenges of the problem and therefore concentrate on their
research efforts. While often the baseline evaluation consists of
a newly developed method, very often it is a well known, off the
shelf solution: again, the goal of a baseline evaluation is not to
present a new theory, but to provide a quantitative evaluation of
how challenging the new dataset is, coupled with a well-defined
experimental protocol.
The computer vision community has been traditionally very

open to the introduction of publicly available databases [19,43] and
associated benchmark challenges [20]. These two tools, combined
together, have heavily contributed to set the research agenda of
the last years. The robotics community has recently started to
acknowledge the value and power of such collections, as it is
witnessed by several successful benchmark evaluations [48,49].

5.2. Feature extraction

The feature extraction step aims at providing a representation
of the input data that minimize the within-class variability
while at the same time maximizing the between-class variability.
Additionally, this representation is usuallymore compact than raw
input data and therefore allows us to reduce the computational
load imposed by the classification process. Features can be derived
from thewhole image (global features) or can be computed locally,
based on its salient parts (local features).
As environments can be described differently, depending on the

considered scale, scale–space theory appears as a suitable frame-
work for deriving effective representations here. Following this in-
tuition, we chose to use two scale–space theory-based features,
one global (composed receptive field histograms, CRFH [26]) and
one local (scale invariant feature transform, SIFT [25]). The rest of
the section describes briefly the two approaches.

5.2.1. Global features: Compose receptive field histograms
CRFH is a multi-dimensional statistical representation of the

occurrence of responses of several image descriptors applied to the
image. This idea is illustrated in Fig. 5. Each dimension corresponds
to one descriptor and the cells of the histogram count the pixels
sharing similar responses of all descriptors. This approach allows
us to capture various properties of the image as well as relations
that occur between them.
Multi-dimensional histograms can be extremely memory

consuming and computationally expensive if the number of
dimensions grows. For example, a 9-dimensional histogram with
16 quantization levels per dimension contains approximately 7×
1010 cells. In [26], Linde and Lindeberg suggest to exploit the fact
thatmost of the cells are usually empty and to store only those that
are non-zero. The histogram can be stored in a sparse form as an
array [(c1, v1), (c2, v2), . . . , (cn, vn)], where ci denotes the index
of the cell containing the non-zero value vi. This representation
allows us not only to reduce the amount of memory required,

but also to perform operations such as histogram accumulation
and comparison efficiently. For our experiments, we built multi-
dimensional histograms using combinations of several image
descriptors, applied to the scale–space representation at various
scales, namely first- and second-order Gaussian derivatives,
gradientmagnitude, Laplacian and Hessian determinant applied to
both intensity and color channels.

5.2.2. Local features: Scale invariant feature transform
The idea behind local features is to represent the appearance

of an image only around a set of characteristic points known as
the interest points. The similarity between two images is then
measured by solving the correspondence problem. Local features
are known to be robust to occlusions, as the absence of some
interest points does not affect the features extracted from other
local patches.
The process of local feature extraction consists of two stages:

interest point detection and description. The interest point detector
identifies a set of characteristic points in the image that could be
re-detected even in spite of various transformations (e.g. rotation
and scaling) and variations under illumination conditions. The role
of the descriptor is to extract robust features from the local patches
located at the detected points.
In this paper, we used the scale, rotation and translation

invariant Harris–Laplace detector [50] and the commonly used
SIFT descriptor [25]. Comparisons of local descriptors and interest
point detectors, presented in [51], show that both algorithms are
highly reliable.Moreover, the SIFT descriptor has shown toperform
well for object classification ([52]) and mobile robot localization
([33,29]).

5.3. Classification: Support vector machines

The choice of the classifier is the second key ingredient for
an effective visual place recognition system. In this paper, we
chose SVMsbased on their state-of-the-art performances in several
visual recognitiondomains [53–55]. The rest of this section reviews
briefly the theory behind the algorithm and describes our choices
for the kernel function. We refer the readers to [27] for a thorough
introduction to the subject.

5.3.1. Linear SVM
Consider the problem of separating a set of training data

(x1, y1), . . . (xm, ym) into two classes, where xi ∈ RN is a feature
vector and yi ∈ {−1,+1} its class label. Assuming that the two
classes can be separated by a hyperplanew ·x+b = 0, the optimal
hyperplane will be the one with maximum distance to the closest
points in the training set. The optimal values for w and b can be
found by solving a constrainedminimization problem via Lagrange
multipliers, resulting in a classification function

f (x) = sgn

(
m∑
i=1

αiyixi · x+ b

)
, (1)

where αi and b can be found efficiently using the sequential
minimal optimization (SMO, [56]) algorithm. The xi with αi 6= 0
are called support vectors.

