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Abstract

Domain-specific state representations are a fundamental com-
ponent that enables planning of robot actions in unstructured
human environments. In case of mobile robots, it is the spatial
knowledge that constitutes the core of the state, and directly
affects the performance of the planning algorithm. Here, we
propose Deep Spatial Affordance Hierarchy (DASH), a prob-
abilistic representation of spatial knowledge, spanning mul-
tiple levels of abstraction from geometry and appearance to
semantics, and leveraging a deep model of generic spatial
concepts. DASH is designed to represent space from the per-
spective of a mobile robot executing complex behaviors in
the environment, and directly encodes gaps in knowledge and
spatial affordances. In this paper, we explain the principles
behind DASH, and present its initial realization for a robot
equipped with laser-range sensor. We demonstrate the ability
of our implementation to successfully build representations
of large-scale environments, and leverage the deep model of
generic spatial concepts to infer latent and missing informa-
tion at all abstraction levels.

1 Introduction

Many recent advancements in the fields of robotics and ar-
tificial intelligence have been driven by the ultimate goal of
creating artificial agents able to perform service tasks in real
environments in collaboration with humans (Aydemir et al.
2013; Hanheide et al. 2016). While significant progress have
been made in the area of robot control, largely thanks to the
success of deep learning (Levine et al. 2016), we are still far
from solving more complex scenarios that require forming
plans spanning large spatio-temporal horizons.

In such scenarios, domain-specific state representations
play a crucial role in determining the capabilities of the
agent and the tractability of the solution. In case of mobile
robots operating in large-scale environments, it is the spatial
knowledge that constitutes the core of the state. As a result,
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the way in which it is represented directly affects the actions
the robot can plan for, the performance of the planning algo-
rithm, and ultimately, the ability of the robot to successfully
reach the goal. For complex tasks involving interaction with
humans, the relevant spatial knowledge spans multiple lev-
els of abstraction and spatial resolutions, including detailed
geometry and appearance, global environment structure, and
high-level semantic concepts. Representing such knowledge
is a difficult task given uncertainty and partial observability
governing real applications in human environments.

In this work, we propose Deep Spatial Affordance Hier-
archy (DASH, ref. Fig. 1), a probabilistic representation of
spatial knowledge designed to support and facilitate plan-
ning and execution of complex behaviors by a mobile robot.
The representation encodes the belief about the state of the
world. However, more importantly, it also provides infor-
mation about spatial affordances, i.e. the possibilities of ac-
tions on objects or locations in the environment. It does so
by leveraging a hierarchy of sub-representations (layers),
which directly correspond to a hierarchical decomposition of
the planning problem. The layers represent multiple spatial
knowledge abstractions (from geometry and appearance to
semantic concepts), using different spatial resolutions (from
voxels to places), frames of reference (allo- or ego-centric),
and spatial scopes (from local to global). The goal is to rep-
resent spatial knowledge in a way that directly corresponds
to how it will be utilized by the robot and its planning algo-
rithm.

DASH includes both instance knowledge about the spe-
cific robot environment as well as default knowledge about
generic human environments. The latter is modeled us-
ing a recently proposed Deep Generative Spatial Model
(DGSM) (Pronobis and Rao 2017). Specifically, DGSM
leverages recent developments in deep learning, provid-
ing fully probabilistic, generative model of spatial concepts
learned directly from raw sensory data. DGSM unifies the
layers of our representation, enabling upwards and down-
wards inferences about spatial concepts defined at different
levels of abstraction. Finally, DASH is designed to explic-
itly represent and fill gaps in spatial knowledge due to un-
certainty, unknown concepts, missing observations or unex-
plored space. This brings the possibility of using the rep-
resentation in open-world scenarios, involving active explo-
ration and learning.



Semantic

Topological

Peripersonal

Perceptual

Fig. 1: The multi-layered architecture of Deep Spatial Af-
fordance Hierarchy. The perceptual layer integrates percep-
tual information from the robot sensors. The peripersonal
layer represents object and landmark information and af-
fordances in the space immediately surrounding the robot.
The topological layer encodes global topology and coarse
geometry and navigation action affordances. Finally, the se-
mantic layer relates the internal instance knowledge to hu-
man semantic concepts. The four layers are connected by
the probabilistic deep default knowledge model (shaded pur-
ple columns), which provides definitions of generic spatial
concepts and their relations across all levels of abstraction.

In this paper, we describe the general architecture of
DASH and present an initial realization of the representa-
tion for a mobile robot equipped with a laser range sensor.
We perform a series of experiments demonstrating the abil-
ity of the representation to perform different types of infer-
ences, including bottom-up inferences about semantic spa-
tial concepts and top-down inferences about geometry of the
environment. We then showcase its ability to build semantic
representations of large-scale environments (e.g. floors of an
office building).

We begin the presentation of DASH with a description of
the scenario, an analysis of roles and desired properties of a
spatial knowledge representation (Sec. 2). Then, we describe
the architecture of DASH (Sec. 3), present its initial realiza-
tion (Sec. 4) and describe the details of the deep generative
model of default spatial knowledge (Sec. 5). We follow with
the experimental evaluation in Sec. 6.

