### EL2310 - Scientific Programming

### Lecture 1: Introduction



### Andrzej Pronobis (pronobis@kth.se)

Royal Institute of Technology - KTH

Andrzej Pronobis

Royal Institute of Technology - KTH

### Overview

Lecture 1, Part 0: Introduction to the Course Introduction Motivation and Goals Course Organization

### Lecture 1, Part 1: Introduction to MATLAB

About MATLAB Getting Started Basic Commands Vectors and Matrices

Andrzej Pronobis

Royal Institute of Technology - KTH

# Welcome

- Lecturer: Andrzej Pronobis, pronobis@kth.se
- Course overview
  - 16 lectures (2 x 45 min. each)
  - 3 labs
  - 3 project assignments
- 7.5 credits
- Grade: Pass / Fail

Andrzej Pronobis

Introduction

### Content

Part I - MATLAB

Part II - C

Part III - C++



Andrzej Pronobis

Royal Institute of Technology - KTH

Introduction

### Content

- Part I MATLAB
- Part II C
- Part III C++



Andrzej Pronobis

Royal Institute of Technology - KTH

Introduction

### Content

- Part I MATLAB
- Part II C
- Part III C++



Andrzej Pronobis

Royal Institute of Technology - KTH

## Motivation for the Course

- Programming is a key competence for todays engineers
- Some courses depend on you being able to program
  - Programming will be a tool not subject of study.
- Starts with MATLAB:
  - Scientific computing
  - Tailored for Master students

Andrzej Pronobis

# Why MATLAB?

- MATLAB is a tool for interactive numerical computations
- Focus on rapid prototyping with complex computations
- Extensive code-base in a wide range of fields such as:
  - control
  - signal processing
  - optimization
  - image processing
- Tools to visualize and analyze data
- Used in many engineering companies, and extensively at KTH

# Why C?

- Most often used "low-level" language
- Allows "closer" interaction with hardware
- Used for system programming: OS, embedded systems
- Examples: Linux Kernel, MATLAB
- Many languages borrow from C: C#, Go, Java, JavaScript, Perl, PHP
- Free compilers available for most architectures/hardware

# Why C++?

- Used extensively in industry and academia
- Intermediate-level programming language
- Many benefits of C with enhancements and new programming patterns
- Real-time applications mostly use C/C++
- The language of robotics (ROS, PCL)!
- Constantly developed and standardized: C++11
- Free compilers available for most architectures

### Programming Language Popularity



## Programming Language Popularity

| Position<br>Aug 2012 | Position<br>Aug 2011 | Delta in Position | Programming Language | Ratings<br>Aug 2012 | Delta<br>Aug 2011 | Status |
|----------------------|----------------------|-------------------|----------------------|---------------------|-------------------|--------|
| 1                    | 2                    | t                 | С                    | 18.937%             | +1.55%            | Α      |
| 2                    | 1                    | Ļ                 | Java                 | 16.352%             | -3.06%            | Α      |
| 3                    | 6                    | ttt               | Objective-C          | 9.540%              | +4.05%            | Α      |
| 4                    | 3                    | Ļ                 | C++                  | 9.333%              | +0.90%            | Α      |
| 5                    | 5                    | =                 | C#                   | 6.590%              | +0.55%            | Α      |
| 6                    | 4                    | #                 | PHP                  | 5.524%              | -0.61%            | Α      |
| 7                    | 7                    | =                 | (Visual) Basic       | 5.334%              | +0.32%            | Α      |
| 8                    | 8                    | =                 | Python               | 3.876%              | +0.46%            | Α      |
| 9                    | 9                    | =                 | Perl                 | 2.273%              | -0.04%            | A      |
| 10                   | 12                   | tt                | Ruby                 | 1.691%              | +0.36%            | А      |
| 11                   | 10                   | Ļ                 | JavaScript           | 1.365%              | -0.19%            | Α      |
| 12                   | 13                   | t                 | Delphi/Object Pascal | 1.012%              | -0.06%            | Α      |
| 13                   | 14                   | 1                 | Lisp                 | 0.975%              | +0.07%            | Α      |
| 14                   | 26                   | 11111111111       | Visual Basic .NET    | 0.877%              | +0.41%            | Α      |
| 15                   | 15                   | =                 | Transact-SQL         | 0.849%              | +0.03%            | Α      |
| 16                   | 18                   | tt 🔰              | Pascal               | 0.793%              | +0.13%            | Α      |
| 17                   | 11                   | ++++++            | Lua                  | 0.726%              | -0.64%            | A      |
| 18                   | 16                   | <b>11</b>         | Ada                  | 0.649%              | -0.05%            | в      |
| 19                   | 22                   | l ttt             | PL/SQL               | 0.610%              | +0.08%            | в      |
| 20                   | 29                   | 1111111111        | MATLAB               | 0.533%              | +0.09%            | в      |