5.3.2. Nonlinear SVM and kernel functions
To obtain a nonlinear classifier, one maps the data from the

input space RN to a higher-dimensional feature space H by x →
Φ(x) ∈ H , such that themapped data points of the two classes are
linearly separable in the feature space. Assuming that there exists
a kernel function K such that K(x, y) = Φ(x) · Φ(y), a nonlinear
SVM can be constructed by replacing the inner product xi ·x by the
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Fig. 5. The process of generating multi-dimensional receptive field histograms shown in the example of the first-order derivatives computed at the same scale t = 4 from
the illumination channel.

kernel function K(xi, x) in Eq. (1). This corresponds to constructing
an optimal separating hyperplane in the feature space.
The choice of the kernel function is a key ingredient for the good

performance of SVMs; based on results reported in the literature,
we chose in this paper theχ2 kernel [57] for global features and the
match kernel [58] for local features.
The χ2 kernel belongs to the family of exponential kernels, and

is given by

K(x, y) = exp
{
−γχ2(x, y)

}
, χ2(x, y) =

∑
i

‖xi − yi‖2

‖xi + yi‖
. (2)

The match kernel is given by [58]

K(Lh, Lk) =
1
nh

nh∑
jh=1

max
jk=1,...,nk

{
Kl(L

jh
h , L

jk
k )
}
, (3)

where Lh and Lk are local feature sets and L
jh
h and L

jk
k are two single

local features. The sum is always calculated over the smaller set
of local features and only some fixed amount of best matches is
considered in order to exclude outliers. The local feature similarity
kernel Kl can be any Mercer kernel. We used the RBF kernel based
on the Euclidean distance for the SIFT features:

Kl(L
jh
h , L

jk
k ) = exp

{
−γ ‖L jhh − L jkk ‖

2
}
. (4)

The match kernel was introduced in [58], and despite the claim
in the paper, it is not a Mercer kernel [59]. Still, it can be shown
that it statistically approximates a Mercer kernel in a way that
makes it a suitable kernel for visual applications [59]. On the
basis of this finding, and of its reported effectiveness for object
categorization [53], we will use it here.

5.3.3. Multi-class SVM
The extension of SVM to multi-class problems can be done

mainly in two ways:

• One-vs-all strategy. If M is the number of classes, M SVMs
are trained, each separating a single class from all remaining
classes. The decision is then based on the distance of the
classified sample to each hyperplane and the final output is the
class corresponding to the hyperplane for which the distance is
largest.
• One-vs-one strategy. In this case, M(M − 1)/2 two-class
machines are trained for each pair of classes. The final decision
can then be taken in different ways, based on theM(M − 1)/2
outputs. A popular choice is to consider as output of each
classifier the class label and count votes for each class; the
test image is then assigned to the class that received more

votes. Another alternative is to use signed distance from the
hyperplane and sum distances for each class. Other solutions
based on the idea to arrange the pairwise classifiers in trees,
where each tree node represents an SVM, have also been
proposed [60,27].

In this paper, for efficiency reasons, we will use the pairwise
approach and the voting-based method, which we found to con-
stantly outperform the second variant in preliminary experiments
(the complexity of the SVM training algorithm is approximately
O(n2) and smaller training subsets of the binary classifiers make
the training procedure faster).

5.4. Experimental setup

We conducted four series of experiments in order to assess
thoroughly the INDECS and IDOL databases. For each series of
experiments, we evaluated the performance of both local and
global image representations. We divided the databases into
several subsets with respect to the illumination conditions that
prevailed during acquisition and the device employed. For the
INDECS database, we considered three image sets, one for each
illumination setting (cloudy, night, sunny). Since the IDOL database
consists of 12 image sequences, we used each full sequence as a
separate set. The systemwas always trained in a supervised fashion
on one, two or three datasets and tested on a fourth different
set. In order to test the limits of the underlying visual recognition
algorithm, we considered each image in the test set separately,
and as a final measure of performance, we used the percentage
of properly recognized images. As the number of acquired images
varied across rooms, the performance obtained for each place
was considered separately during the experiments. The final
classification rate was then computed as the average between all
the rooms’ results. This procedure ensures that performance on
each place contributes equally to the overall result, thus avoiding
the biases towards areas with many acquired images, such as the
corridor.
We started with a set of reference experiments, assessing

