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Abstract—Domain-specific state representations are a funda-
mental component that enables planning of robot actions in
unstructured human environments. In case of mobile robots, it
is the spatial knowledge that constitutes the core of the state,
and directly affects the performance of the planning algorithm.
Here, we propose Deep Spatial Affordance Hierarchy (DASH),
a probabilistic representation of spatial knowledge, spanning
multiple levels of abstraction from geometry and appearance to
semantics, and leveraging a deep model of generic spatial con-
cepts. DASH is designed to represent space from the perspective of
a mobile robot executing complex behaviors in the environment,
and directly encodes gaps in knowledge and spatial affordances.
In this paper, we explain the principles behind DASH, and present
its initial realization for a robot equipped with laser-range sensor.
We demonstrate the ability of our implementation to successfully
build representations of large-scale environments, and leverage
the deep model of generic spatial concepts to infer latent and
missing information at all abstraction levels.

I. INTRODUCTION

Many recent advancements in the fields of robotics and

artificial intelligence have been driven by the ultimate goal

of creating artificial agents able to perform service tasks in

real environments in collaboration with humans [22, 23, 9].

While significant progress have been made in the area of robot

control, largely thanks to the success of deep learning [13], we

are still far from solving more complex scenarios that require

forming plans spanning large spatio-temporal horizons.

In such scenarios, domain-specific state representations play

a crucial role in determining the capabilities of the agent and

the tractability of the solution. In case of mobile robots oper-

ating in large-scale environments, it is the spatial knowledge

that constitutes the core of the state. As a result, the way in

which it is represented directly affects the actions the robot

can plan for, the performance of the planning algorithm, and

ultimately, the ability of the robot to successfully reach the

goal. For complex tasks involving interaction with humans,

the relevant spatial knowledge spans multiple levels of ab-

straction and spatial resolutions, including detailed geometry

and appearance, global environment structure, and high-level

semantic concepts. Representing such knowledge is a difficult

task given uncertainty and partial observability governing real

applications in human environments.

In this work, we propose Deep Spatial Affordance Hierarchy

(DASH), a probabilistic representation of spatial knowledge

designed to support and facilitate planning and execution of

complex behaviors by a mobile robot. The representation

encodes the belief about the state of the world as well as

spatial affordances, i.e. the possibilities of actions on objects

or locations in the environment. It does so by leveraging a hier-

archy of sub-representations (layers), which represent multiple

spatial knowledge abstractions (from geometry and appearance

to semantic concepts), using different spatial resolutions (from

voxels to places), frames of reference (allo- or ego-centric),

and spatial scopes (from local to global). The structure of

DASH corresponds to a hierarchical decomposition of the

planning problem. Additionally, DASH is designed to explicitly

represent and fill gaps in spatial knowledge due to uncertainty,

unknown concepts, missing observations or unexplored space.

This brings the possibility of using the representation in open-

world scenarios, involving active exploration and learning.

DASH includes both instance knowledge about the specific

robot environment as well as default knowledge about typ-

ical human environments. The latter is modeled using a re-

cently proposed Deep Generative Spatial Model (DGSM) [19].

DGSM leverages recent developments in deep learning, pro-

viding fully probabilistic, generative model of spatial concepts

learned directly from raw sensory data. DGSM unifies the

layers of our representation, enabling upwards and downwards

inferences about latent or missing spatial knowledge defined

at various levels of abstraction.

In this paper, we describe the architecture of DASH and

present its initial realization for a mobile robot equipped with

a laser range sensor. We perform a series of experiments

demonstrating the ability of the representation to perform

different types of inferences, including bottom-up inferences

about semantic spatial concepts and top-down inferences about

geometry of the environment. We then showcase its ability

to build semantic representations of large-scale environments

(e.g. floors of an office building).



II. RELATED WORK

The problem of representing spatial knowledge for mobile

robots has received significant attention. However, most of

the proposed approaches are specific to a particular sub-

problem and focus on a fraction of the broad spectrum of

spatial knowledge [11]. Moreover, the proposed solutions

rarely answer the question of how spatial knowledge should

be structured and used to support the behavior of the robot.

At the same time, several, more general frameworks have

been proposed, that try to address this question directly.