Andrzej Pronobis

Royal Institute of Technology - KTH

## MATLAB vs. C/C++

MATLAB:

- Interpreted (executed by interpreter program)
- + Fast developing time
- Slow run-time
- + Portable
- Better for scientific code

C/C++:

- Compiled (and executed directly by CPU)
- Slower developing time
- + Possible to write fast programs
- = Standard libraries are portable
- Better for system programming

# Why are you?

- Not experts on MATLAB and C/C++
- You may know some programming
- You have basic knowledge in linear algebra and calculus
- You have very different backgrounds!
- You want to learn!
- Who am I? :-)

Andrzej Pronobis

### Goals

- Have an understanding for basic concepts in programming
- Be able to read, process and display data in MATLAB
- Solve problems and implement algorithms in MATLAB
- Know how to use MATLAB in other courses

## Goals

- Be able to read and process data in programs written in C and C++
- Solve problems and implement algorithms in C and C++
- Be able to read and understand existing code
- Understanding the importance of writing readable code
- Know which tools to use to solve various scientific problems

Lecture 1, Part 0: Introduction to the Course

**Course Organization** 

## **Course Organization**

- ► 3 parts one for each language, i.e. MATLAB, C and C++
- Lectures
- Labs
- Projects
- Help sessions

Andrzej Pronobis

## Labs

- Walk-through of simple problems
- Not graded
- Goals:
  - Become familiar with the computing environment
  - Prepare for the projects
  - Come up with questions before project deadline
- Co-operation is encouraged
- Ask questions during help sessions, lecture break

#### **Course Organization**

# Projects

- Larger scientific problems to solve
- Will have a robotics theme
- So, you will learn something more than just programming
- The projects should be solved individually
- Graded: pass/fail
- One project exam session for each project
- Project needs to be submitted before a deadline to approach the exam session
- Additional re-exam session at the end
- To pass the course, pass all three projects



- One help session before each project deadline
- See schedule for dates
- Do you have laptops?
- Additional Q/A sessions during lecture breaks

Andrzej Pronobis

**Course Organization** 

# Course Homepage

- http://www.pronobis.pro/teaching/el2310/
- General course information
- Schedule
- Slides from the lectures
- Lab notes and project descriptions
- Course materials

Andrzej Pronobis

# Bilda

- Online learning tool http://bilda.kth.se
- News and announcements
- Schedule as ICalendar/VCalendar
- Assignment submission
- Questions (do NOT use e-mail)
- Forums and discussions
- Feedback

**Course Organization** 

## Literature & Materials

- No course book in the normal sense
- Plenty of good information available online
  - Manuals / Guides / Tutorials
  - Blogs
  - Discussion forums (StackOverflow)
  - Videos (YouTube) / Webinars
  - Google!
- Some listed on the course website
- Share valuable resources with each other on Bilda.

## Focus on Self-studying

- The lectures and labs can show you the basics, but you need to learn to seek programming knowledge and study on your own
- MATLAB is available on "KTH-CD"
  - http://progdist.ug.kth.se
- ► Tools for C/C++ are available with all Linux distributions
  - See course website
- Strongly recommended that you use Linux.

**Course Organization** 

# Programming Environment

- Matlab has a built-in IDE (Integrated Development Environment)
- ► We will not use an IDE for C/C++
- ► For C/C++, the tools are *gcc* (compiler) and *emacs* (editor)
- An IDE "hides" things you should know!