the data acquired under stable illumination. To achieve this, for
training and testing we used datasets acquired with the same
device and under similar conditions. Next, we increased the
difficulty of the problem and tested the robustness of the system to
changing illumination conditions aswell as to other variations that
may occur in real-world environments. Training and recognition
were in this case performed on datasets consisting of images
captured under different illumination settings and usually on
different days. The third set of experiments aimed to reveal
whether a model trained on an image set acquired with one device
can be useful for solving localization problem with a different
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device (and usually after some time). Finally, we checked whether
the robustness of the recognition algorithm can be increased by
providing additional training data capturing a wider spectrum
of visual variability. For that, we trained the system on two or
three image sets gathered under different illumination conditions.
Additionally, before carrying out the benchmarks described above,
we conducted a set of preliminary experiments in order to select
proper kernel functions and feature extractor parameters. All the
results obtained on these experiments are reported in Section 6.
For all experiments, we used our extended implementation of

SVMs based on the libsvm software [61]. We set the value of the
error penalty C to be equal to 100 and we determined the kernel
parameters via cross-validation.

6. Experimental results

This section reports the results of the baseline evaluation of the
INDECS and IDOL databases, according to the procedure described
in Section 5.4. We present the results in consecutive subsections,
and we give a brief summary in Section 6.5.
As described in Section 5.4, before performing the actual

benchmark,we ran a set of preliminary experiments on the INDECS
database, mainly using the global features (CRFH). We evaluated
the performance of the multi-dimensional histograms built from a
wide variety of combinations of global image descriptors listed in
Section 5.2 for several scale levels and numbers of histogram bins
per dimension. A comprehensive report on the obtained results can
be found in [62]. The experiments revealed that the most valuable
global features can be extracted using non-isotropic, derivative-
based descriptors, and that chromatic cues are more susceptible
to illumination variations. As a result, here we used composed
receptive field histograms of six dimensions with 28 bins per
dimension, computed from second-order normalized Gaussian
derivative filters, applied to the illumination channel at two scales.
The scale levels were different for the experiments with IDOL (σ =
1 and 4) and with INDECS (σ = 2 and 8). This was motivated
by the fact that the cameras mounted on the robots obtained
images of lower quality, and theirmovement introduced additional
distortions.

6.1. Stable illumination conditions

In order to evaluate our method under stable illumination
conditions, we trained and tested the system on pairs of image
sequences taken from the IDOL database acquired one after
the other using the same robot. As mentioned previously, we
analyzed the performance of both global (CRFH) and local (SIFT)
image descriptors. We did not use the INDECS database for these
experiments since only one set of data for each illumination
setting was available. Although the illumination conditions for
both training and test images were in this case very similar, the
algorithm had to tackle other kinds of variability such as viewpoint
changes (caused mainly by the manual control of the robot) and
the presence/absence of people. The results of the performed
experiments are presented in Fig. 6a, c for CRFH and in Fig. 6b, d for
SIFT. For each platform and type of illumination conditions used
for training, the first bar presents an average classification rate
over the two possible permutations of the image sequences in the
training and test sets.1 On average, the system classified properly
95.5% of the images acquired with Minnie and 97.3% of images
acquired with Dumbowhen global features were used. When local
features were applied, the average recognition rates were slightly
lower and equal to 94.4% and 94.9%, respectively.

1 Training on the first sequence, testing on the second sequence, and vice versa.

Detailed results for two experiments conducted on data
captured with each of the platforms are shown in Fig. 7. The
figure presents maps of the environment with plotted paths of the
robot during acquisition of the training and test sequences used
during each of the experiments. Moreover, the symbols used to
draw the test path indicate the results of recognition performed
using image acquired at each location. Each experiment started
at the point marked with the label ‘‘Start’’ and the arrows show
the direction of driving. The position of the furniture (plotted with
gray line) is approximate and sometimes slightly varied between
the experiments. It can be observed that the errors are usually
not a result of viewpoint variations (compare the training and
test paths in the kitchen, especially in Fig. 7c, d) and mostly
occur near the borders of the rooms. This can be explained by the
relatively narrow field of view of the cameras as well as the fact
that the images were not labeled according to their content but
to the position of the robot at the time of acquisition. Since these
experiments were conducted with the sequences captured under
similar conditions, we treat them as a reference for other results.

