Back to Top

Novelty Detection Using Graphical Models for Semantic Room Classification

A. Susano Pinto, A. Pronobis, L. Paulo Reis

In Progress in Artificial Intelligence, 15th Portuguese Conference on Artificial Intelligence (EPIA'11), Lisbon, Portugal (L. Antunes, H. Pinto, eds.), volume 7026 of Lecture Notes in Computer Science, Springer, 2011.

About

This paper presents an approach to the problem of novelty detection in the context of semantic room categorization. The ability to assign semantic labels to areas in the environment is crucial for autonomous agents aiming to perform complex human-like tasks and human interaction. However, in order to be robust and naturally learn the semantics from the human user, the agent must be able to identify gaps in its own knowledge. To this end, we propose a method based on graphical models to identify novel input which does not match any of the previously learnt semantic descriptions. The method employs a novelty threshold defined in terms of conditional and unconditional probabilities. The novelty threshold is then optimized using an unconditional probability density model trained from unlabelled data.

BibTeX

@incollection{susanopinto2011epia,
  author =       {Susano Pinto, Andr\'{e} and Pronobis, Andrzej and Paulo Reis, Luis},
  title =        {Novelty Detection Using Graphical Models for Semantic Room Classification},
  booktitle =    {Progress in Artificial Intelligence, 15th Portuguese Conference on Artificial Intelligence (EPIA'11), Lisbon, Portugal},
  series =       {Lecture Notes in Computer Science},
  editor =       {Antunes, Luis and Pinto, H. Sofia},
  pages =        {326-339},
  volume =       7026,
  year =         2011,
  month =        oct,
  publisher =    {Springer},
  doi =          {10.1007/978-3-642-24769-9_24},
  isbn =         {978-3-642-24768-2},
  url =          {http://www.pronobis.pro/publications/susanopinto2011epia}
}
© 2018. Copyright Andrzej Pronobis
  • stackoverflow
  • scholar