# System

- For C/C++ we cannot support all systems
- Free open-source programs (i.e. Linux)
- Environments
  - Own system
  - Virtual Machine through http://www.virtualbox.org/
  - CSC Computers
- Your assignments will be checked in Virtual Machine

Andrzej Pronobis

Royal Institute of Technology - KTH

**Course Organization** 



If you are registered you should be able to,

- Log in to Bilda http://bilda.kth.se
- Have access to the CSC computers.

If not let me know.

## Value of Feedback

- The quality of the course depends on your feedback!
- Not only at the end of the course (evaluation), but during the course
- Use Bilda as mode of interaction NOT email
- This course can not be tailored for everyone, since your backgrounds vary dramatically

Course Organization

### End of Part 0

Andrzej Pronobis EL2310 – Scientific Programming Royal Institute of Technology - KTH

About MATLAB

### Part I - Introduction to MATLAB

- MATLAB background
- Basics
- Interactive calculations
- Matrices and vectors

Andrzej Pronobis

Lecture 1, Part 0: Introduction to the Course

About MATLAB



- The lectures on MATLAB are partially based on material from
  - Mikael Johansson, EE/KTH (course 2E1215)
  - Fredrik Gustavsson, Linköping (course TSRT04)

Andrzej Pronobis EL2310 – Scientific Programming

#### About MATLAB

### MATLAB Background

- MATLAB = MATrix LABORATORY
- Commercialized 1984 by Mathworks
- Heavily extended since then
- A standard tool today
- Array programming language: arrays are fundamental types
- Makes numerical computations easy

Andrzej Pronobis

## **Alternatives**

- There are alternatives such as
  - Octave (free and language mostly compatible with MATLAB)
  - Scilab
  - NumPy Numerical computations in Python
  - Matrix-X
- Symbolic complements (using traditional mathematical notation)
  - Maple
  - Mathematica

Andrzej Pronobis

#### Getting Started

# **Running MATLAB**

- Available for Windows, Unix/Linux, Mac
- Great introductory video from MathWorks
- More hands-on experience during the first labs



Andrzej Pronobis

#### Getting Started

## MATLAB Construction

- Core functionality based on compiled C-routines
- Most functionality given as .m-files
- Grouped into toolboxes
- .m-files
  - contain source code
  - can be copied and altered
  - ▷ are platform independent (same on PC, Unix/Linux, Mac)



Andrzej Pronobis

Royal Institute of Technology - KTH

#### Getting Started

### Command Window vs .m-files

- Code can be entered directly into the command window
   Using MATLAB in an interactive fashion
- Code can also be stored in .m files
  - ▷ Write your program in an .m file
  - Whole program is executed using a single command

Andrzej Pronobis

### .

Getting Started

### Interactive Calculations

You do not need to declare variables in MATLAB

```
It is interactive .
>> 1+2*3
ans =
7
>> sin(pi)
ans =
1.2246e-16
>> |
```

## Documentation

- Help with syntax and function definitions >> help <function> Ex: "help sin"
- To look for a function with unknown name
  - >> lookfor <keyword>
- Advanced hyperlinked help browser
  - >> doc
  - >> doc <function>

Can also be accessed through the "Help" menu item

# Variables

### Look at what variables are defined with

- >> who
- >> whos

### Clear variables with

```
>> clear [variable(s)]
```

### Suppress output with ending ";" (semicolon)

| >> sin(pi);<br>>> A = [1 2; 3 4]; | >> whos<br>Name               | Size                   | Bytes  | Class                        |
|-----------------------------------|-------------------------------|------------------------|--------|------------------------------|
| >> B = 4;<br>>> who               | А                             | 2x2                    | 32     | double array                 |
| Your variables are:               | B<br>ans                      | 1x1<br>1x1             | 8<br>8 | double array<br>double array |
| A B ans                           | Grand total                   | is 6 elements using 48 | bytes  |                              |
|                                   | >> clear<br>>> who<br>>> whos |                        |        |                              |