6.2. Varying illumination conditions

We also conducted a series of experiments aiming to test the
robustness of our method to changing illumination conditions
as well as to other variations caused by normal activities in the
rooms. The experiments were conducted on both INDECS and IDOL
databases. As with the previous experiments, the same device
was used for both training and testing. This time, however, the
selected training and testing datasets consisted of images acquired
under different illumination conditions and usually on different
days. Fig. 6a–d show average results of the experiments with
the image sequences from the IDOL database acquired with both
robots for each permutation of the illumination conditions used
for training and testing and both image representations (the two
middle bars for each figure and type of training conditions).
The presented classification rates obtained on the IDOL database
were always averaged over two experiments with different image
sequences. Fig. 6e,f gives corresponding results obtained on the
INDECS database.
We see that, in general, the system performs best when trained

on the images acquired in cloudy weather. The explanation for
this is straightforward: the illumination conditions on a cloudy day
can be seen as intermediate between those at night (only artificial
light) and on a sunny day (direct natural light dominates). In such
case, the average classification rate computed over two testing
illumination conditions (sunny and night) for both CRFH and SIFT
was equal to 84.6% and 87.3% for Dumbo, 74.5% and 75.1% for
Minnie, and 81.3% and 76.4% for the INDECS database. In general,
local features performed slightly better than the global features (in
average 71.9% vs. 72.6% forMinnie and 80.5% vs. 83.2% for Dumbo),
although it was usually not the case for the INDECS database
(in average 75.9% vs. 72.5%). Fig. 8 presents detailed results for
two example runs and both feature types. The errors occurred
mainly for the same reasons as in the previous experiments
and additionally in places heavily affected by the natural light,
e.g. when the camera was directed towards a bright window
or, in particular, large glass door in the printer area. In such
cases, the automatic exposure system with which all the cameras
were equipped caused the pictures to darken. Minnie was more
susceptible to this phenomenon due to the higher position of its
camera.
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(a) Training on global features (CRFH) extracted from images
acquired with it Minnie.

(b) Training on local features (SIFT ) extracted from images acquired
with it Minnie.

(c) Training on global features (CRFH) extracted from images
acquired with it Dumbo.

(d) Training on local features (SIFT ) extracted from images acquired
with it Dumbo.

(e) Training on global features (CRFH) extracted from images
acquired with the it Standard camera.

(f) Training on local features (SIFT) extracted from images acquired
with it Standard camera.

Fig. 6. Average results of the first three experiments on the IDOL and INDECS databases with both image representations. In each figure, the results are grouped according
to the type of illumination conditions under which the training images were acquired. The bottom axes indicate the platform and illumination conditions used for testing.
The uncertainties are given as one standard deviation.

6.3. Recognition across platforms

The third set of experimentswas designed to test the portability
of the acquired model across different platforms. For that purpose,
we trained and tested the system on image sets acquired under
similar illumination conditions using different devices. We started
with the experiments on image sequences from the IDOL database.
We trained the system on the images acquired using either
Minnie or Dumbo and tested with the images captured with the
other robot. We conducted the experiments for all illumination
conditions and both image representations. The main difference

between the platforms from the point of view of our experiments
lies in the height at which the cameras are mounted (98 cm for
Minnie and 36 cm for Dumbo). The results presented in Fig. 6a–d
indicate that our method was still able to classify correctly up to
about 70% of images for CRFH and 65% of images for SIFT. There
was no clear advantage of using one particular feature type. The
system performed better when trained on the images captured
with Minnie. This can be explained by the fact that the lower
mounted camera on Dumbo provided less diagnostic information.
It can also be observed from Fig. 9 that, in general, the additional
errors occurred when the robot was positioned close to the walls
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(a) Dumbo Night1⇒ Dumbo Night2 (CRFH). (b) Dumbo Night1⇒ Dumbo Night2 (SIFT).

(c) Minnie Cloudy2⇒Minnie Cloudy1 (CRFH). (d) Minnie Cloudy2⇒Minnie Cloudy1 (SIFT).