2 Analysis of the Problem

We recognize that the ultimate purpose of a spatial knowl-
edge representation for an autonomous mobile robot is to
enable and facilitate successful planning and execution of
actions in the robot environment. Here, we focus specifi-
cally on scenarios involving large-scale, dynamic, human
environments, such as office buildings, homes, and hospi-
tals. We assume that a mobile robot is physically capable of
sensing the environment using on-board sensors. The sen-
sors are likely to have limited field of view, and might be
attached to actuators, such as pan-tilt units. Furthermore, the
robot is capable of moving around the environment and per-
forming basic manipulation tasks (e.g. grasping objects or
pushing buttons). Finally, we assume that the robot can in-
teract and collaborate with humans in order to accomplish its
tasks (e.g. by asking for additional information or requesting
help when a task cannot be accomplished by the robot itself).
We follow with an analysis of roles of a spatial knowledge
representation in the context of the considered scenarios as
well as a discussion of its desired properties.

Role of a Spatial Knowledge Representation

Referring to the discussion of roles of a knowledge represen-
tation in (Davis, Shrobe, and Szolovits 1993), and a more
specific analysis for spatial knowledge in (Pronobis et al.
2010b), we formulate a set of roles of a domain-specific
spatial knowledge representation for a mobile robot. Such
a representation can be seen as:

a) A substitution (surrogate) for the world that allows the
robot to reason about actions involving parts of the environ-
ment beyond its sensory horizon. The surrogate can either
represent the belief about the state of the world (what the
world looks like), or more directly, the belief about affor-
dances (what the robot can do at a specific place or involving
a specific spatial entity). It is important to note that it is in-
herently imperfect, i.e. it is incomplete (some aspects of the
world are not represented), inaccurate (captured with uncer-
tainty), and likely to become invalid (e.g. due to dynamics
of the world).

b) A set of commitments that determine the terms in
which the robot thinks about space. The representation de-
fines which aspects of the world are relevant, and specifies
the formalism used to represent and relate them. To this end,
it defines the levels of abstraction at which spatial entities
exist, spatial frames of reference used to relate them (ab-
solute or relative, allo- or ego-centric) as well as their per-
sistence. It is worth noting that these commitments signif-
icantly affect the ability of the robot to plan and execute
specific actions. Furthermore, the representation does not
have to be more expressive than required to successfully act.
Therefore, we can think of the commitments in the represen-
tation as defining part of the action space of the robot.

c) A set of definitions that determine the reasoning that
can be (and that should be) performed within the framework.
This includes reasoning about the location of the robot with
respect to the internal frames of reference (whether metric,
topological or semantic), inferring more abstract concepts
from observations (e.g. affordances, semantic descriptions),



or generating missing lower-level information from high-
level descriptions (e.g. expected position of occluded objects
in rooms of known functional category).

d) A medium of communication between the robot and
humans. In scenarios involving human-robot collaboration,
spatial knowledge provides a common ground for commu-
nication and knowledge transfer. The representation must
therefore be capable of relating human spatial concepts to
those internal to the robot.

e) A way of structuring the spatial information so that it
is computationally feasible to perform inferences and action
planning in a specified time (e.g. in real time) despite limited
resources.

Desired Properties of the Representation

Having in mind the specifics of the scenario, the roles of a
representation, practical limitations, and experience result-
ing from existing approaches and robotic systems (Thrun
et al. 1998; Kuipers 2000; Marder-Eppstein et al. 2010;
Hanheide et al. 2016), we identify several desired properties
of a spatial knowledge representation for mobile robots.

Spatial knowledge in realistic environments is inherently
uncertain and dynamic. Given the local nature of the robot’s
sensing, it is futile to represent the environment as accurately
as possible. A very accurate representation is likely to be
intractable and will require a substantial effort to be kept
up-to-date. Moreover, its usability will remain constrained
by robot capabilities. Hence, our primary assumption is that
the representation should instead be minimal and the spatial
knowledge should be represented only as accurately as it is
required to support the functionality of the robot.

Planning is a computationally demanding process and its
complexity increases exponentially with the size of the en-
vironment and number of considered spatial entities. How-
ever, due to the way real-world environments are structured
and limitations of robot sensors and actuators, decomposing
the planning problem hierarchically can greatly reduce its
complexity while maintaining highly optimal results. This
naturally leads to a hierarchy of higher-level, long-term,
global plans involving lower-level short-term, local behav-
iors. In fact, hierarchical planners are used in the majority
of existing robotic systems (Marder-Eppstein et al. 2010;
Aydemir et al. 2013; Hanheide et al. 2016) due to their
tractability. Moreover, behavioral analyses found hierarchi-
cal spatial planning in humans (Balaguer et al. 2016). In or-
der to support such strategies, a spatial representation should
perform knowledge abstraction, providing symbols corre-
sponding to spatial phenomena of gradually increasing com-
plexity, anchored to reference frames of increasing spatial
scope and decreasing resolution. This leads to discretization
of continuous space, which significantly reduces the num-
ber of states for planning (Hawes et al. 2009) and provides a
basis for higher-level conceptualization (Zender et al. 2008).

Due to the dynamic properties of the real world, ab-
stracted knowledge is more likely to remain valid over time.
At the same time, high-resolution up-to-date spatial infor-
mation is required for executing actions in the robot periper-
sonal space. Yet, it can also be re-acquired through percep-
tion. Therefore, the representation should correlate the lev-

els of abstraction with the persistence of information, em-
ploying local working-memory representations for integrat-
ing high-resolution spatial information (visual servoing be-
ing the extreme example). In other words, the robot should
use the world as an accurate representation whenever possi-
ble.

Representing uncertainty in the belief state is crucial for
the robot to make informed decisions in the real-world, in-
cluding planning for epistemic actions and anticipating fu-
ture uncertainty. In this context, decision-theoretic planning
algorithms rely on probabilistic representations of uncer-
tainty, therefore, it is desirable for a knowledge represen-
tation to also be probabilistic in nature.

