0.1 Variables

d=1...D - Dimension of data space

¢ =1...Q - Dimension of latent/embedded space

n=1...N - Number of data points

0.2 Centered Data

Single centered data point

X, € §RD><1

Expected value:

1N
X=— x, =0
v

Matrix of all data points

Covariance Maxtrix

1
S =—X"X e RP*P
N <

Inner Product Maxtrix

X%Xl

0.3 Latent Variables / Points in Embedded Space

Single point

c §RN><D

X?XN

XIJ;;XN

Yn € RO
Matrix of all points
T
yi
Y = |yl | e RV*Q
YN

X and Y are design matrices



0.4 Linear Mapping
Linear Mapping Matrix

W = [Wl WQ] E?RDXQ (8)

w, € RPX! 9)

We can use the matrix to create a linear mapping between two spaces, input
and embedded. Typically,
Q<D (10)

Project the data to the embedded space

Yn,qg = xzwq (11)
Yn = WTXn (12)
Y = XW (13)

Recreate the data from the embedded space representation

Q

Xy = Zyn,qwq =Wy, (14)
qg=1
X=yYyw” (15)

Vectors w, can be seen as basis vectors for the new embedded space.
For convenience (and without loss of generality) the vectors w, can be as-
sumed to be orthonormal

0 i#7

Show a drawing here.

1 PCA

Find such space in which either variance is maximized or error is minimized.



1.1 Maximizing Variance

Maximize variance of the projected data

Q
2
argmax » o5(W) (17)

Let’s calculate covariance in the embedded space:

1
T = NYTY (18)
Y = XW (19)
T = %WTXTXW = W'sSw (20)

For @ =1and D =2:
o? =wlSw; (21)

As we will see, this minimization can be solved using spectral approaches.
Minimize with constraint wi w; = 1 using Lagrange multipliers method, we
get unconstrained minimization of:

wiSwy+ M (1—wiw) (22)
Setting the derivative to 0, we get:
SW1 = /\1W1 (23)

This makes w1 an eigenvector of S and A; the corresponding eigenvalue. We
can retrieve the original variance for each value of wy:

WiSw; =\ Wiw, =\ =07 (24)

A\ =07 (25)

As a result, it is best to choose the eignvector with the largest eigenvalue to
maximize the variance. This operation can be repeated iteratively and the
“remaining” variance (this has a term!) will be given by:

D
PR (26)
i=Q+1
1.2 Minimizing Error
Maximize the projection error
1N

argmin — X, — Xn (W)]|? 27
gin 2 o = (W) (21)



This leads to an identical solution:
SWZ' = )\zwz (28)

with a corresponding distortion measure:

Z Ai (29)

i=Q+1

2 Continuous Latent Variable Model

Maximum likelihood estimation is often used to find parameters of a statistical
model based on a set of data samples:

N
argmax Z Inp(x,|0) (30)
e

n=1

If we have a latent variable model, we first have to obtain the marginal
likelihood. We integraate over the latent variables:

P(%,]©) = / Pl ©)p(¥n)dyn (31)

[likelihood], [prior]

3 Probabilistic PCA

Represent X using a lower dimensional set of latent variables Y. Previously, we
had:
X, = Wy, (32)

Xp = in + €n (33)

Now, assume a linear relationship with noise added (to model the recon-
struction error):
Xn = Wy, + n (34)

Where the noise 1, € RP*! is assumed to be an independent sample from a
spherical Gaussian distribution:

p(nn) = N(nn|0a 021) (35)

The likelihood of an input data point can then be written as (using inde-
pendence of data points):

N
XY, W) = [] N (xa[Wya, 0°T) (36)



To obtain the marginal likelihood, we integrate over the latent variables:
pXIW) = [ pXIY, Wp(X)0Y (37

which requires us to specify a prior over Y. To obtain a probabilistic PCA, we
have to use a zero mean, unit covariance Gaussian distribution:

N

p(Y) = [[N(yalo.T) (38)

n=1

The final marginal likelihood can be found analytically:

N
p(X[W) = [[N(xal0, WW” + 0°T) (39)
n=1

Parameters W are found through maximization of that one (Tipping and Bishop
’99).

N
argmax = Z In N (x,]0, WWT 4 521) (40)
w

n=1

The result can be found analytically using spectral methods.
W = UgLv” L= (Ag—0c°I)? (41)

Where V is an arbitrary rotation matrix and Ug is a matrix of @) eigenvectors
with largest eigenvalues Ag of S = %XTX. Therefore W consists of scaled and
rotated eigenvectors of the covariance matrix S for which the eigenvalues are

largest. Therefore, the model has an interpretation as a probabilistic version of
PCA.

4 Dual Probabilistic PCA

A dual representation of PPCA can be achieved by marginalizing over the pa-
rameters W rather than the latent variables Y and optimizing Y rather than
w.

To obtain the marginal likelihood, we integrate over the parameters:

P(XIY) = [ p(XIY,W)p(W)dW (42)
which requires us to specify a prior over W. To obtain a probabilistic PCA, we

have to use a zero mean, unit covariance Gaussian distribution:

D

p(W) = [[ N(wal0,T) (43)

d=1



The final marginal likelihood can be found analytically:

D
p(X[Y) = [[Nxal0, YYT 4 0°T) (44)
d=1

Latent variables Y are found through maximization of that one (Neil Lawrence
IIML’05).
D
argmax = Z InN(x,|0, YYT + 521) (45)
Y d=1

The result can be found analytically using spectral methods.
X =U/oLV” L= (Ag - c°I)? (46)

Where V is an arbitrary rotation matrix and U’ is a matrix of @) eigenvectors
with largest eigenvalues Ag of %XXT. This can be shown to be equivalent to
probabilistic PCA.

5 (Gaussian Processes

fiRC R (47)

{y1,y2,...,yn} C R (48)

p(f(y1), f(y2),---» f(yn)) (49)

k(yi y;) (50)

p(f(y1), f(y2),..., flyn)) = N(0,K) (51)
k(y1,y1) - k(y1,yn))

K= (52)
k(yn,y1) - k(yn,yn))

0’1 (53)

k(yi,y;) =yiy;+0°0; (54)

K=YY" +0%I (55)