One of the first such frameworks was the Spatial Semantic

Hierarchy [12], which concentrates on lower levels of spatial

knowledge abstraction and does not support higher-level con-

ceptualization. Other early frameworks were designed to build

a representation from both spatial and semantic perspective [5,

27], but relied on traditional AI reasoning techniques unable

to incorporate uncertainty that is crucial to achieve robustness

in the real world. Several more recent approaches incorporated

probabilistic models into the representation [25, 26, 18, 1,

9]. However, these works either modeled uncertainty for only

certain aspects of the world or relied on an assembly of in

dependent spatial models, which exchange information in a

limited fashion.

On the other hand, recent deep learning revolution has

demonstrated that replacing multiple representations with a

single integrated model can lead to a drastic increase in

performance [13]. In this work, we propose an approach that

is comprehensive, designed specifically to support planning,

while at the same time leveraging a new deep model of general

knowledge spanning all levels of abstraction. In contrast to the

method in [24], which utilizes a deep convolutional network

for semantic mapping, our representation is fully probabilistic

and generative. Another recently proposed end-to-end, deep ar-

chitecture [8] learns to build metric maps and navigate towards

goals in the environment directly from visual observations.

While this approach focuses on a specific sub-problem, it

demonstrates the benefits of deep integration between spatial

understanding an hierarchical planning.

III. ANALYSIS OF THE PROBLEM

We begin with an analysis of roles and desired properties

of a spatial knowledge representation. We focus specifically

on scenarios involving large-scale, dynamic, human environ-

ments, such as office buildings, homes, and hospitals. We

assume a mobile robot capable of moving around and sensing

the environment, performing basic manipulation tasks (e.g.

grasping objects or pushing buttons), as well as interacting

and collaborating with humans (e.g. by asking for additional

information or requesting help when a task cannot be accom-

plished by the robot alone).

We recognize that the ultimate purpose of a spatial knowl-

edge representation is to enable and facilitate successful plan-

ning and execution of actions in the robot environment. More

specifically, following [4], we can see a representation as:

a) A surrogate for the world that allows the robot to

reason about the environment beyond its sensory horizon. The

surrogate can either represent the belief about the state of

the world (what the world looks like), or more directly, the

belief about affordances (what the robot can do at a place or

involving a spatial entity).

b) A set of commitments that determine the terms in which

the robot thinks about space. A representation specifies which

aspects of the world should be represented, at what level of

abstraction they should exist, which spatial frame of reference

should be used to relate them (absolute or relative, allo-

or ego-centric), and how long their representation should

persist. Importantly, these commitments significantly impact

the ability of the robot to plan specific actions and can be

seen as defining part of the action space of the robot.

c) A repository of general spatial knowledge that allows the

robot to perform inferences about latent or missing information

based on relations that typically occur in the real world.

Such repository can be gathered from experienced or simply

transferred to the robot.

d) A set of definitions that determine the reasoning that

can be (and should be) performed. This includes reasoning

about the location of the robot with respect to internal frames

of reference, inferring abstract concepts from observations

(e.g. affordances, semantic descriptions), or generating miss-

ing lower-level information from high-level descriptions (e.g.

position of occluded objects based on room category).

e) A medium of communication between the robot and

humans. Spatial knowledge is a natural common ground

for human-robot communication and knowledge transfer. A

representation supports this process by relating human spatial

concepts to those internal to the robot.

f ) A way of structuring spatial information so that it is

computationally feasible to perform inferences and planning

despite limited resources.

With that in mind and considering practical limitations of

the scenario as well as experience resulting from existing

approaches and robotic systems [12, 14, 23, 3, 9], we can

identify several desired properties of a spatial knowledge

representation.

First, spatial knowledge in realistic environments is inher-

ently uncertain and dynamic. A very accurate representation

is likely to be intractable and requires substantial effort to be

kept up-to-date. Moreover, its usability remains constrained by

the robot capabilities. Hence, our primary assumption is that

the representation should be minimal and only as expressive

as required to successfully act.

Complexity of planning increases exponentially with the

number of considered spatial entities. However, decomposing

the planning problem hierarchically can greatly reduce its

complexity while maintaining highly optimal results. For this

reason, hierarchical planners are used in the majority of

existing robotic systems [14, 1, 9, 8]. Moreover, behavioral

analyses found hierarchical spatial planning in humans [2].