Furthermore, a representation should not only represent
what is known about the world, but also what is unknown.
This includes explicit representation of missing evidence
(e.g. due to occlusions), unexplored space (e.g. exploration
frontiers) or unknown concepts (e.g. unknown object cate-
gories). Representing knowledge gaps can be exploited to
address the open-world problem (in the continual planning
paradigm (Hanheide et al. 2016)), trade exploration vs ex-
ploitation, or drive learning.

3 Deep Spatial Affordance Hierarchy

(DASH)

As a result of the problem analysis, we propose Deep Spa-
tial Affordance Hierarchy (DASH). A general overview of
the architecture of the representation is shown in Fig. 1.
DASH represents the robot environment using four sub-
representations (layers) focusing on different aspects of the
world, encoding knowledge at different levels of abstraction
and spatial resolutions as well as in different frames of ref-
erence of different spatial scope. The characteristics of the
layers were chosen to simultaneously support both action
planning and spatial understanding for the purpose of local-
ization and human-robot interaction. In particular, the for-
mer objective is realized by directly representing spatial af-
fordances, which we define as the possibilities of actions on
objects or locations in the environment relative to the ca-
pabilities and state of the robot. The characteristics of the
layers are summarized in Table 1.

DASH is organized as a hierarchy of spatial concepts, with
higher-level layers providing a coarse, global representation
comprised of more abstract symbols, and lower-level layers
providing a more fine-grained representation of parts of the
environment anchored to the higher-level entities. The lay-
ers are connected by a crucial component of the representa-
tion, the probabilistic deep default knowledge model, which
provides definitions of generic spatial concepts and their re-
lations across all levels of abstraction.

The hierarchy directly relates to a similar, hierarchical de-
composition of the planning problem. A global planner can
derive a navigation plan relying only on the top layers for
representing its beliefs, a local planner can be used to plan
specific manipulation actions using intermediate layers, with
a controller realizing them base on knowledge in the lowest-
level representation. Below, we provide details about each
component of the representation.



Perceptual Peripersonal Topological Semantic

World Aspects
Captured

Detailed geometry
and appearance

Object/landmark info,
coarse local geometry

Large-scale topology,
coarse global geometry

Human semantic
descriptions

Reference Frame
Metric (allo-centric,

sliding window)
Collection of:

Metric (epi-centric)
Topological (allo-centric)

Metric (allo-centric)
Relational

Spatial Scope Sensory horizon Local Global Global

Spatial Entities Voxels Objects/landmarks Places, paths, views
Relations to

human concepts

Affordances —
Manipulation and
epistempic actions

Navigation and
epistemic actions

Human interaction actions
Tasks involving human concepts

Robot Pose Center of the window
Relative to

objects/landmarks
Place/view ID Described semantically

Knowledge Gaps Missing observations
Missing evidence
Unknown objects

Unexplored space
Unknown places

Novel semantic concepts

Table 1: Characteristics of the four layers of DASH.

Perceptual Layer

At the bottom level of the representation is the percep-
tual layer. The layer maintains an accurate representation
of the geometry and appearance of the local environment
obtained by short-term spatio-temporal integration of per-
ceptual information from (possibly multiple and directional)
sensors with finite horizon. Spatial information in percep-
tual layer is represented in an allo-centric metric reference
frame, which facilitates integration of perception from mul-
tiple viewpoints and sensors. However, the representation
is always centered at the current location of the robot, and
spans a radius roughly corresponding to the maximum range
of the robot sensors (essentially a sliding window). Infor-
mation outside the spatial scope is forgotten, which makes
the layer akin to a working memory, and enables consistent
large-scale higher-level representations without the need to
maintain low-level global consistency. The layer provides a
more complete input for further abstractions with reduced
occlusions and noise. It enables tracking of the relative
movements of the robot, and forms a basis for deriving low-
level control laws for manipulation and obstacle avoidance.
Missing observations (e.g. due to unresolved occlusions) are
explicitly represented.

Peripersonal Layer

Above the perceptual layer is the peripersonal layer, which
captures spatial information related to object and landmark
instances from the perspective of an agent performing ac-
tions at different locations in the environment. To support
planning, the layer represents object affordances related to
actions that can be performed directly by the robot. This in-
cludes manipulation (e.g. possibility of reaching/grasping an
object or pressing a button), interaction in relation to objects
(e.g. possibility of pointing at an object), and epistemic af-
fordances (e.g. possibility of observing an object). Further-
more, the layer captures object and landmark descriptors that
are internal to the robot as well as spatial relations between
objects and landmarks in relation to the robot (and therefore
coarse local geometry). Finally, it serves as an intermediate

layer of the deep default knowledge model, used to generate
descriptions of locations in terms of higher-level concepts
(e.g. room categories or place affordances).

To reflect the local and robo-centric nature of the captured
information, the peripersonal layer relies on a collection of
ego-centric, metric reference frames, each focusing on the
space immediately surrounding the robot at a different lo-
cation in the environment (see Fig. 1). The spatial scope
of each of the reference frames is defined primarily by the
peripersonal space of the robot, within which objects can
be grasped and manipulated. However, to support epistemic
affordances, interaction about objects, and higher-level con-
ceptualization, the scope can be extended to include con-
text in the form of knowledge about objects that directly
relates to the functionality of the location. For instance, a
reference frame centered in front of a desk might include in-
formation about shelves and books in the room, even beyond
the reach of the robot. While recent results from neuropsy-
chology suggest existence of local, body-centered represen-
tations in animals and humans (Holmes and Spence 2004),
our motivation for such decomposition is primarily the effi-
ciency of the planning problem.

