
EL2310 – Scientific Programming
Lecture 14: Object Oriented Programming in C++

Andrzej Pronobis
(pronobis@kth.se)

Royal Institute of Technology – KTH

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Overview

Overview

Lecture 14: Object Oriented Programming in C++
Wrap Up
Introduction to Object Oriented Paradigm
Classes
More on Classes and Members
Operator Overloading

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Last time

� Intro to C++
� Differences between C and C++
� Intro to OOP

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Today

� Object Oriented Programming
� Classes

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Wrap Up

Lecture 14: Object Oriented Programming in C++
Wrap Up
Introduction to Object Oriented Paradigm
Classes
More on Classes and Members
Operator Overloading

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Wrap Up

C++ Compiler

� Use g++ instead of gcc
� Usage and command line options are the same as for gcc
� Make sure you know how to use make for this part of the

course!

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Wrap Up

Declaration of variables

� You no longer need to declare the variable at the beginning of
the function (scope), as was the case for pre C99

� Useful rule of thumb: Declare variables close to where they’re
used.

� For instance:

for(int i=0;i<N;i++){. . .}

i only defined within loop
� Use specific names for counters, e.g. i,j,k,...

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Wrap Up

Namespaces

� In C all function share a common namespace
� This means that there can only be one function for each

function name
� In C++ can be placed in namespaces
� Syntax:
namespace NamespaceName {

void fcn(); ...
}

� To access a function fcn in namespace A
A::fcn

� To avid typing namespace name in every statement:
using namespace std

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Wrap Up

Printing to Screen

� In C++ we use streams for input and output
� Output is handled with the stream cout and cerr
� In C:
printf("The value is %d\n", value);

� In C++:
cout << "The value is " << value << endl;

� Just like in C you can format the output in a stream
� You can use

cout.width(10) number of characters for output to fill
cout.precision(3) number of digits
cout.fill(’0’) pad with a certain character

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Wrap Up

Getting input from the user

� Use streams also to get input from console
� Use the cin stream

Ex:
int value;
cin >> value;

� If you want to read an entire line, use getline
Ex:
string line;
getline(cin, line);
cout << "The input was " << line << endl;

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Wrap Up

References

� “Constrained” and “safer” pointers
� Compare
int a; int a;
int *pa = &a; int &ra = a;
int *pa = NULL; -

*pa = 10; ra = 10; => a==10
int b; int b;
pa = &b; -
int *pc; -
pc = pa; -

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Wrap Up

Passing Arguments by Reference in C++

� Declaration: void fcn(int &x);
� Any changed to x inside fcn will affect the parameter used in

the function call
� Ex:

void fcn(int &x)
{
x = 42;

}

int main()
{
int x = 1;
fcn(x);
cout << "x=" << x << endl;

}
� Will change value of x in the scope of main to 42

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Wrap Up

Dynamic Memory Allocation in C++

� In C++ the new and delete operators are used
� In C we used malloc and free
� If you allocate an array with new you need to delete with
delete []

� Ex:
int *p = new int[10];
p[0] = 42;
delete [] p;

� Typical mistake, forgotten []

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Introduction to Object Oriented Paradigm

Lecture 14: Object Oriented Programming in C++
Wrap Up
Introduction to Object Oriented Paradigm
Classes
More on Classes and Members
Operator Overloading

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Introduction to Object Oriented Paradigm

The Object-Oriented Paradigm

The motivation:
� We are trying to solve complex problems

� Complex code with many functions and names
� Difficult to keep track of all details

� How can we deal with the complexity?
� Grouping related things
� Abstracting things away
� Creating hierarchies of things

� This also improves:
� Code re-use
� Reliability and debugging

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Introduction to Object Oriented Paradigm

Key Concepts of OOP

� Classes (types)
� Instances (objects)
� Methods
� Interfaces
� Access protection - information hiding
� Encapsulation
� Composition / aggregation
� Inheritance
� Polymorphism

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Classes

Lecture 14: Object Oriented Programming in C++
Wrap Up
Introduction to Object Oriented Paradigm
Classes
More on Classes and Members
Operator Overloading

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Classes

Classes

� A class is an “extension” of a struct
� A class can have both data member and function members

(methods)
� Classes bring together data and operations related to that data
� Like C structs, classes define new data types
� Unlike structs, they also define how operators work on the new

types

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Classes

Class definition

� Syntax:
class ClassName {
public:
void fcn();

private:
int m X;

}; // Do not forget the semicolon!!!
� m X is a member data
� void fcn() is a member function
� public is an access specifier specifying that everything below

can be access from outside the class
� private is an access specifier specifying that everything

below is hidden from outside of the class
Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Classes

Access specifiers

� There are three access specifiers:
� public
� private
� protected

� No access specifier specified ⇒ assumes it is private
� Data and function members that are private cannot be

accessed from outside the class
� Ex: m X above cannot be accessed from outside
� protected will be discussed later

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Classes

C++ Structs

� C++ also uses struct
� In C++ struct is just like a class (much more than the C
struct!)