Such an approach leads to a hierarchy of higher-level, long-

term, global plans involving lower-level short-term, local be-

haviors. To support such strategies, a spatial representation

should perform knowledge abstraction, providing symbols



corresponding to spatial phenomena of gradually increasing

complexity, anchored to reference frames of increasing spatial

scope and decreasing resolution. This often leads to dis-

cretization of continuous space, which reduces the number of

states for planning [10] and provides a basis for higher-level

conceptualization [27].

While abstracted knowledge is more likely to remain up-

to-date, detailed, spatial information is required for executing

actions in the robot peripersonal space. Yet, it can also

be re-acquired through perception. A representation should

correlate the levels of abstraction with the persistence of

information, employing local working memory for integrat-

ing high-resolution spatial information. In other words, the

robot should rely on the world as an accurate representation

whenever possible.

Representing uncertainty in the belief state is crucial for the

robot to make informed decisions in the real-world, e.g. when

planning for epistemic actions. Decision-theoretic planning

relies on probabilistic representations of uncertainty, therefore,

it is desirable for a representation to also be probabilistic in

nature.

Finally, a representation should not only represent what

is known about the world, but also what is unknown. This

includes explicit representation of missing evidence (e.g. due

to occlusions), unexplored space (e.g. exploration frontiers) or

unknown concepts (e.g. unknown object categories). Repre-

senting knowledge gaps can be exploited to address the open-

world problem (in the continual planning paradigm [9]), trade

exploration vs. exploitation [1], or drive learning.

IV. DEEP SPATIAL AFFORDANCE HIERARCHY (DASH)

Based on this analysis, we propose Deep Spatial Affordance

Hierarchy (DASH) as well as its initial realization for a

mobile robot equipped with a laser-range sensor. A general

overview of the architecture of the representation is shown

in Fig. 1. DASH represents the robot environment using four

sub-representations (layers) focusing on different aspects of

the world, encoding knowledge at different levels of abstrac-

tion and spatial resolutions as well as in different frames

of reference of different spatial scope. The characteristics

of the layers are summarized in Table I and were chosen

to simultaneously support both action planning and spatial

understanding. In particular, the former objective is realized

by directly representing spatial affordances, which we define

as the possibilities of actions on objects or locations in the

environment relative to the capabilities and state of the robot.

DASH is organized as a hierarchy of spatial concepts, with

higher-level layers providing a coarse, global representation

comprised of more abstract symbols, and lower-level layers

providing a more fine-grained representation of parts of the

environment anchored to the higher-level entities. The layers

are connected by a crucial component of the representation, the

probabilistic deep default knowledge model, which provides

definitions of generic spatial concepts and their relations across

all levels of abstraction. The hierarchy directly relates to

hierarchical decomposition of the planning problem. A global

Semantic

Topological

Peripersonal

Perceptual

Fig. 1: The multi-layered architecture of DASH. The percep-

tual layer integrates perceptual information from the robot

sensors. The peripersonal layer represents object and land-

mark information and affordances in the space immediately

surrounding the robot. The topological layer encodes global

topology, coarse geometry and navigation affordances. The se-

mantic layer relates the internal instance knowledge to human

semantic concepts. The four layers are connected by the deep

default knowledge model (shaded columns), which provides

definitions of generic spatial concepts and their relations across

all levels of abstraction.

planner can derive a navigation plan relying only on the

top layers for representing its beliefs, a local planner can

be used to plan actions using intermediate layers, with a

controller realizing them base on knowledge in the lowest-

level representation. Below, we provide details about each

component of the representation.

A. Perceptual Layer

The bottom, perceptual layer maintains an accurate rep-

resentation of geometry and appearance of the environment

obtained by short-term spatio-temporal integration of percep-

tual information. It relies on an allo-centric metric reference

frame, which facilitates integration of perception from mul-

tiple viewpoints and sensors. However, the representation is

always centered at the current robot location, and spans a

radius roughly corresponding to the sensory horizon. The

layer provides a more complete input for further abstractions

with reduced occlusions and noise, and forms a basis for

deriving low-level control laws. Missing observations (e.g. due

to unresolved occlusions) are explicitly represented.