The peripersonal layer explicitly represents gaps in
knowledge about the local space due to missing evidence
(e.g. resulting from occlusions) and unknown objects. The
latter occurs when the default knowledge model is not fa-
miliar with an object, and cannot produce a certain object
descriptor or affordance information.

Topological Layer

The topological layer provides an efficient representation of
large-scale space, including coarse geometry and topology,
and serves several key roles in DASH. First, it provides a
way to express the global pose of the robot. Second, it cap-
tures navigation and exploration action affordances associ-
ated with locations in the environment. Third, it is a global
counterpart to the local peripersonal representations and an-
chors them in the large-scale space. Finally, it captures inter-
nal descriptors of places and serves as an intermediate layer



of the deep default knowledge model used to derive seman-
tic place descriptions.

To this end, the layer performs a bottom-up discretization
of continuous space into a set of locations called places.
Places correspond to locations in the environment previ-
ously visited by the robot, and are meant to represent space
at a resolution sufficient for action execution, while main-
taining efficiency and robustness to dynamic changes. In
other words, the resolution is selected to ensure that high-
level navigation can be planned using the topological layer
only, with local behaviors planned using the knowledge in
the peripersonal layer at the destination. Places are spatially
related to other, neighboring places, which encodes coarse
global geometry of the environment and allows for path in-
tegration.

For each place, the topological layer maintains a set of
discrete headings, called views. Together with places, views
can be used to efficiently represent the complete global pose
of the robot. Moreover, views and places are used to anchor
knowledge in the representation. First, the topological layer
captures robot-internal descriptors of each view and place.
The descriptors are derived from lower-level representations
using the deep default knowledge model and serve as an in-
termediate layer of the model. Second, each visited place
anchors a peripersonal representation describing the place
in more detail.

Besides places and views, the layer also defines paths con-
necting neighboring places into a topological graph. The se-
mantics of a path between two places is the possibility of
navigating directly from one place to the other. Thus, essen-
tially, paths represent navigation place affordances, which
can be associated with probability indicating uncertainty es-
timated based on the current, detailed information in the
peripersonal layer (e.g. based on visible obstacles). Further-
more, the topological nature of the graph of places and paths,
enables planning of complex navigational tasks, such as in-
volving elevators. The place in the elevator might afford nav-
igating to places on different floors, depending on the in-
formation captured in the peripersonal layer (e.g. displayed
floor number) or additional state information.

Existence of a path in the graph does not necessarily im-
ply that it has previously been traveled by the robot. In fact,
a path can indicate the possibility of navigating towards un-
explored space. To this end, the topological layer utilizes the
concept of placeholders (Pronobis et al. 2010b), which can
be seen as candidate places, and are used to explicitly repre-
sent unexplored space. As a result, paths that lead to place-
holders express the possibility of epistemic exploration ac-
tions. This can be used to address the open world problem,
for instance, in the continual planning paradigm (Hanheide
et al. 2016).

Semantic Layer

On top of DASH is the semantic layer, a probabilistic rela-
tional representation relating the spatial entities in the other
layers to human semantic spatial concepts defined in the
deep default knowledge model. This includes such concepts
as object categories and attributes, place attributes, room cat-
egories, or the concept of a room itself. It is the semantic

layer that captures the knowledge that an object is likely to
be a cup, or that certain places are likely to be located in
a kitchen. Furthermore, the layer plays an important role in
planning complex tasks, by representing place affordances
related to human interaction as well as actions characterized
in terms of human concepts. For instance, it is the sensory
layer that defines the affordance expressing the possibility
of asking a person for help with making coffee or the pos-
sibility of finding a cup at a certain place. Finally, the layer
enables transfer of knowledge from humans to the robot (e.g.
capturing object category information provided by the user).
Such knowledge can be utilized by the default knowledge
model to generate lower-level information stored in other
layers.

Deep Default Knowledge

The four layers representing knowledge about the specific
robot environment are linked by the deep default knowledge
model. The model provides definitions of generic spatial
concepts, valid for typical human environments, and their
relations across all levels of abstraction (from sensory input
to high-level concepts). This includes robot-internal models
of objects in terms of low-level perception, places in terms of
objects, place and object affordances, or models of seman-
tic categories and attributes of objects and places. In other
words, the four layers can be seen as defining the traditional
ABox of our spatial knowledge base, while the deep default
knowledge model represents its TBox.

The role of the default knowledge model is to permit in-
ferences about missing or latent aspects of the environment
in each layer, based on the knowledge available in other lay-
ers. This includes bottom-up inferences (e.g. about semantic
descriptions based on perception) and top-down inferences
(e.g. about object presence or place affordances based on se-
mantic descriptions). The resulting knowledge base consti-
tutes a more complete (albeit uncertain) belief state for the
planner. In this work, we implement this component using a
deep generative probabilistic model based on Sum-Product
Networks (see Sec. 5).

4 Realization of DASH for Laser-Range Data

In order to evaluate the architecture of DASH in practice,
we provide its initial realization for a mobile robot equipped
with a laser-range sensor. We utilize laser-range data to sim-
plify the initial implementation, however the proposed al-
gorithms can be easily extended to include 3D and visual
information.