� The only difference is the default access protection:
class Name {
int m X; // Private

};
struct Name {
int m X; // Public

};

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Classes

Classes and Objects

� Classes define data types
� Objects are instances of classes
� Objects correspond to variables
� Declaring an object:
ClassName variableName;

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Classes

Classes and Namespace

� The class defines a namespace
� Hence function names inside a class do not name clash with

other functions
� Example: the member variable m X above is fully specified as
ClassName::m X

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Classes

Task 1

� Implement a class the defines a Car
� Should have a member variable for number of wheels
� Should have methods to get the number of wheels
� Write program that instantiate a Car and print number of wheels

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Classes

Constructor

� When an object of a certain class is created the so called
constructor is called

� Constructor is a special kind of method.
� The constructor tells how to “setup” the objects
� The constructor that does not take any arguments is called the

default constructor
� The constructor has the same name as the class and has no

return type
class A {
public:
A() {}

};

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Classes

Constructor

� Some types cannot be assigned, only initialized, e.g.
references

� These data members should be initialized in the initializer list of
the constructor

� Try to do as much of the initialization in the initialization in the
list rather than using assignment in the body of the constructor

� Variables are initialized in the order they appear in the list
class A {
public:
A():m X(1) {}

private:
int m X;

};
Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Classes

Constructor

class A {
public:
A():m X(1) {}
int getValue() { return m X; }

private:
int m X;

};
A a;
std::cout << a.getValue() << std::endl;

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Classes

Constructor

� You can define several different constructors
� class MyClass {
public:
MyClass():m X(1) {}
MyClass(int value):m X(value) {}
int getValue() { return m X; }

private:
int m X;

};
MyClass a; // Default constructor
MyClass aa(42); // Constructor with argument
std::cout << a.getValue() << std::endl;
std::cout << aa.getValue() << std::endl;

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Classes

Destructor

� When an object is deleted the destructor is called
� The destructor should clean up things
� For example free up dynamically allocated memory
� There is only 1 destructor
� If not declared a default one is used which will not free up

dynamic memory
� Syntax: C̃lassName();
� Class A {
public:
A(); // Constructor
Ã(); // Destructor

...
};

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Classes

Task 2

� Write a class Complex for a complex number
� Provide 3 constructors

� default - which should create a complex number with value 0
� having one argument - should create a real value
� having two arguments - should create a complex number with real

and imaginary part

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Classes

Source and header file

� Normally you split the definition from the declaration like in C
� The definition goes into the header file .h
� The declaration goes into the source file .cpp
� Header file ex:
class A{
public:
A();

private:
int m X;

};
� Source file ex:
#include "A.h"
A::A():m X(0)

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

More on Classes and Members

Lecture 14: Object Oriented Programming in C++
Wrap Up
Introduction to Object Oriented Paradigm
Classes
More on Classes and Members
Operator Overloading

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

More on Classes and Members

this pointer

� Inside class methods you can refer to the object with this
pointer

� The this pointer cannot be assigned (done automatically)

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

More on Classes and Members

const

� Can have const function arguments
� Ex: void fcn(const string &s);
� Pass the string as a reference into the function but commit to

not change it
� For classes this can be used to commit to not change an object

as well
� Ex: void fcn(int arg) const;
� The function fcn commits to not change anything in the object

it belongs to
� Can only call const functions from a const function or with a
const object

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

More on Classes and Members

Static members

� Members (both functions and data) can be declared static
� A static member is the same across all objects; it’s a

member of the class, not any single object
� That is all instantiated objects share the same static member
� You can use a static class member without instantiating any

object
� You need to define static data member
� Ex: (in source file) int A::m Counter = 0; if m Counter is

a static data member of class A

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

More on Classes and Members

Task 3

� Start from the Complex class from last time
� Add a static int member
� Every time a new complex number is created the static variable

should be incremented
� Implement the member function
Complex& add(const Complex &c);
which should add c to the object

� How does the number of created objects change if we change
the function to
Complex& add(Complex c);

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Operator Overloading

Lecture 14: Object Oriented Programming in C++
Wrap Up
Introduction to Object Oriented Paradigm
Classes
More on Classes and Members
Operator Overloading

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Operator Overloading

Operator overloading

� Operators behave just like functions
� Compare
Complex& add(const Complex &c);
Complex& +=(const Complex &c);

� You can overload (provide your own implementation of) most
operators

� This way you can make them behave in a “proper” way for your
class

� It will not change the behavior for other classes only the one
which overloads the operator

� Some operators are member functions, some are defined
outside class

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Operator Overloading

Task 4

� Use the Complex number class from before.
Overload/implement:

� std::ostream& operator<<(std::ostream &os,
const Complex &c);

� Complex operator+(const Complex &c1, const
Complex &c2)

� Complex operator+(const Complex &c); (member
function)

� Complex& operator=(const Complex &c); (member
function)

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 14: Object Oriented Programming in C++

Operator Overloading

Next Time

� C Help Sessions:
� Wednesday 13-15 Room 304
� Thursday 13-14 Room 523

� Inheritance, Virtual Functions and Templates
� C-project deadline Thursday 4th of October

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

	Overview
	Overview

	Content
	Lecture 14: Object Oriented Programming in C++
	Wrap Up
	Introduction to Object Oriented Paradigm
	Classes
	More on Classes and Members
	Operator Overloading

