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Abstract— Finding accurate correspondences between over-
lapping 3D views is crucial for many robotic applications,
from multi-view 3D object recognition to SLAM. This step,
often referred to as view registration, plays a key role in
determining the overall system performance. In this paper,
we propose a fast and simple method for registering RGB-
D data, building on the principle of the Iterative Closest Point
(ICP) algorithm. In contrast to ICP, our method exploits both
point position and visual appearance and is able to smoothly
transition the weighting between them with an adaptive metric.
This results in robust initial registration based on appearance
and accurate final registration using 3D points. Using keypoint
clustering we are able to utilize a non exhaustive search
strategy, reducing runtime of the algorithm significantly. We
show through an evaluation on an established benchmark that
the method significantly outperforms current methods in both
robustness and precision.

I. INTRODUCTION

Sensor data is essential to robotics. More sensors are

producing better data at faster rates. At the same time the

computational power of a robot is limited, rendering the

robot unable to utilize all the data it has collected when

making control decisions. That data is therefore put into a

representation that allows it to be more easily used. This

invariably require so called data registration or placing the

data taken at different locations into the same frame of

reference. The focus of this paper is data registration between

RGB-D frames.

A lot of research has been done on data registration of 2D

and 3D range data captured by laser scanners and sonars. The

same is true for RGB camera image registration. Since the

introduction of cheap RGB-D cameras in 2010 these sensors

have become very popular in the field of robotics. The

combining of RGB data with the depth, ’D’, range data in

one sensor introduces new challenges and new opportunities.

The data registration problem is equivalent to finding the

transformation between the sensor poses for each frame of

sensor data.

For range data, either 2D slices or 3D point clouds, the

most widely used method is the iterative closest point, ICP,

algorithm [1]. This method requires an initial guess for the

transformation and will not converge correctly if started too

far away. ICP works on sets of geometric points. It requires

only the locations of the points relative to the sensor in each

frame. From this it returns the transformation between the

two sensor frames.

For RGB image data the registration can be done using

image features or keypoints. The process is to first detect
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points of interest in the image. Then (optionally) compute a

descriptor from the context (i.e. neighboring pixels) of the

point. Registration is done by matching these ’keypoints’

either by using the descriptors or the geometric constraints

or both. As the camera only gives a bearing to the points the

geometric constraints are more complicated than for range

sensors. Having RGB-D sensors allows us to both use the

simpler geometric registration and the selective power of the

RGB descriptor.

In this paper, we present Adaptive Iterative Closest Key-

point (AICK), a registration algorithm for RGB-D views

which builds on the idea of ICP. The algorithm preserves the

accuracy of ICP for small transformations, while providing

a drastic improvement of robustness to larger view rotations

and translations without the need for an initial guess given

sufficient overlap between the frames. Our algorithm exploits

both depth and visual information and relies on keypoints

detected in images associated with 3D positions in the local

reference frame and a visual descriptor. The key property

of the algorithm is the ability to weigh the importance of

the visual descriptor and the 3D position while iteratively

optimizing the transformation. This allows us to exploit the

distinctiveness of appearance features for improved initial

robustness and accuracy of point locations for the final

precision. In addition to this we investigate how one might

relax some of the more computationally expensive parts of

the algorithm without unduly sacrificing the quality of the

registration. Our aim is an algorithm for real-time systems

where both low computational load and high performance is

a requirement.

We compare the proposed method to generalized ICP

(GICP) [2], the 3D normal distribution transform (3D-

NDT) [3] and a method based on RANSAC [4] using

keypoints which we will call 3-point RANSAC. We per-

form an extensive evaluation of the four algorithms on a

publicly available dataset1 [5] and employ an established

benchmarking procedure and performance measure [5]. The

results show improvements in both robustness to large initial

transformations and accuracy of the final result. Furthermore,

our method converges fast and requires significantly less

computational power making it a great choice for real-time

applications.

In the remaining parts of the paper, we first provide an

overview of registration methods. Section III provides details

of the proposed algorithm. Section IV covers the setup for

the experimental evaluation. Finally, we present the results

of the experimental evaluation in Section V.

1http://vision.in.tum.de/data/datasets/rgbd-dataset

http://vision.in.tum.de/data/datasets/rgbd-dataset


II. RELATED WORK

Methods of data registration can be subdivided by the

sensor suite that is being used. A large body of work covers

image registration for cameras [6] where the data points

represent bearing only information. When motion sensors

are available and long sequences of frames are being han-

dled together, data registration is often called simultaneous

localization and mapping (SLAM), structure from motion or

bundle adjustment. We restrict ourselves here to range and

bearing data registrations between two frames of data.