In our initial implementation, we realize the layer using a

grid mapping approach based on Rao-Blackwellized particle



Perceptual Peripersonal Topological Semantic

World Aspects

Captured

Detailed geometry

and appearance

Object/landmark info,

coarse local geometry

Large-scale topology,

coarse global geometry

Human semantic

descriptions

Reference

Frame

Metric (allo-centric,

sliding window)

Collection of:

Metric (epi-centric)

Topological (allo-centric)

Metric (allo-centric)
Relational

Spatial Scope Sensory horizon Local Global Global

Spatial Entities Voxels Objects/landmarks Places, paths, views Relations to human concepts

Affordances —
Manipulation and

epistempic actions

Navigation and

epistemic actions

Human interaction actions

Tasks involving human concepts

Robot

Pose
Center of the window

Relative to

objects/landmarks
Place/view ID Described semantically

Knowledge

Gaps
Missing observations Missing evidence Unexplored space Novel semantic concepts

TABLE I: Characteristics of the four layers of DASH.

filter [7]. We crop the grid map to only retain a rectangular

fragment of size 10x10m, centered at the current position of

the robot. Consequently, we do not require global consistency

of the grid map, as long as the local environment is mapped

correctly.

B. Peripersonal Layer

The peripersonal layer captures spatial information related

to object and landmark instances from the perspective of

an agent performing actions at different locations in the

environment. The purpose of the layer is to represent object

affordances related to actions that can be performed directly by

the robot. This includes manipulation (e.g. reaching/grasping

an object or pressing a button), interaction in relation to objects

(e.g. pointing at an object), and epistemic action affordances

(e.g. observing an object). Furthermore, the layer captures

internal object and landmark descriptors as well as spatial

relations between objects in relation to the robot (and therefore

coarse local geometry). These descriptors are generated by the

deep default knowledge model and serve as a basis for further

abstractions.

To reflect the local and robo-centric nature of the repre-

sented information, the layer consists of a collection of ego-

centric, metric reference frames, each focusing on the space

immediately surrounding the robot at a different place in the

environment (see Fig. 1). The spatial scope of each of the

reference frames is defined primarily by the peripersonal space

of the robot, within which objects can be grasped and manip-

ulated. However, to support epistemic affordances, interaction

about objects, and higher-level conceptualization, the scope

can be extended to include additional context. For instance,

a reference frame centered in front of a desk might include

information about shelves in the room, even beyond the reach

of the robot. The peripersonal layer explicitly represents gaps

in knowledge about the local space due to missing evidence

(e.g. due to occlusions).

In our initial realization, the peripersonal representation

for each place is built and updated from the current local

occupancy grid in the perceptual layer. For each place, the

representation retains information about the part of the en-

vironment roughly corresponding to the boundaries of the

current room. To this end, we include grid cells that can

be raytraced from the robot location and augment those with

observations behind smaller obstacles. The selected grid cells

are transformed into an ego-centric polar representation (see

Fig. 4b for examples). This encodes high-resolution informa-

tion about the geometry and objects nearby, and complements

it with less-detailed context further away from the robot.

From the perspective of spatial understanding, this provides

sufficient context (e.g. the outline of a room) complemented

with relevant details for understanding the semantics of the

exact location (e.g. when the robot is in a doorway). From

the perspective of planning, it is also in the vicinity of the

robot that higher accuracy of spatial information is required.

The polar grids in our implementation assume a maximum

radius of 5m, with angle step of 6.4◦ and resolution decreasing

with the distance from the robot. Lack of evidence resulting

from occlusions is explicitly represented in the cells of the

polar representation. Such representation of peripersonal layer

is clearly a simplification, however one that results from the

nature of the laser-range data.

C. Topological Layer

The topological layer provides an efficient representation

of large-scale space, including coarse geometry and topology,

and serves several key roles in DASH. The layer performs

a bottom-up discretization of continuous space visited by

the robot into a set of locations, called places, and a set

of discrete headings, called views. The density of places

should be sufficient for planning global navigation, while

maintaining efficiency and robustness to dynamic changes.

Together, views and places are used to represent the complete

global pose of the robot. Additionally, they anchor knowledge

in the representation, including robot-internal descriptors of

each view and place derived from lower-levels using the deep

default knowledge model, and a peripersonal representation

describing the place in more detail.

Furthermore, the layer defines paths connecting neighboring

places into a topological graph. The semantics of a path

between two places is the possibility of navigating directly

from one place to the other. Thus, essentially, paths represent

navigation place affordances (together with estimated uncer-

tainty). The topological nature of the graph enables planning of

complex navigational tasks. For instance, a place in an elevator



might afford navigating to places on different floors, depending

on the information captured in the peripersonal layer (e.g.

displayed floor number).