Fig. 7. Maps of the environment with plotted paths of the robot during acquisition of the training (black line) and test (points) sequences taken from the IDOL database and
used during the experiments with stable illumination conditions. The shape of each point on the test path indicates the result of recognition.

or furniture. In such cases, the height of the camera influenced the
content of the images the most.
We followed a similar procedure using the INDECS database

as a source of training data and different image sequences taken
from the IDOL database for testing. It is important to note that
the acquisition procedure differed in the case of both databases,
and the INDECS database was gathered 10 months before the

acquisition of IDOL. The points at which the pictures were taken
were positioned approximately 1 m from each other and, in
the case of the kitchen, covered different area of the room due
to reorganization of the furniture. Consequently, the problem
required that the algorithm was not only invariant to various
acquisition techniques but also offered great robustness to large
changes in the viewpoint and the appearance of the rooms



Author's Personal Copy

92 A. Pronobis et al. / Robotics and Autonomous Systems 58 (2010) 81–96

(a) Dumbo Cloudy2⇒ Dumbo Sunny2 (CRFH). (b) Dumbo Cloudy2⇒ Dumbo Sunny2 (SIFT).

(c) Minnie Cloudy2⇒Minnie Night2 (CRFH). (d) Minnie Cloudy2⇒Minnie Night2 (SIFT).

Fig. 8. Maps of the environment with plotted paths of the robot during acquisition of the training (black line) and test (points) sequences taken from the IDOL database and
used during the experiments with varying illumination conditions. The shape of each point on the test path indicates the result of recognition.

introduced by long-time human activity. The experimental results
are presented in Fig. 6e, f. We see that the algorithm obtains a
recognition performance of about 50%. While this result is surely
disappointing if compared to the 70% reported above, obtained for
the two robot platforms, it is still quite remarkable considering
the very high degree of variability between training and test data,
and that results are significantly above chance (which in this case

would be 20% as the datasets contain images acquired in five
rooms).

6.4. Training-based robustness

The final series of experiments aimed at revealing whether the
robustness of the recognition algorithm can be boosted by pro-
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(a) Dumbo Night1⇒Minnie Night2 (CRFH). (b) Dumbo Night1⇒Minnie Night2 (SIFT).

(c) Minnie Sunny2⇒ Dumbo Sunny1 (CRFH). (d) Minnie Sunny2⇒ Dumbo Sunny1 (SIFT).

Fig. 9. Maps of the environment with plotted paths of the robot during acquisition of the training (black line) and test (points) sequences taken from the IDOL database and
used during the experiments with recognition across platforms. The shape of each point on the test path indicates the result of recognition.

viding additional training data capturing a wider spectrum of vi-
sual variability that might occur in a real-world environment. In
particular, we concentrated on invariance to changing illumina-
tion conditions as this is the kind of variability that a continuously
running visual recognition system has to deal with every day. To
achieve that, we trained the system on two or three image se-
quences from the IDOLdatabase gatheredunder different illumina-

tion conditions, and we evaluated the recognition performance on
another, fourth, image set. The obtained results for both platforms,
all combinations of image sequences used for training as well as
both CRFH and SIFT are presented in Fig. 10a–d. The darker bars in-
dicate the results of experiments corresponding to those discussed
in Section 6.1, when training was done on an image sequence ac-
quired under conditions similar to those used for testing. The re-
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(a) Training on global features (CRFH) extracted from images acquired
withMinnie.

(b) Training on global features (SIFT ) extracted from images acquired
withMinnie.

(c) Training on global features (CRFH) extracted from images acquired
with Dumbo.

(d) Training on global features (SIFT ) extracted from images acquired
with Dumbo.

Fig. 10. Performance of the system trained on two or three image sequences acquired under different illumination conditions for both mobile platforms and image
representations. The classification rates were averaged over all possible combinations of training and test sequences. The uncertainties are given as one standard deviation.

sults shown using the brighter bars can be compared with those of
the experiments under varying illumination conditions analyzed
in Section 6.2.
It is apparent that including images acquired under different

conditions into the training set improves recognition accuracy.
Although the algorithmhas to incorporatemuchmore information
about each of the places into the model, the recognition accuracy
for test sets acquired under similar conditions as those used for
training is even greater than this obtained when each training
sequence was used separately (as for the experiments discussed
in Section 6.1). For example, the average recognition rate over
all test sets and illumination settings for models trained on three
sequences acquired using Dumbo was equal to 98.1% for CRFH
and 97.1% for SIFT. At the same time, for the experiments with
stable illumination conditions reported in Section 6.1 (see Fig. 6),
we got only 97.3% and 94.9%. The same trend can be observed for
sequences captured using Minnie. Concluding, the ability of the
algorithm to handle large within-class variability is clearly not a
limiting factor. It is important to note that the recognition rate
for conditions which were not used during training is also greatly
improved when more training data are provided. For example, if
the system was trained using the images captured during sunny
weather and at night using Minnie, the average classification rate
for testing image sequence acquired with cloudy weather was
equal to 86.95% for CRFH and 89.59% for SIFT. Consequently, the
classification rate improved by 9.9% in the case of CRFH and 11.2%
in case of SIFT for testing conditions not known during training, at
the same time slightly improving the rates for testing conditions
used also for training.
It has to be pointed out that due to the larger number of

training images capturing different types of variability, the number
of support vectors stored in the final model grows as well. In

such case, the user pays the price of the recognition time and the
memory requirements, which in the case of SVMs grow linearly
with the number of support vectors.