Perceptual Layer

To integrate local laser-range observations in the percep-
tual layer, we use a common occupancy grid representation.
Specifically, we utilized a grid mapping approach based on
Rao-Blackwellized particle filters (Grisetti, Stachniss, and
Burgard 2007). We crop the resulting grid map to only re-
tain a rectangular fragment of size 10x10m, centered at the
current position of the robot. Consequently, we do not re-
quire global consistency of the grid map, as long as the local
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Fig. 2: Visualization of spatial knowledge represented in the
peripersonal layer for sample places of different semantic
categories, expressed as both Cartesian and polar occupancy
grids.

environment is mapped correctly. This will still result in par-
tial maps (especially when the robot enters a new room), but
it will help to accumulate observations over time. During our
experiments, the robot was exploring the environment driv-
ing with a constant speed, while continuously gathering data
and performing inferences based on the current state of the
perceptual layer.

Peripersonal Layer

The peripersonal representation for each place is constructed
from the current local occupancy grid in the perceptual layer.
However, since the scope of the peripersonal representation
is limited to the space immediately surrounding the robot
and relevant context, we only retain information about the
parts of the environment visible from the robot (grid cells
that can be raytraced from the robot location). As a result,
walls occlude the view and the resulting grid will mostly
contain objects present in a single room. In order to in-
clude a more complete appearance of the objects, we ad-
ditionally include observations behind small obstacles, and
a small vicinity around every occupied cell visible from the
robot (e.g. corners of furniture). Examples of such local oc-
cupancy grids can be seen in Fig. 2.

Next, every local grid map is transformed into an ego-
centric polar representation (compare polar and Cartesian
grids in Fig. 2). This encodes high-resolution information
about the geometry and objects nearby, and complements it
with less-detailed context further away from the robot. En-
coding spatial knowledge closer to the robot in more detail is
important for understanding the semantics of the exact robot
location (for instance when the robot is in a doorway). How-
ever, it also relates to how spatial information is used by a

robot when planning and executing actions. It is in the vicin-
ity of the robot that higher accuracy of spatial information is
required. The polar grids in our implementation assumed ra-
dius of 5m, with angle step of 6.4 degrees and resolution de-
creasing with the distance from the robot. It is worth noting
that lack of evidence resulting from occlusions is explicitly
represented in the cells of the polar representation. Such rep-
resentation of peripersonal layer is clearly a simplification,
however one that results from the nature of the laser-range
data.

Topological Layer

The topological layer is maintained by a mapping algorithm
discretizing continuous space into sets of places, placehold-
ers, views, and paths. The goal is to generate an efficient
discretization, which supports all the roles of the topolog-
ical layer, including expression of the global robot pose,
representation of affordances related to navigation and ex-
ploration, and anchoring of local spatial knowledge to the
global space.

The mapping algorithm expands the topological layer in-
crementally, adding placeholders at neighboring unexplored
locations, and connecting them with paths to existing places.
Then, once the robot performs an exploration action associ-
ated with a specific path, a new place is generated to which
a peripersonal representation, as well as place and view de-
scriptors are anchored. At this point, the path between the
two places signifies navigation affordance, and is associated
with probability based on current, up-to-date information.
In order to choose the location for a new placeholder, the al-
gorithm relies upon information contained in the perceptual
layer, including detailed local geometry and obstacles.

Similarly to (Chung et al. 2016), we formulate the prob-
lem of finding placeholder locations using a probability dis-
tribution that models their relevance and suitability. How-
ever, instead of sampling locations of all places in the en-
vironment at once, we incrementally add placeholders as
the robot explores the environment, within the scope of the
perceptual layer. Specifically, the probability distribution is
modeled as a combination of two components:

P(E | G) =
1

Z
∏

i

φI(Ei)φN(E ), (1)

where Ei ∈ {0,1} determines the existence of a place at a
location i in the perceptual layer, G is the perceptual occu-
pancy grid, and E is a set of locations of all existing places
within the scope of the perceptual representation.

The potential function φI models suitability of a specific
location, and is defined in terms of three potentials calcu-
lated from G:

φI(Ei) = φO(Ei)(φV (Ei)+φP(Ei)−φV (Ei)φP(Ei)), (2)

where:

• φO ensures that placeholders are created in areas that are
safe from collisions with obstacles. It depends on the dis-
tance do to the nearest obstacle and is calculated simi-
larly to the cost map used on our robot for obstacle avoid-
ance (Marder-Eppstein et al. 2010). φo equals 0 for dis-
tance smaller than the radius r of the robot base and
1− exp(−α(do − r)) otherwise.



Fig. 3: Visualization of generated places and paths on top of
the knowledge in the perceptual layer. The highlighted re-
gion corresponds to the spatial scope of the perceptual rep-
resentation and displays the value of the potential φI . The
low-resolution lattice is illustrated using yellow points, and
red points indicate the final, optimized locations of places.
Paths highlighted in green afford navigability throughout the
environment.

• φV = exp(−γdc) depends on the distance dc to the nearest
node of a Voronoi graph of the 2D map. This promotes
centrally located places that are often preferred for navi-
gation.

• φP promotes places inside narrow passages (e.g. doors).
The potential is generated by convolving the local map
with a circular 2D filter of a radius corresponding to an
average width of a door.

Overall, φI ensures that placeholders are located only in
areas that are safe and preferred for navigation, and consti-
tute useful anchors for information stored in other layers of
the representation. The potential φN , models the neighbor-
hood of a place and guarantees that places are evenly spread
throughout the environment. To this end, the potential func-
tion promotes positions at a certain distance dn from existing
places:

φN(Ei) = ∑
p∈E

e
−

(d(i,p)−dn)
2

2σ2
,

where d(i, p) is a Euclidean distance between the potential
new place and an existing place.

Final location of new placeholders is chosen through MPE
inference in P(E | G). However, before adding a new place-
holder to the map it is important to verify whether the robot
will be able to navigate to it. To this end, we perform an
A* search directly over the potential function, and quantify
the navigability based on the accumulated potential. Only
then, a path is created between an existing place and a place-
holder. Similarly, the accumulated potential is used to quan-
tify navigability of paths between existing places.