Existence of a path in the graph does not necessarily imply

that it has previously been traveled by the robot. In fact, a path

can indicate the possibility of navigating towards unexplored

space. To this end, the topological layer utilizes the concept of

placeholders [21], which can be seen as candidate places used

to explicitly represent unexplored space. As a result, paths

that lead to placeholders express the possibility of epistemic

exploration actions. This can be used to address the open world

problem in the continual planning paradigm [9].

In our implementation, the topological layer is expanded

incrementally. Placeholders are added at neighboring unex-

plored locations based on information in the perceptual layer,

and connected with paths to existing places. Then, once the

robot performs an exploration action, a new place is generated

to which a peripersonal representation, as well as place and

view descriptors are anchored. At this point, the path between

the two places signifies navigation affordance associated with

probability based on up-to-date information.

Similarly to [3], we formulate the problem of finding place-

holder locations as sampling from a probability distribution

that models their relevance and suitability. However, instead

of sampling locations of all places at once, we incremen-

tally add placeholders, within the scope of the perceptual

layer. Specifically, the probability distribution is modeled as:

P (E|G, E) = 1
Z

∏
i φS(Ei|G)φN (Ei|E), where Ei ∈ {0, 1}

represents the existence of a new place at location i in the

perceptual layer, G is the perceptual occupancy grid, and E
is the set of locations of all existing places. The potential φS

ensures that placeholders are located in areas that are safe and

preferred for navigation and constitute useful anchors. It is

defined in terms of potentials calculated from G: φS(Ei) =
φO(Ei)(φV (Ei) + φP (Ei)− φV (Ei)φP (Ei)), where:

• φO ensures that placeholders are created in areas safe from

collisions with obstacles. It depends on the distance do to

the nearest obstacle and is calculated similarly to the cost

used for obstacle avoidance [14]. φo equals 0 for distance

smaller than the radius r of the robot and 1−exp(−α(do−
r)) otherwise.

• φV = exp(−γdc) depends on the distance dc to the

nearest node of a Voronoi graph of the 2D grid G. This

promotes centrally located places that are often preferred

for navigation.

• φP promotes places inside narrow passages (e.g. doors).

The potential is generated by convolving the local map with

a circular 2D filter of a radius corresponding to the average

width of a door.

The potential φN promotes positions at a certain distance

dn from existing places, and is defined as: φN (Ei|E) =
∑

p∈E
exp(− (d(i,p)−dn)

2

2σ2 ), where d(i, p) is an Euclidean dis-

tance between the potential new place and an existing place.

Final location of a new placeholder is chosen through MPE

inference in P (E|G, E). A path is then created which connects

the placeholder to an existing place. Each path is associated

with probability indicating navigability, which is estimated by

performing A* search directly over the potential function φS

and accumulating the potential along the trajectory.

In order to incorporate knowledge about coarse global

geometry into the topological representation, we further relate

placeholders and places to a global low-resolution lattice

(0.8m distance between points in our experiments). As the

robot moves through the environment, the lattice is extended,

while preserving consistency with existing lattice points. When

performing MPE inference using P (E|G, E), we assume that

only one place can exist in a cell of a Voronoi tessellation

established by the points of the lattice. The resulting set of

placeholders will uniquely correspond to lattice points, yet be

created only in locations which are suitable, and can serve as

navigation goals for the lower-level controller. For each new

place, we generate a set of eight views which are assumed

to be vectors pointing from a point of the lattice to the eight

immediately neighboring points.

D. Semantic Layer

On the top of DASH is the semantic layer, a probabilistic

relational representation relating the spatial entities in the

other layers to human semantic spatial concepts defined in the

deep default knowledge model. It is the role of the semantic

layer to capture the knowledge that an object is likely to be

a cup, or that certain places are likely to be located in a

kitchen. Furthermore, it is the semantic layer that represents

place affordances related to human interaction and actions

characterized in terms of human concepts (e.g. asking a person

for help with opening a door or finding a cup at a place).

Finally, the layer stores asserted human knowledge passed to

the robot, which can be used by the default knowledge model

to infer lower-level information.