The methods that are most related to our work are based

on the ICP algorithm. ICP was introduced to the registration

context in [1], [7]. In these, early but still very relevant,

works the closest point in the Euclidean sense forms the

data association pairs and the sum of the squared distances

between the matched points is the goodness of fit measure.

The ICP algorithm is bootstrapped using some estimated

initial transformation. This is then followed by alternating

between finding the data association, i.e., closest point pairs

and finding the transformation that minimizes the goodness

of fit measure. This is repeated iteratively until convergence.

The primary advantage of ICP is its simplicity. Notice that

in this original version no consideration was made for noise

in the sensors. Neither the fact that the actual scan points

are sampled from continuous surfaces and thus the two data

sets will not include the exact same points but rather nearby

points. This can be thought of as a type of discretization

noise.

There has been a number of refinements to the point to

point ICP approach that address the issue of discretization

noise. In [8] points are compared to planes so that errors

are projected on the surface normals. In this way it is

theoretically possible, in the absence of sensor noise and

surface curvature, to form a perfect fit. In [2] the GICP

algorithm is introduced. Here both data frames are modeled

as being sampled points from planar surfaces. This method

is currently popular and considered to give overall good

performance.

There has also been work on variations of ICP that take

account of the stochastic processes in the data acquisition.

In [9] and later extended to 3D in [3], [10] the normal

distribution transform (NDT) is developed. These explicitly

models the probability of sampling a point near the surfaces.

A similar probabilistic approach is taken in [11]. These meth-

ods make no explicit data association as all pairs contribute

an amount weighted by their probability.

Metric-Based ICP[12] is a version of the ICP algorithm

which is designed to be able to deal with large angular

differences. This algorithm makes a change to the distance

metric (i.e. goodness of fit measure) to account for the effect

that points far away get large displacements due to rotations.

Given recent increased availability of RGB-D sensors new

variations of the ICP algorithm has been designed to perform

well on these sensors. [13] proposed a version in which the

distance metric was changed to not only measure Euclidean

distance between points but also take into considerations a

color value (hue) to obtain better matching. In [14] omni-

directional stereo cameras were used to form 3D point clouds

with color. The ICP algorithm was then modified to use the

color information in the metric in what they call color ICP.

A variation on ICP called Multi-scaled EM-ICP is pre-

sented [15]. They do not assume one data association but

rather consider a weighted combination of matches with the

scale setting the weight. This shares some properties with

AICK in that they suggest that the scale can be changed

adaptively as one iterates the method thus avoiding local

minima.

In [16] the ICP distance function is modified to include

a weighted sum of the Euclidean distance and the feature

distance. The method employed features based on moments,

spherical harmonics and curvature of a global density func-

tion that approximated the surface geometry. The work is

similar to our approach in the fact that visual descriptors are

employed to enhance matching. However, we differ from

this method in the choice of features and most importantly

in the way we automatically vary the influence of visual

information during convergence providing both robustness

and precision. A review of the many variations of range

image registration methods is given in [17]. In view of that

study, our method can be seen as a combination of point

signature coarse registration and ICP fine registration where

the same algorithm handles both aspects.

The most computationally expensive part of ICP is typ-

ically finding the closest points. This has a complexity of

O(N2) in a naive implementation. A common way to speed

this up is to use a kd-tree (or a set of trees) which reduces

the complexity to O(Nlog(N)).
In [18] the Kinect Fusion algorithm is presented. It uses a

dense, non-parametric, representation for the reference frame

from which an artificial point cloud is sampled and registered

against. With streams of consecutive frames Kinect Fusion

integrates every new frame into a larger reference frame to

which new frames are registered.

In a track parallel to the work with lasers, vision based

systems have achieved impressive results. Also here the

registration problem is a key issue. Using key points reduces

the need to treat all pixels and using feature descriptors

allows for reliable associations. ICP can be used to register

RGB images by using keypoints as shown in [19].

SIFT [20] and later SURF[21] are still widely used and

give very good results. While being discriminative and some-

what invariant to scale and rotation SURF and especially

SIFT are relatively expensive to compute. Several simpler

but faster to compute features have been suggested such as

BRIEF [22] and later ORB [23] which extends BRIEF with

invariance to rotation. The detection of keypoints is often

done by FAST [24] or Harris corners [25]. Additional recent

descriptors include BRISK[26] and FREAK [27]. In [28] a

system for adaptively extracting key points from a RGB-D

video stream and matching them to do motion estimation of

the camera, so called visual odometry, is presented.

A common data association problem is that of looking for

a match between one frame and all frames previously seen.



Finding these, so called, loop closures are key to a successful

implementation of SLAM.