In order to incorporate knowledge about coarse global ge-
ometry into the topological representation, we further relate
placeholders and places to a global low-resolution lattice
(0.8m distance between points in our experiments), as illus-
trated in Fig. 3. As the robot moves through the environment,
the lattice is extended, while preserving consistency with ex-
isting points. We assume that a place must be associated with
a point of the lattice, and each lattice point can be associated
with only one place. As a result, when performing MPE in-
ference using P(E |G), we assume that only one place might
exist in a cell of a Voronoi tessellation established by the
points of the lattice. The resulting set of placeholders (and
eventually places) will uniquely correspond to lattice points,
yet be created only in locations which are suitable, and can
serve as navigation goals for the lower-level controller.

For each place that is created from a placeholder, we gen-
erate a set of eight views. The views are a discrete represen-
tation of the heading of the robot when located at a place,
and are assumed to be vectors pointing from a point of the
lattice to the eight immediately neighboring points. Since,
places are associated uniquely with lattice points, each view
will naturally point in the direction of only one neighboring
place. As a result, each path connecting a place to another
place or placeholder will be associated with a specific view.

Semantic Layer

In our initial implementation, the semantic layer captures
the information about semantic categories of places in the
topological map. This includes categories of rooms in which
places are located, such as an office or a corridor, but also a
functional place category corresponding to places located in
a doorway. The layer is implemented as a simple relational
data structure assigning place instances to semantic cate-
gories in the ontology of the deep default knowledge model.
Each such relation is associated with probability value. Ad-
ditionally, for each place, the layer captures the likelihood of
the peripersonal representation of the place being observed
for any of the semantic categories. That likelihood is used
to detect and explicitly represent that a place belongs to a
novel category, i.e. one that is not recognized by the default
knowledge model.

5 Representing Default Knowledge

In our implementation, default knowledge is modeled us-
ing a recently proposed Deep Generative Spatial Model
(DGSM) (Pronobis and Rao 2017), a probabilistic deep
model which learns a joint distribution over spatial knowl-
edge represented at multiple levels of abstraction. We apply
the deep model to capture generic spatial concepts and rela-
tions between knowledge represented in peripersonal, topo-
logical, and semantic layers. Once learned, it enables a wide
range of probabilistic inferences. First, based on the knowl-
edge in the peripersonal layer, it can infer descriptors of
views and places, as well as semantic categories of places.
Moreover, it can detect that a place belongs to a novel cate-
gory, not known during training. Inference can also be per-
formed over the contents of the peripersonal representation.
The model can infer missing geometry information resulting



Fig. 4: An SPN for a naive Bayes mixture model P(X1,X2),
with three components over two binary variables. The bot-
tom layer consists of indicators for each of the two variables.
Weights are attached to inputs of sums. Y1 represents a latent
variable marginalized out by the top sum node.

from partial observations and generate prototypical periper-
sonal representations based on semantic information.

To this end, DGSM leverages Sum-Product Networks
(SPNs), a novel probabilistic deep architecture (Poon and
Domingos 2011; Peharz et al. 2015), and a unique structure
matching the hierarchy of representations in DASH. Below,
we give a primer on Sum-Product Networks and describe the
details of the architecture of the DGSM model.

Sum-Product Networks

Sum-product networks are a recently proposed probabilis-
tic deep architecture with several appealing properties and
solid theoretical foundations (Peharz et al. 2015; Poon and
Domingos 2011; Gens and Domingos 2012). One of the
primary limitations of probabilistic graphical models is the
complexity of their partition function, often requiring com-
plex approximate inference in the presence of non-convex
likelihood functions. In contrast, SPNs represent probabil-
ity distributions with partition functions that are guaranteed
to be tractable, involve a polynomial number of sums and
product operations, permitting exact inference. While not
all probability distributions can be encoded by polynomial-
sized SPNs, recent experiments in several domains show that
the class of distributions modeled by SPNs is sufficient for
many real-world problems, offering real-time efficiency.

SPNs model a joint or conditional probability distribu-
tion and can be learned both generatively (Poon and Domin-
gos 2011) and discriminatively (Gens and Domingos 2012)
using Expectation Maximization (EM) or gradient descent.
They are a deep, hierarchical representation, capable of rep-
resenting context-specific independence. As shown in Fig. 4
on a simple example of a naive Bayes mixture model, the
network is a generalized directed acyclic graph of alternat-
ing layers of weighted sum and product nodes. The sum
nodes can be seen as mixture models, over components de-
fined using product nodes, with weights of each sum rep-
resenting mixture priors. The latent variables of such mix-
tures can be made explicit and their values inferred. This
technique is often used for classification models where the
root sum is a mixture of sub-SPNs representing multiple
classes. The bottom layers effectively define features react-
ing to certain values of indicators for the input variables.

Not all possible architectures consisting of sums and prod-
ucts will result in a valid probability distribution. How-
ever, following simple constraints on the structure of an
SPN will guarantee validity (see (Poon and Domingos 2011;
Peharz et al. 2015) for details).

Inference in SPNs is accomplished by an upward pass
through the network. Once the indicators are set to represent
the evidence, the upward pass will yield the probability of
the evidence as the value of the root node. Partial evidence
(or missing data) can easily be expressed by setting all indi-
cators for a variable to 1. Moreover, it can be shown (Poon
and Domingos 2011) that MPE inference can be performed
by replacing all sum nodes with max nodes, while retaining
the weights. Then, the indicators of the variables for which
the MPE state is inferred are all set to 1 and a standard
upward pass is performed. A downward pass then follows
which recursively selects the highest valued child of each
sum (max) node, and all children of a product node. The in-
dicators selected by this process indicate the MPE state of
the variables.