In our initial implementation, the semantic layer is a simple

relational data structure that captures the information about

semantic categories of places in the topological map. This

includes categories of rooms in which places are located (e.g.

an office or a corridor), but also a functional place category

corresponding to a doorway. The relations are inferred by

the default knowledge model from place descriptors and each

relation is associated with a probability value. Additionally, for

each place, the layer captures the likelihood of the information

in the peripersonal representation under the default knowledge

model. This likelihood is used to detect and explicitly represent

that a place belongs to a novel, previously unseen category.

V. REPRESENTING DEEP DEFAULT KNOWLEDGE

While the four layers of the representation focus on instance

knowledge about a specific robot environment, the deep default

knowledge model captures general spatial knowledge about

typical human environments. It provides definitions of spatial

concepts and their relations across all levels of abstraction.

This includes models of objects in terms of low-level per-

ception, places in terms of objects, or semantic categories

and attributes of objects and places. The role of the default



knowledge model is to permit inferences about missing or

latent aspects of the environment based on the evidence col-

lected across all the layers of the representation. This includes

bottom-up inferences (e.g. about semantic descriptions based

on perception) and top-down inferences (e.g. about place

geometry based on semantic descriptions). The result is a more

complete (albeit uncertain) belief state for the planner.

In our implementation, the default knowledge is modeled

using a recently proposed Deep Generative Spatial Model

(DGSM) [19], a probabilistic deep model which learns a joint

distribution over spatial knowledge represented at multiple

levels of abstraction. Once learned, it enables a wide range

of probabilistic inferences. First, based on the knowledge in

the peripersonal layer, it can infer descriptors of views and

places, as well as semantic categories of places. Moreover,

it can detect that a place belongs to a novel category, not

known during training. Inference can also be performed in the

opposite direction. The model can infer missing information

in peripersonal layer resulting from partial observations and

generate prototypical peripersonal representations based on

semantic descriptions. To this end, DGSM leverages Sum-

Product Networks (SPNs), a novel probabilistic deep archi-

tecture [17, 16], and a unique structure which matches the

hierarchy of instance representations in DASH. Below, we give

a primer on SPNs and describe the architecture of DGSM.

A. Sum-Product Networks

SPNs are a recently proposed probabilistic deep architecture

with several appealing properties and solid theoretical founda-

tions [16, 17, 6]. One of the primary limitations of probabilistic

graphical models is the complexity of their partition function,

often requiring complex approximate inference in the presence

of non-convex likelihood functions. In contrast, SPNs repre-

sent probability distributions with partition functions that are

guaranteed to be tractable, and involve a polynomial number of

sum and product operations, permitting exact inference. SPNs

model joint or conditional distributions and can be learned

generatively [17] or discriminatively [6] using Expectation

Maximization (EM) or gradient descent. They are a deep,

hierarchical representation, capable of representing context-

specific independence.

As shown in Fig. 2, an SPN is a generalized directed acyclic

graph of alternating layers of weighted sum and product

operations. The sums can be seen as mixture models, over

components defined using products, with weights of each

sum representing mixture priors. The latent variables of such

mixtures can be made explicit and their values inferred. In

DGSM, such latent variables are used to represent internal

descriptors of places and views and their semantic descrip-

tions. The bottom layers effectively define features reacting to

certain values of input variables. Not all possible architectures

consisting of sums and products result in valid probability

distributions and certain constraints [17, 16] must be followed

to guarantee validity.

Evidence in SPNs is typically specified in terms of binary

indicators corresponding to values of categorical variables.

Fig. 2: The structure of the SPN implementing DGSM.

Weighted sum nodes are marked with +, while product nodes

are marked with ×. Explicit latent variables of the mixture

models realized by the sums are indicated using callouts. The

bottom image illustrates a robot in an environment and a

robocentric polar grid of the peripersonal layer formed around

the robot. The SPN is built on top of indicator variables

(orange) representing the occupancy in each cell of the polar

grid (one for empty, occupied and unknown space).

Partial or missing evidence can be expressed by setting all

indicators of a variable to 1 (see [17] for a discussion about

continuous variables). Inference is then accomplished by an

upwards pass which calculates the probability of the evidence

and a downwards pass which obtains marginal distributions or

MPE state of the missing evidence [17, 6]. In this work, we

learn the SPN using hard EM, which was shown to work well

for generative learning [17] and overcomes the diminishing

gradient problem. The reader is referred to [19] for details

about the learning procedure.

