Back to Top
Andrzej Pronobis

Active Visual Object Search in Unknown Environments Using Uncertain Semantics

A. Aydemir, A. Pronobis, M. Göbelbecker, P. Jensfelt

In: IEEE Transactions on Robotics (T-RO), 29(4), 2013.


In this paper we study the problem of active visual search (AVS) in large, unknown or partially known environments. We argue that by making use of uncertain semantics of the environment, a robot tasked with finding an object can devise efficient search strategies that can locate everyday objects at the scale of an entire building floor, previously unknown to the robot. To realize this, we present a probabilistic model of the search environment which allows for prioritizing the search effort to those parts of the environment that are most promising for a specific object type. Further, we describe a method for reasoning about the unexplored part of the environment for goal-directed exploration with the purpose of object search. We demonstrate the validity of our approach by comparing it to two other search systems in terms of search trajectory length and time. First, we implement a greedy coverage-based search strategy that is found in previous work. Second, we let human participants search for objects as an alternative comparison for our method. Our results show that active visual search strategies that exploit uncertain semantics of the environment are a very promising idea and our method pushes the state-of-the-art forward in active visual search.


  author =       {Aydemir, Alper and Pronobis, Andrzej and G{\"o}belbecker, Moritz and Jensfelt, Patric},
  title =        {Active Visual Object Search in Unknown Environments Using Uncertain Semantics},
  journal =      {IEEE Transactions on Robotics (T-RO)},
  year =         2013,
  volume =       29,
  number =       4,
  month =        aug,
  pages =        {986-1002},
  doi =          {10.1109/TRO.2013.2256686},
  url =          {}