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Abstract—A cornerstone for mobile robots operating in man-
made environments and interacting with humans is representing
and understanding the human semantic concepts of space. In this
paper, we present a multi-layered semantic mapping algorithm
able to combine information about the existence of objects
in the environment with knowledge about the topology and
semantic properties of space such as room size, shape and general
appearance. We use it to infer semantic categories of rooms and
predict existence of objects and values of other spatial properties.
We perform experiments on a mobile robot showing the efficiency
and usefulness of our system.

I. INTRODUCTION

In this paper we focus on the understanding of space to

facilitate interaction between humans and robots and increase

the efficiency of the robot performing tasks in man-made

environments. We consider applications where the robot is

operating in indoor environments, i.e. environments which

have been made for and are, up until now, almost exclusively

inhabited by humans. In such an environment human concepts

such as rooms and objects and properties such as the size

and shape of rooms are important, not only because of the

interaction with humans but also for knowledge representation

and abstraction of spatial knowledge.

The main contribution of this work is a way of combining

information about the existence of objects, the appearance,

geometry and topology of space for semantic mapping and

room categorization in a principled manner. An important

characteristic of our approach is that the lowest levels of infor-

mation are decoupled from high-level room categorization by

introducing the so called spatial properties. Those properties

can be appearance-based e.g. general visual appearance of a

room, geometry-based e.g. room size or shape obtained from

laser range data, or object-based e.g. the presence of an object

of a specific type. Furthermore, by incorporating information

about the topology of space we can infer properties of space

even without having made any observations there. For exam-

ple, starting in an office the system would be able to say that

it is very likely that the neighboring room is elongated and is

a corridor because that is the typical topology.

The property-based architecture has several advantages. It

paves the way for better scalability. It makes training of new

categories easier. It permits describing space at much finer

level of granularity. The properties can correspond to human

concepts of space. The use of such human understandable

properties provides better support for verbalization of knowl-

edge, e.g. the corridor is large (size property) and elongated

(shape property) as well as the dual, i.e. interpreting what a

human says and ultimately learning models for new catego-

rizes based on human input. Additional spatial properties such

as based on actions observed in the environment can be easily

incorporated. Finally, human input can be treated in the same

principled way as the information from a camera or a laser

scanner. That is, if a human tells us that there is a certain

object nearby or that we are in the room next to the kitchen

this type of information can be incorporated.

Most previously published semantic mapping approaches

rely purely on object information [2, 9, 10, 5]. In [11], Zen-

der et al. combines a laser-based place classification method

with object recognition for semantic environment descriptions.

However, in this case, the modalities are integrated in an ad-

hoc way through a manually built OWL-DL ontology, and

the reasoner fails to include all the uncertainty associated

with place classification or object detection. In contrast, our

method permits integration of multiple sources of knowledge

and performs all the reasoning in a fully probabilistic fashion

using automatically gathered conceptual information.

The proposed semantic mapping system is implemented on

a mobile robot platform and successfully evaluated in a typical

real-world office environment.

II. SEMANTIC SPATIAL CONCEPTS

We begin with an outline of some of the important spatial

concepts employed in our approach. Our primary assumption

is that spatial knowledge should be abstracted. This keeps

the complexity under control, makes the knowledge more

robust to dynamic changes, and allows to infer additional

knowledge about the environment. One of the most important

steps in abstraction of spatial knowledge is discretization of

continuous space. In our view, the environment is decomposed

into discrete areas called places. Places connect to other places

using paths which are generated as the robot travels the

distance between them. Thus, places and paths constitute the

fundamental topological graph of the environment.

An important concept employed by humans in order to

group locations is a room. Rooms tend to share similar func-

tionality and semantics which make them a good candidate

for integrating semantic knowledge over space. In the case of

indoor environments, rooms are usually separated by doors

or other narrow openings. Thus, we propose to use a door

detector and perform reasoning about the segmentation of

space into rooms based on the doorway hypotheses.

Many other concepts than simply related to the topology are

being used by humans to describe space. In this work, we focus

on the combination of objects, which we believe are strongly

related to the semantic category of a place where they are

typically located, with other spatial properties. As properties,

we identify shape of a room (e.g. elongated), size of a room

(e.g. large, compared to other typical rooms) as well as the

general appearance of a room (e.g. office-like appearance).

III. THE CONCEPTUAL MAP

The key component of our semantic mapping approach is

the probabilistic conceptual map. In order to fully exploit



the uncertainties provided by the multi-modal lower-level

models, the map encodes an uncertain ontology and employs

a probabilistic inference engine.