6.5. Discussion

The results of the extensive experimental evaluation presented
in this section indicate that our method is able to perform place
recognition using standard visual sensors with high precision. It
offers good robustness to changes in the illumination conditions
as well as to additional variations introduced by the natural
variability that occurs in real-world environments. At the same
time, there is a difference in the performance of the system
between the experiments under stable and varying conditions,
indicating that there is room for improvement in this matter.
As the system is to be used on a robot platform, it must not only

be accurate but also efficient. For this reason, we tried to provide
the highest possible robustness using relatively small amount of
training data acquired during only one run.Wemanaged to achieve
a recognition time of less than 200 ms per frame on a Pentium IV
2.6GHzusing the global image representation. The results reported
in Section 6.4 indicate that it is possible to significantly improve the
robustness by incorporating images acquired during two or three
runs under different illumination conditions into one training set.
However, the higher performance does not come without a price.
Since the number of support vectors in such case even doubles, the
recognition time increased by about 50 ms.
In all the experiments, we evaluated both global (CRFH) and

local (SIFT) image descriptors. In general, we did not find any
clear advantage of using one feature type over the other, and
each representation has its strengths and weaknesses. The global
features, however, clearly outperform SIFT in terms of efficiency
since the matching process required in order to compare two sets
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of local patches is computationally expensive. The efficiency of the
solution based on local features could be improved by applying
a more efficient matching algorithm (e.g. by using a pyramid
match SVM kernel [63]) or faster interest point detector and more
compact descriptor (e.g. SURF [37,34]). Since global and local
representations capture different aspects of a scene, the robustness
of the final solution can be further improved by integrating both
cues as proposed in [14,18].

7. Summary

This paper discussed the need for standard benchmarking
solutions for vision-based topological localization, with particular
emphasis on visual place recognition. We defined and analyzed
carefully the problem, and we specified the open challenges that
need to be addressed by a realistic benchmark. We presented two
new databases, acquired on the basis of this analysis. The first,
the INDECS database, contains pictures captured with a standard
camera mounted on a tripod. The second, the IDOL database,
contains image sequences acquiredusing camerasmountedon two
mobile robot platforms. The two databases were recorded within
the same indoor office environment. They capture awide spectrum
of natural variations introduced by both changing illumination
and human activity. Each database can be seen as a different
approach to the problem; thus, they can be used to analyze
different properties of a place recognition system.
We assessed both databases with a large set of baseline exper-

iments, using a fully supervised visual place recognition system.
The method employs a large-margin discriminative classifier and
two different image representations: a local representation, based
on SIFT features, and a global representation, consisting of multi-
dimensional histograms of receptive fields. We conducted the ex-
periments according to an experimental procedure designed to
contain problems of varying complexity and exploit most of the
variability captured in the datasets. The experimental procedure
can be seen as a part of the benchmark proposed in this paper.
We started from experiments performed under stable illumination
settings. We then performed experiments testing the robustness
of the algorithms to changing illumination and human activity. Fi-
nally, we conducted experiments with large viewpoint variations
and different acquisition methods.
The reported results show that the method is able to

recognize places with high precision when training and testing
is performed within a relatively stable environment, or when
enough training data are provided. At the same time, there is
space for improvement in the robustness to illumination and large
viewpoint variations. The database still poses a challenge to the
system which should provide stable performance in the presence
of variability usually observed in real-world environments.
Finally, the dependence between the overall performance of

the system and the particular set of data becomes visible as the
complexity of the problem grows. Moreover, different methods
(in this case different image descriptors) perform differently for
different types of variations. This emphasizes the need for an
extensive experimental evaluation, on a common benchmark
dataset, for the comparison of different approaches.When realistic
datasets are available,more extensive evaluation can be conducted
as the data can be reused, fully exploited, and less effort is
required for acquisition and annotation. The authors believe that
benchmarking solutions, such as the one presented in this paper,
will make an impact on the research on visual place recognition
and topological localization as was the case for other localization
and visual recognition problems.
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