
0.1 Variables

d = 1 . . . D - Dimension of data space
q = 1 . . . Q - Dimension of latent/embedded space
n = 1 . . . N - Number of data points

0.2 Centered Data

Single centered data point
xn ∈ <D×1 (1)

Expected value:

x̄ =
1

N

N∑
n=1

xn = 0 (2)

Matrix of all data points

X =



xT
1
...

xT
n
...

xT
N

 ∈ <
N×D (3)

Covariance Maxtrix

S =
1

N
XTX ∈ <D×D (4)

Inner Product Maxtrix

XXT =

xT
1 x1 · · · xT

1 xN

...
. . .

...
xT
Nx1 · · · xT

NxN

 ∈ <N×N (5)

0.3 Latent Variables / Points in Embedded Space

Single point
yn ∈ <Q×1 (6)

Matrix of all points

Y =



yT
1
...

yT
n
...

yT
N

 ∈ <
N×Q (7)

X and Y are design matrices
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0.4 Linear Mapping

Linear Mapping Matrix

W =
[
w1 · · · wQ

]
∈ <D×Q (8)

wq ∈ <D×1 (9)

We can use the matrix to create a linear mapping between two spaces, input
and embedded. Typically,

Q < D (10)

Project the data to the embedded space

yn,q = xT
nwq (11)

yn = WTxn (12)

Y = XW (13)

Recreate the data from the embedded space representation

x̃n =

Q∑
q=1

yn,qwq = Wyn (14)

X̃ = YWT (15)

Vectors wq can be seen as basis vectors for the new embedded space.
For convenience (and without loss of generality) the vectors wq can be as-

sumed to be orthonormal

wT
i wj = δij =

{
0 i 6= j
1 i = j

(16)

Show a drawing here.

1 PCA

Find such space in which either variance is maximized or error is minimized.
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1.1 Maximizing Variance

Maximize variance of the projected data

argmax
W

Q∑
q=1

σ2
q (W) (17)

Let’s calculate covariance in the embedded space:

T =
1

N
YTY (18)

Y = XW (19)

T =
1

N
WTXTXW = WTSW (20)

For Q = 1 and D = 2:
σ2
1 = wT

1 Sw1 (21)

As we will see, this minimization can be solved using spectral approaches.
Minimize with constraint wT

1 w1 = 1 using Lagrange multipliers method, we
get unconstrained minimization of:

wT
1 Sw1 + λ1(1−wT

1 w1) (22)

Setting the derivative to 0, we get:

Sw1 = λ1w1 (23)

This makes w1 an eigenvector of S and λ1 the corresponding eigenvalue. We
can retrieve the original variance for each value of w1:

wT
1 Sw1 = λ1w

T
1 w1 = λ1 = σ2

1 (24)

λ1 = σ2
1 (25)

As a result, it is best to choose the eignvector with the largest eigenvalue to
maximize the variance. This operation can be repeated iteratively and the
“remaining” variance (this has a term!) will be given by:

D∑
i=Q+1

λi (26)

1.2 Minimizing Error

Maximize the projection error

argmin
W

1

N

N∑
n=1

‖xn − x̃n(W)‖2 (27)
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This leads to an identical solution:

Swi = λiwi (28)

with a corresponding distortion measure:

D∑
i=Q+1

λi (29)

2 Continuous Latent Variable Model

Maximum likelihood estimation is often used to find parameters of a statistical
model based on a set of data samples:

argmax
Θ

N∑
n=1

ln p(xn|Θ) (30)

If we have a latent variable model, we first have to obtain the marginal
likelihood. We integraate over the latent variables:

p(xn|Θ) =

∫
p(xn|yn,Θ)p(yn)dyn (31)

[likelihood], [prior]

3 Probabilistic PCA

Represent X using a lower dimensional set of latent variables Y. Previously, we
had:

x̃n = Wyn (32)

xn = x̃n + εn (33)

Now, assume a linear relationship with noise added (to model the recon-
struction error):

xn = Wyn + ηn (34)

Where the noise ηn ∈ <Dx1 is assumed to be an independent sample from a
spherical Gaussian distribution:

p(ηn) = N (ηn|0, σ2I) (35)

The likelihood of an input data point can then be written as (using inde-
pendence of data points):

p(X|Y,W) =

N∏
n=1

N (xn|Wyn, σ
2I) (36)
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To obtain the marginal likelihood, we integrate over the latent variables:

p(X|W) =

∫
p(X|Y,W)p(Y)dY (37)

which requires us to specify a prior over Y. To obtain a probabilistic PCA, we
have to use a zero mean, unit covariance Gaussian distribution:

p(Y) =

N∏
n=1

N (yn|0, I) (38)

The final marginal likelihood can be found analytically:

p(X|W) =
N∏

n=1

N (xn|0,WWT + σ2I) (39)

Parameters W are found through maximization of that one (Tipping and Bishop
’99).

argmax
W

=

N∑
n=1

lnN (xn|0,WWT + σ2I) (40)

The result can be found analytically using spectral methods.

W = UQLVT L = (ΛQ − σ2I)
1
2 (41)

Where V is an arbitrary rotation matrix and UQ is a matrix of Q eigenvectors
with largest eigenvalues ΛQ of S = 1

N XTX. Therefore W consists of scaled and
rotated eigenvectors of the covariance matrix S for which the eigenvalues are
largest. Therefore, the model has an interpretation as a probabilistic version of
PCA.

4 Dual Probabilistic PCA

A dual representation of PPCA can be achieved by marginalizing over the pa-
rameters W rather than the latent variables Y and optimizing Y rather than
W .

To obtain the marginal likelihood, we integrate over the parameters:

p(X|Y) =

∫
p(X|Y,W)p(W)dW (42)

which requires us to specify a prior over W. To obtain a probabilistic PCA, we
have to use a zero mean, unit covariance Gaussian distribution:

p(W) =

D∏
d=1

N (wd|0, I) (43)
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The final marginal likelihood can be found analytically:

p(X|Y) =

D∏
d=1

N (xn|0,YYT + σ2I) (44)

Latent variables Y are found through maximization of that one (Neil Lawrence
IJML’05).

argmax
Y

=

D∑
d=1

lnN (xn|0,YYT + σ2I) (45)

The result can be found analytically using spectral methods.

X = U′QLVT L = (ΛQ − σ2I)
1
2 (46)

Where V is an arbitrary rotation matrix and U′Q is a matrix of Q eigenvectors
with largest eigenvalues ΛQ of 1

DXXT . This can be shown to be equivalent to
probabilistic PCA.

5 Gaussian Processes

f : <Q → < (47)

{y1,y2, . . . ,yN} ⊂ <Q (48)

p(f(y1), f(y2), . . . , f(yN )) (49)

k(yi,yj) (50)

p(f(y1), f(y2), . . . , f(yN )) = N (0,K) (51)

K =

k(y1,y1) · · · k(y1,yN ))

. . .
. . . . . .

k(yN ,y1) · · · k(yN ,yN ))

 (52)

σ2I (53)

k(yi,yj) = yT
i yj + σ2δij (54)

K = YYT + σ2I (55)
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