In this work, we learn the SPN using hard EM, which
was shown to work well for generative learning (Poon and
Domingos 2011) and overcomes the diminishing gradient
problem. The reader is referred to (Pronobis and Rao 2017)
for details about the learning procedure.

Architecture of DGSM

The architecture of DGSM is based on a generative SPN
illustrated in Fig. 5. The model learns a probability dis-
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C represents the semantic category of a place, DP
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constitute an internal descriptor of the place, D
V1
1 , . . . ,D

V8
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are descriptors of eight views, and X1, . . . ,XC are input vari-
ables representing the occupancy in each cell of the polar
grid of the peripersonal layer. Each occupancy cell is repre-
sented by three indicators in the SPN (for empty, occupied
and unknown space). These indicators constitute the bottom
of the network (orange nodes).

The structure of the model is partially static and partially
generated randomly according to the algorithm described
in (Pronobis and Rao 2017). The resulting model is a sin-
gle SPN, which is assembled from three levels of sub-SPNs.
First, we begin by splitting the polar grid of the peripersonal
layer equally into eight 45 degree parts, corresponding to
the views defined in the topological layer. For each view,
we randomly generate a sub-SPN over the subset of Xi rep-
resenting the occupancy within the view, as well as latent

variables D
Vi
1 , . . . ,D

Vi
Nv

serving as an internal view descriptor.
The sub-SPN can be seen as a mixture model consisting of
14 components in our implementation. In the second level,
we use the distributions defining the components from each
view (8 ∗ 14 in total) as inputs, and generate random SPNs
representing each of the semantic place classes in the ontol-
ogy. Each of such SPNs is itself a mixture model with the
latent variable DP

i being part of the place descriptor. Finally,
in the third level, the sub-SPNs for place classes are com-
bined by a sum node (mixture) forming the root of the whole
network. The latent variable associated with the root node is



Fig. 5: The structure of the SPN implementing our spatial
model. The bottom images illustrate a robot in an environ-
ment and a robocentric polar grid formed around the robot.
The SPN is built on top of the variables representing the oc-
cupancy in the polar grid.

C and is set to the appropriate class label during learning.
Overall, such decomposition allows us to use networks of
different complexity for representing lower-level features of
each view and for modeling the top composition of views
into place classes.

6 Experimental Evaluation

Our experimental evaluation consists of two parts. First, we
evaluated the ability of the deep default knowledge model
implemented with DGSM to perform both top-down and
bottom-up inferences across the layers of the representation.
Then, we deployed our complete implementation of DASH

in order to build representations of large-scale environments.

Experimental Setup

Our experiments were performed on laser range data
from the COLD-Stockholm database (Pronobis and Jensfelt

(a) (b)

Fig. 6: Results of experiments with bottom-up inference:
(a) normalized confusion matrices for semantic place cate-
gorization; (b) ROC curves for novelty detection (inliers are
considered positive, while novel samples are negative).

2012). The database contains multiple data sequences cap-
tured using a mobile robot navigating with constant speed
through four different floors of an office building. On each
floor, the robot navigates through rooms of different seman-
tic categories. Four of the room categories contain multiple
room instances, evenly distributed across floors. There are 9
different large offices, 8 different small offices, 4 long corri-
dors (1 per floor, with varying appearance in different parts),
and multiple examples of observations captured when the
robot was moving through doorways. The dataset features
several other room categories: an elevator, a living room, a
meeting room, a large meeting room, and a kitchen. How-
ever, with only one or two room instances in each. There-
fore, we decided to use the four categories with multiple
room instances for the majority of the experiments and des-
ignated the remaining classes as novel when testing novelty
detection.

To ensure variability between the training and testing sets,
we split the samples from the four room categories four
times, each time training the model on samples from three
floors and leaving one floor out for testing. The presented
results are averaged over the four splits.

Bottom-up Inference

First, we evaluated the ability of DGSM to infer semantic
place categories given information in the peripersonal layer.
As a comparison, we used a well-established model based
on an SVM and geometric features (Mozos, Stachniss, and
Burgard 2005; Pronobis et al. 2010a). The features were ex-
tracted from laser scans raytraced in the same local Cartesian
grid maps used to form polar grids of the peripersonal layer.
We raytraced the scans in high-resolution maps (2cm/pixel),
to obtain 362 beams around the robot. To ensure the best
SVM result, we used an RBF kernel and selected the kernel
and learning parameters directly on the test sets.

The models were trained with peripersonal representa-
tions obtained for locations on three floors in places belong-
ing to four place categories, and evaluated on the fourth floor
or using data from rooms designated as novel. The classifica-
tion rate averaged over all classes (giving equal importance
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Fig. 7: Prototypical peripersonal representations inferred
from semantic place category.

(a) Corridor (b) Doorway

(c) Small Office (d) Large Office

Fig. 8: Examples of completions of peripersonal represen-
tations with missing data grouped by true semantic category.

to each class) and data splits was 85.9%±5.4 for SVM and
92.7%± 6.2 for DGSM, with DGSM outperforming SVM
for every split. The normalized confusion matrix for DGSM
is shown in Fig. 6(a). Most of the confusion exists between
the small and large office classes. Offices in the dataset of-
ten have complex geometry that varies greatly between room
instances.