A. Uncertain Ontology

The ontology of spatial concepts and instances of those

concepts implemented in the conceptual map is presented in

Fig. 2. In order to represent the uncertainty associated with

some of the relationships, we extended the standard ontology

notation by annotating relations as either probabilistic or non-

probabilistic. The resulting ontology defines a taxonomy of

concepts through hyponym relationships (is-a) as well as re-

lations between concepts (has-a relationships). As in [11], the

ontology distinguishes three primary sources of knowledge:

predefined (taxonomy and conceptual common-sense knowl-

edge, e.g. the likelihood that cornflakes occur in kitchens),

acquired (knowledge acquired using the robot’s sensors), and

finally inferred (knowledge generated internally, e.g. that the

room is likely to be a kitchen, because you are likely to

have observed cornflakes in it). We could further differentiate

between acquired knowledge and asserted knowledge which

can be obtained by interaction with a human.

The ontology ties the concepts to instance symbols derived

from the lower level representations. The instance knowledge

includes the presence of objects and sensed spatial properties

such as shape, size, appearance and topology. The conceptual

knowledge comprises common-sense knowledge about the

occurrence of objects in rooms of different semantic cate-

gories, and the relations between these categories and the

aforementioned spatial properties. In our system, the “has-

a” relations for rooms, objects, shapes, sizes and appearances

were acquired by analyzing common-sense knowledge avail-

able through the world wide web (for details see [6]) as well

as annotations available together with the database described

in this paper.

B. Probabilistic Inference

The conceptual map is implemented using a chain graph

probabilistic model [4] for reasoning. Chain graphs are a

natural generalization of directed (Bayesian Networks) and

undirected (Markov Random Fields) graphical models. As

such, they allow for modeling both “directed” causal as well as

“undirected” symmetric or associative relationships, including

circular dependencies.

The structure of the chain graph model is presented in Fig. 1.

The structure of the model depends on the topology of the

environment. Each discrete place is represented by a set of

random variables connected to variables representing semantic

category of a room. Moreover, the room category variables are

connected by undirected links to one another according to the

topology of the environment. The potential functions φrc(·, ·)
represent the type knowledge about the connectivity of rooms

of certain semantic categories.

The remaining variables represent shape, size and appear-

ance properties of space and presence of a certain number of

instances of objects as observed from each place. These can be

Fig. 1. Structure of the chain graph model compiled from the conceptual
map. The vertices represent random variables. The edges represent the directed
and undirected probabilistic relationships between the random variables. The
textured vertices indicate observations that correspond to sensed evidence.

Fig. 2. View of the processes and representations of the system. Sensing
processes (at the bottom) discretize and categorize sensor input into instances
(shown as ellipses) and acquired relations. The conceptual map also comprises
knowledge about concepts (rectangles) of which only an excerpt in shown.

connected to observations of features extracted directly from

the sensory input and quantified by the categorical models

of sensory information. Finally, the functions psh(·|·), psi(·|·),
pa(·|·), poi(·|·) utilize the common sense knowledge about ob-

ject, spatial property and room category co-occurrence to allow

for reasoning about other properties and room categories. The

conditional probability distributions poi(·|·) are represented

by Poisson distributions. The parameter λ of the distribution

allows to set the expected number of object occurrences. In

our experiments the parameter was calculated to match the

probability of there being no objects of a certain category in a

room of a certain category as provided by the common sense

knowledge databases.

IV. SYSTEM OVERVIEW

We now explain the other processes in the semantic mapping

system the provide input to the conceptual map as shown in

Fig. 2. First, mapping and topology maintenance processes

create a topological place map. A SLAM algorithm [1] builds

a metric map of the environment. The metric map is further

discretized into places distributed spatially in the metric map.

The places together with paths obtained by traversing from one

place to another constitute a topological graph. Then, based on



Fig. 3. Examples of images from the COLD-Stockholm database acquired
in 9 different rooms. A video illustrating the acquisition process is available
on the website of the database.

the information about the connectivity of places and the output

of a template-based laser door detector, a process forms rooms

by clustering places that are transitively interconnected without

passing a doorway. Since the door detection algorithm can

produce false positives and false negatives, room formation

must be a non-monotonic process to allow for knowledge

revision. It is handled by a general purpose rule engine able

to make non-monotonic inferences in its symbolic knowledge.

The approach is an adaptation of the one by [3].