B. Architecture of DGSM

The architecture of DGSM is based on a generative SPN

illustrated in Fig. 2. The model learns a probability distribution

P (C,DP
1 , . . . , D

P
Np

, DV1

1 , . . . , DV8

Nv
, X1, . . . , XNx

), where C

represents the semantic category of a place, DP
1 , . . . , D

P
Np

constitute an internal descriptor of the place, DV1

1 , . . . , DV8

Nv

are descriptors of eight views of the place, and X1, . . . , XC

are input variables representing the occupancy in each cell of

the polar grid of the peripersonal layer.

The structure of the model is partially static and partially



generated randomly according to the algorithm described

in [19]. The resulting model is a single SPN, which is

assembled from three levels of sub-SPNs. First, we begin by

splitting the polar grid of the peripersonal layer equally into

eight 45 degree parts, corresponding to the views defined in

the topological layer. For each view, we generate a sub-SPN

over the subset of Xi representing the peripersonal information

within the view, as well as latent variables DVi

1 , . . . , DVi

Nv

serving as the internal view descriptor. The root of that

sub-SPN can be seen as a mixture model consisting of 14

components in our implementation. On the second level, we

use the 14 components for each view (8∗14 in total) as inputs,

and generate an SPN representing the complete place. Such

place SPN is a distribution modeling a single semantic place

category and is itself a mixture model with the latent variable

DP
i being part of the place descriptor. Finally, on the third

level, we combine multiple place SPNs, each representing a

single semantic category by a sum node forming the root of the

complete network. The latent variable associated with the root

node is C which is set to the appropriate semantic class label

during learning. Overall, such decomposition allows us to use

networks of different complexity for representing lower-level

features of each view and for modeling the top composition

of views into place descriptions.

VI. EXPERIMENTAL EVALUATION

Our experimental evaluation consists of two parts. First, we

demonstrate the ability of the deep default knowledge model

implemented with DGSM to perform both top-down and

bottom-up inferences across the layers of the representation.

Then, we deploy our complete implementation of DASH in

order to build representations of large-scale environments.

A. Experimental Setup

The experiments were performed on laser range data from

the COLD-Stockholm database [18]. The database contains

multiple data sequences captured using a mobile robot navigat-

ing with constant speed through four different floors of an of-

fice building. On each floor, the robot navigates through rooms

of different semantic categories. There are 9 different large

offices, 8 different small offices (distributed across the floors),

4 long corridors (1 per floor, with varying appearance in

different parts), and multiple examples of places in doorways.

The dataset features several other room categories: an elevator,

a living room, a meeting room, and a kitchen. However, with

only one or two room instances in each. Therefore, we decided

to designate those as novel when testing novelty detection

and used the remaining four categories for the majority of the

experiments. To ensure variability between the training and test

sets, we split the data samples four times, each time training

the DGSM model on samples from three floors and leaving

one floor out for testing. The presented results are averaged

over the four splits.

B. Bottom-up Inference

The bottom-up inference was tested for the task of inferring

semantic place categories and detecting novel place categories

given the information in the peripersonal layer. As a com-

parison, we used a well-established model based on an SVM

and geometric features extracted from laser scans [15, 20].

The features were extracted from scans raytraced in the same

local Cartesian grid maps used to form polar grids of the

peripersonal layer. We raytraced 362 beams around the robot

in high-resolution maps (2cm/pixel). To ensure the best SVM

result, we used the RBF kernel and selected the kernel and

learning parameters directly on the test set. We used C-SVC

for classification and 1-class SVM for novelty detection.

The models were trained for places belonging to the four

place categories from three floors, and evaluated on the fourth

floor or using data from rooms designated as novel. The

classification rate averaged over all classes (giving equal

importance to each class) and data splits was 85.9%± 5.4 for

SVM and 92.7%±6.2 for DGSM, with DGSM outperforming

SVM for every split. For the novelty detection task, to decide

whether the robot is located in a place belonging to a class

known during training, we thresholded the likelihood produced

by DGSM for the test peripersonal representations. We com-

pared that to predictions of 1-class SVM. As a measure of

performance, we used the area under the ROC curve (AUC).

Here, again, DGSM performed significantly better, with AUC

of 0.81 compared to 0.76 for SVM.