Additionally, we evaluated the quality of the uncertainty
measure produced by DGSM and its applicability to detect-
ing novel concepts. To this end, we thresholded the likeli-
hood of the test peripersonal representations produced by
DGSM to decide whether the robot is located in a place be-
longing to a class known during training. We compared to a
one-class SVM with an RBF kernel trained on the geometric
features. The cumulative ROC curve for the novelty detec-
tion experiments over all data splits is shown in Fig. 6(b). We
see that DGSM offers a significantly more reliable novelty
signal, with AUC of 0.81 compared to 0.76 for SVM.

Top-down Inference

In the second experiment, we used DGSM to perform infer-
ence in the opposite direction, and infer values of cells in
the peripersonal representation. First, we inferred complete,
prototypical peripersonal representations of places knowing
only place semantic categories. The generated polar occu-
pancy grids are shown in in Fig. 7a-d. We can compare the
plots to the true examples depicted in Fig. 2. We can see that
each polar grid is very characteristic of the class from which
it was generated. The corridor is an elongated structure with

walls on either side, and the doorway is depicted as a nar-
row structure with empty space on both sides. Despite the
fact that, as shown in Fig. 2, large variability exists between
the instances of offices within the same category, the gener-
ated observations of small and large offices clearly indicate
a distinctive size and shape.

Then, we used DGSM to generate missing values in par-
tial observations of places. To this end, we masked a random
90-degree view in each test polar grid (25% of the grid cells).
All indicators for the masked polar cells were set to 1 to in-
dicate missing evidence and MPE inference followed. Fig. 8
shows examples of peripersonal representations filled with
predicted information to replace the missing values. Overall,
when averaged over all test examples and data splits, DGSM
correctly reconstructed 77.14%±1.04 of masked cells. This
demonstrates its generative potential.

Representing Large-Scale Space

In our final experiment, we deployed the complete imple-
mentation of DASH and evaluated its ability to build compre-
hensive, multi-layered representations of large-scale space.
Specifically, we tasked it with representing the 5-th and 7-
th floor of the office building in the COLD-dataset, which
measure respectively 298 and 435 square meters. In each
case, we incrementally built the representation based on the
sensory data captured as the robot navigated through the
environment. We relied on the perceptual layer to perform
low-level integration of observed laser scans, on periper-
sonal layer to capture local place information, the topologi-
cal layer to maintain a consistent topological graph express-
ing navigability and knowledge gaps related to unexplored
space, and finally on the semantic layer to encode informa-
tion about semantic categories of places, including detec-
tions of novel semantic categories.

Fig. 9 illustrates the state of the representation after two
completed runs over the 5-th floor. The figure presents the
final topological graph of places visited by the robot, paths
expressing navigability between them, as well as paths lead-
ing to placeholders representing possibility of further explo-
ration. For each place, we use color to illustrate the inferred
semantic category, or detection of a novel category. First,
we can observe that places are evenly distributed across
the environment and exist in locations which are relevant
for navigation or significant due to their semantics (e.g.
in doorways). Moreover, the graphs created during differ-
ent runs are similar and largely consistent. Second, the se-
mantic place categories inferred by DGSM agree with the
ground truth when the category of the place was recognized
as known. To detect novel classes, we again thresholded the
estimates of the likelihood of the peripersonal representa-
tions provided by DGSM. On the 5-th floor, the novel cate-
gory was “meeting room” and two meeting rooms are shown
in the bottom part of the map. Although both false positives
and false negatives exist, places in both meeting rooms are
largely correctly classified as belonging to novel categories.

Fig. 10 shows results for a different environment, the 7-th
floor. Similar observations can be made as for the 5-th floor.
However, here the novelty detection is less accurate. DGSM
correctly detects the places in the elevator as novel (marked
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Fig. 9: Contents of the topological and semantic layers after two different runs over 5-th floor. Gray nodes represent placehold-
ers, while blank nodes indicate places detected as belonging to novel categories. Colors indicate recognized semantic place
categories: blue for a corridor, green for a doorway, yellow for a small office, and magenta for a large office. The two large
bottom rooms belong to a novel category: “meeting room”.

Fig. 10: Contents of the topological and semantic layers after a single run over the 7-th floor. Gray nodes represent placehold-
ers, while blank nodes indicate places detected as belonging to novel categories. Colors indicate recognized semantic place
categories: blue for a corridor, green for a doorway, yellow for a small office, and magenta for a large office. The rooms marked
with letters A and B belong to novel categories: “living-room” and “elevator”.

with “B” in the figure), but fails to detect novelty in the liv-
ing room (“A” in the figure), which instead is misclassified
as “large office”. While not a desirable outcome, it is not
surprising, given the similarity between the living room and
large offices in the dataset when observed solely using laser
range sensors.

7 Conclusions and Future Work

This paper presented Deep Spatial Affordance Hierarchy, a
representation of spatial knowledge, designed specifically to
represent the belief about the state of the world and spatial
affordances for a planning algorithm on a mobile robot. We
demonstrated that an implementation following the princi-

ples of DASH can successfully learn general spatial concepts
at multiple levels of abstraction, and utilize them to obtain
a complete and comprehensive model of the robot environ-
ment, even for a relatively simple sensory input. The natu-
ral direction for future work is to extend our implementa-
tion to include more complex perceptions provided by vi-
sual and depth sensors. Additionally, we intend to train the
deep model of default knowledge to directly predict com-
plex place affordances related to human-robot interaction.
Finally, we are working to integrate our implementation of
DASH with a deep hierarchical planning approach to eval-
uate its capacity to support autonomous robot behavior in
complex realistic scenarios.
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