Geometry and appearance classification is based on cate-

gorical place models [8] and provides information about the

shape, size and general appearance of rooms. The categorical

models are provided with sensory information from the laser

scanner and a camera. This information is classified and con-

fidence estimates are provided indicating the similarity of the

sensory input to each of the categorical models. The estimated

confidence information is then accumulated over each of the

viewpoints observed by the robot while being in a certain

place [8] and further normalized to form potentials. Similar

independent process performs object detection and recognition

based on visual object models [7]. The results are fed back

into the chain graph triggering an inference in the probabilistic

model. Accordingly, room categorization is performed as a

result of the reasoning process in the conceptual map.

V. EXPERIMENTS

A. Experimental Scenario

All the categorical models used in the experiments were

trained on the COLD-Stockholm database (http://www.cas.

kth.se/cold-stockholm). The database consists of multiple

sequences of image, laser range and odometry data. The

acquisition was performed on four different floors (4th to

7th) of an office environment, consisting of 47 areas (usually

corresponding to separate rooms) belonging to 15 different

semantic and functional categories and under several different

illumination settings (cloudy weather, sunny weather and

at night). Examples of images from the COLD-Stockholm

database are shown in Fig. 3.

In order to guarantee that the system will never be tested in

the same environment in which it was trained, we have divided

Part A Part B

Fig. 4. Topological maps of the environment anchored to a metric map
indicating the outcomes of room segmentation and categorization. The circles
indicate the location of places in the environment and the colors indicate
the inferred room categories. For the detailed information about the inferred
categories, see Fig. 5.

the COLD-Stockholm database into two subsets. For training

and validation, we used the data acquired on floors 4, 5 and

7. The data acquired on floor 6 were used for testing.

For the purpose of the experiments presented in this paper,

we have extended the annotation of the COLD-Stockholm

database to include 3 room shapes, 3 room sizes as well as 7

general appearances. The room size and shape, were decided

based on the length ratio and maximum length of edges of a

rectangle fitted to the room outline. These properties together

with 6 object types defined 11 room categories used in our

experiments. The values of the properties as well as the room

categories are listed in Fig. 5.

B. Experimental Results

The models trained on the COLD database were used in the

semantic mapping system. The experiments were performed

on the 6th floor of the building, i.e. in the part which was not

used for training. The robot was manually driven through 15

different rooms while performing real-time semantic mapping

without relying on any previous observations of the environ-

ment. The obtained maps of parts of the environment (A and

B) are presented in Fig. 4.

The robot recorded beliefs about the shapes, sizes, ap-

pearances, objects found and the room categories for every

significant change event in the conceptual map. The results

for the two parts of the environment are presented in Fig. 5.

Each column in the plot corresponds to a single event and

the source of that event is indicated using dots (changes) and

crosses (additions) at the bottom. At certain points in time, the

robot was provided with asserted human knowledge about the

presence of objects in the environment.

By analyzing the events and beliefs for part A, we see

that the system correctly identified the first two rooms as

a hallway and a single office using purely shape, size and

general appearance (there are no object related events for those

rooms). The next room was properly classified as a double

office, and that belief was further enhanced by the presence

of two computers. The next room was initially identified as a

double office until the robot was given information that there

is a single computer in this room. This was an indication that

the room is a single person office that due to its dimensions

is likely to belong to a professor.

http://www.cas.kth.se/cold-stockholm
http://www.cas.kth.se/cold-stockholm


Part A

Part B

Fig. 5. Visualization of the events registered by the system during exploration
and its beliefs about the categories of the rooms as well as the values of the
properties. The room category ground truth is marked with thick dashed lines
while the MAP value is indicated with white dots. The colors indicate the
strength of the beliefs after each event (the darker the stronger). Source of
each event is indicated at the bottom of the plot (e.g. sensed appearance or
detected object etc.). A video showcasing the system is available at:
http://www.pronobis.pro/research/semantic-mapping.

Looking at part B, we see that the system identified most

of the room categories correctly with the exception of a single

office which due to a misclassification of size was incorrectly

recognized as a double office. The experiment proved that

the system can deliver an almost perfect performance by

integrating multiple sources of semantic information.

VI. CONCLUSIONS

In this paper we have presented a probabilistic framework

combining heterogenous, uncertain, information such as object

observations, the shape, size and appearance of rooms for

semantic mapping. A graphical model, more specifically a

chain-graph, is used to represented the semantic information

and perform the inference over it. We introduced the concept

of properties between the low level sensory data and the

high level concepts such as room categorizes. The properties

allowed us to decouple the learning processes at the different

levels and describe space at much finer level of granularity.

By making the properties understandable to humans, possi-

bilities open in terms of spatial knowledge verbalization and

interpretation of human input.
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