C. Top-down Inference

To test top-down inference, we used DGSM to infer values

of cells in the peripersonal representation. First, we inferred

complete, prototypical representations of places knowing only

semantic categories. The generated polar occupancy grids are

shown in Fig. 4a (compare to true data samples shown in

Fig. 4b). We can see that each peripersonal representation is

very characteristic of the class from which it was generated.

The corridor is an elongated structure, the doorway is a narrow

structure with empty space on both sides, and the offices

clearly differ in shape and size.

Then, we used DGSM to generate missing values in par-

tial peripersonal representations. To this end, we masked a

random 90-degree view in each test polar grid (25% of the

grid cells) and inferred the masked values. Fig. 4b shows

examples of completed peripersonal representations. Overall,

when averaged over all test examples and data splits, DGSM

correctly reconstructed 77.14% ± 1.04 of masked cells. This

demonstrates its generative potential.

D. Representing Large-Scale Space

Finally, we deployed the complete implementation of DASH

and evaluated its ability to build comprehensive, multi-layered

representations of large-scale space. We incrementally built

the representations based on the sensory data captured as the

robot navigated through floors of the building in the COLD-

dataset. We relied on the perceptual layer to perform low-level

integration of observed laser-range data, on the peripersonal

layer to capture local place information, the topological layer

to maintain a consistent topological graph expressing naviga-

bility and knowledge gaps related to unexplored space, and



(a) Floor 5, run #1 (b) Floor 5, run #2 (c) Floor 7

Fig. 3: Contents of the topological and semantic layers after two different runs over 5-th floor (a-b) and a run over the 7-th floor

(c). Gray nodes represent placeholders, while blank nodes indicate places detected as belonging to novel categories. Colors

indicate recognized semantic place categories: blue for a corridor, green for a doorway, yellow for a small office, and magenta

for a large office. Rooms marked with letters A-D belong to novel categories: A and B are meeting rooms, C is a living room

and D is an elevator.

Corridor Doorway Small Office Large Office

(a)

Corridor Doorway

Small Office Large Office

(b)

Fig. 4: (a) Prototypical peripersonal representations inferred

from semantic place category. (b) Examples of completed

peripersonal representations with masked data. The examples

are grouped by true semantic category, with the left image

showing original data, and the right image showing recon-

structed data within the shaded area.

on the semantic layer to encode information about semantic

categories of places, including detections of novel semantic

categories.

Fig. 3a-b illustrates the state of the topological and semantic

layers after two independent runs over the 5-th floor. While not

visualized, the peripersonal representations were also built for

each place. The figure presents the final graph of semantically

annotated places visited by the robot, paths expressing naviga-

bility between them, as well as paths leading to placeholders

representing possibility of further exploration. First, we can

observe that places are evenly distributed across the environ-

ment and exist in locations which are relevant for navigation or

significant due to their semantics (e.g. in doorways). Moreover,

the graphs created during different runs are similar and largely

consistent. Additionally, the semantic place categories inferred

by DGSM agree with the ground truth when the category of

the place was recognized as known. Places in the two rooms

belonging to a novel category “meeting room” (marked as A

and B) are largely correctly detected as novel, although both

false positives and false negatives exist.

Fig. 3c shows a corresponding result for a different en-

vironment, the 7-th floor. Here the novelty detection is less

accurate. DGSM correctly detects the places in the elevator

(marked as D) as novel, but fails to detect novelty in the living

room (marked as C), which instead is misclassified as a large

office. This can be explained by the similarity between the

living room and large offices in the dataset when observed

solely using laser range sensor. Overall, for both floors, our

implementation of DASH generates highly accurate and rich

representations.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents the Deep Spatial Affordance Hierarchy,

a representation of spatial knowledge, designed specifically to

represent the belief about the state of the world and spatial

affordances for a planning algorithm on a mobile robot. We

demonstrated that an implementation following the principles

of DASH can successfully learn general spatial concepts at

multiple levels of abstraction, and utilize them to obtain a

complete and comprehensive model of the robot environment,

even for a relatively simple sensory input. The natural direction

for future work is to extend our implementation to include

more complex perception provided by visual and depth sen-

sors. Additionally, we intend to train the deep model of default

knowledge to directly predict complex place affordances re-

lated to human-robot interaction. Finally, we are working to

integrate DASH with hierarchical planning to demonstrate its

capacity to support autonomous robot behavior in complex

realistic scenarios.
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