#### **Basic Commands**

# Loading and Saving Variables

- You can save all variables in memory with
  - >> save <filename>
- To save some variables do
  - >> save <filename> var1 var2 ... varN
- You can load them back into memory with
  - >> load <filename>

Andrzej Pronobis

#### Basic Commands

# Saving Command Window Text

- You can use the function diary to record what you are doing
- Allows you to go back and check what commands were issued
- Start the diary with
  - >> diary [filename] Or >> diary('filename')
    without the filename argument the diary file will be called "diary"
- To suspend/restart a diary, call: >> diary on >> diary off
- If you call diary without an argument you toggle diary on/off

# Vectors

- Matrix and vector operations are at the very core of MATLAB
- For speed try to formulate a problem in terms of matrix operations

Andrzej Pronobis

### Vectors Cont'd

Can create a vector with "colon-notation"

>> v = start\_value:step:end\_value

- Ex: To create a vector with number 1 3 5 7 you do
  >> v = 1:2:7
- Notice that step can be negative to create for example 7 5 3 1
  > v = 7:-2:1

Andrzej Pronobis

Lecture 1, Part 0: Introduction to the Course

Vectors and Matrices



- To access a certain value in a vector do >> v(i) where i is the index of the value
- Note: All indices start at 1 in MATLAB.

Andrzej Pronobis

Royal Institute of Technology - KTH

Lecture 1, Part 0: Introduction to the Course

Vectors and Matrices

## **Matrices**

Matrices (2D arrays) are defined similarly

### Note: MATLAB is case sensitive

Andrzej Pronobis

Royal Institute of Technology - KTH

# Dimensions

- You can check the size of a matrix with >> size (A) which will return the number of rows and columns
- You can ask specifically for the number of rows or columns

```
To get number of rows
>> size(A, 1)
and number of columns
>> size(A, 2)
```

Andrzej Pronobis

# Matrix Operations

You can use all common operators with the matrices such as

>> 
$$C = A + B;$$

or

assuming that the involved matrices have the right dimensions.

You can mix scalars and matrices such as

>> C = A + 2;

in which case the scalar adapts to fit the situation (here it will expand to a matrix of the same size as A with all elements equal to 2).

Even functions like sin and cos can be applied to matrices in which case they operate on each element. Vectors and Matrices



- To transpose a matrix do >> B = A'
- Note that the transpose will conjugate complex entries
- To avoid this use

>> B = A.'

# **Indexing Matrices**

```
Index individual elements with
```

```
>> A(i,j)
where i is the row and j is the column
>> A=[1 4 7;2 5 8; 3 6 9]
```

```
Α =
```



Vectors and Matrices

Lecture 1, Part 1: Introduction to MATLAB

## Indexing Matrices Cont'd

Andrzej Pronobis

Royal Institute of Technology - KTH

Lecture 1, Part 0: Introduction to the Course

Vectors and Matrices

# Indexing Matrices Cont'd

- Sometimes convenient with single index notation
- Matrix elements ordered column by column

$$A = \begin{bmatrix} a_1 & a_4 & a_7 \\ a_2 & a_5 & a_8 \\ a_3 & a_6 & a_9 \end{bmatrix}$$
  
that is,  $A(n) = a_n$  with the above ordering  
>> A= [1 4 7; 2 5 8; 3 6 9]  
A =  
$$\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$$
  
>> A(5)  
ans =  
5

Andrzej Pronobis

# Indexing Matrices Cont'd

- Convert from subscripts (i, j) to linear indices
- Works for multiple (i, j) pairs stored in two arrays

Lecture 1, Part 0: Introduction to the Course

Vectors and Matrices

# Wrap Up

Today:

- Introduction to the Course
- Introduction to MATLAB

Next time (Thursday 10-12, Room V32):

Matlab as a Tool

Andrzej Pronobis

Lecture 1, Part 0: Introduction to the Course

Vectors and Matrices

### Todo

- Log into Bilda
- Check out the course page
- Get and install MATLAB http://progdist.ug.kth.se

Andrzej Pronobis