Here the question is first if the two frames match at all and

if so what the transformation is. While it is often technically

possible to limit the search space for the possible matching

frames, one reduces robustness by relying on the position

when looking for matches. Matching feature by feature in

each frame is prohibitively slow. A common approach taken

is to make use of visual vocabularies [29]. The basic idea

is to form clusters in descriptor space and assign a label

to each cluster or word. The discretisation of descriptors

into words means that feature matching can be done by

comparison two integer indices (the label of the word).

An image can be described by a set (bag) of words and

represented by a histogram counting the number of times a

certain word occurs in the image. Matching two images has

then been reduced from a O(N2) matching operation where

high dimensional descriptors are compared to a constant time

operation of comparing two histograms. This has laid the

foundation for FAB-MAP [30] and its follow-ups.

A major part of registration is the problem of outlier

rejection i.e. the fact that there may be regions with no

overlap. Using a suitable model, RANSAC [4] can be used to

separate inliers from outliers and calculate model parameters.

III. THE AICK ALGORITHM

The input for the AICK algorithm is a set of invariant

keypoints detected in each RGB-D frame. Each keypoint is

associated with a 3D position in a local reference frame

and an appearance descriptor. The keypoints are generally

selected from a large set of possible points. AICK require

these keypoints to be stable, meaning that the same point

should be detected as a keypoint in several consecutive

frames. The AICK algorithm does not make any assumptions

about the keypoint detector/descriptor algorithm employed

however it is desirable for the keypoint descriptors to be both

rotation and scale invariant and preferably be unaffected by

illumination. In this work we have evaluated both SURF [31]

and ORB [23] keypoints.

The original ICP algorithm finds data associations purely

based on the position of points. First, it computes the

Euclidean distance, de, between all pairs of points, where one

point comes from the point cloud A and one from the point

cloud B. Then, for each point in point cloud A, it selects

the point from point cloud B with the smallest distance.

A. Adaptive distance metric

In the presented algorithm, the data association is formed

by taking into account both location and visual similarity.

In AICK only the keypoints, and not all points in each 3D

data frame, are used. We replace the Euclidean distance de
with a weighted sum of de and the distance between the two

keypoint descriptors dd:

d(a, b) = (1− w(i))de + w(i)dd, (1)

where the dd equals the squared L2 norm of the difference

in descriptor vectors scaled by a constant depending on the

type of feature descriptor used, i being the iteration numbers

i ∈ {0, 1, 2, ...} and w(i) ∈ (0, 1) being the weight given to

the feature distance. We define w(i) = αi where α acts as

shrinking factor, making w(i) decrease exponentially with

respect to i.
Introducing a weighted measure is of a key importance

for the adaptiveness of our algorithm. By our choice of w,

the Euclidean distance factor is completely neglected for the

initial match (w(i = 0) = 1). As a result, the algorithm does

not require an initial guess for the transformation between

the point clouds. Starting from the second iteration, we

allow matches which are geometrically close (w(i) < 1),

but perhaps not the closest in appearance. This continues

until the descriptor distance is given very little weight as

i becomes large, i.e. we essentially no longer consider

appearance. At this point, the original ICP is performed for

the fine registration.

One of the challenges that arise with the new definition

of d(a, b) is setting the threshold on the distance to identify

points that are present in A, but not in B. In practice, the

numerical values of de and dd can differ by an order of

magnitude. Thus, the scale of the distance varies with i. For

that reason we use the following criterion

d(a, b) ≥ (1− w(i))λe + w(i)λf , (2)

where λe and λf are two separate threshold parameters,

one that matches the spatial scale and one that matches the

descriptor distance scale. This is completely equivalent to

scaling the descriptor distance by λe/λf and using λe as a

constant threshold for all iterations.

B. Non exhaustive search strategy

Experiments with the AICK algorithm show (see Sec-

tion V) that the performance is high even when not all

keypoints are used. If we limit the search for the keypoints

in one frame to only a small subset we might miss some

matches. However, as the experiments will show this does not

matter given that we start with enough keypoints. This opens

up ways to make the algorithm more efficient by trading off

the expensive step of finding all the matches that fall below

our threshold.

To do this we use the method of learning a ’vocabulary’

of words as in the bag of words method.2 The learning step

is based on different ’training’ data than the registration is

done on. Learning is essentially clustering the descriptors

from all the training images into a predetermined number

of clusters. Then the words of the vocabulary consist of the

mean descriptors for each cluster.

We associate every keypoint, pk, to a list of its closest

words, which we denote as Ψ(pk). Ψ(pk) contains the words

to which the descriptor distance of the keypoint is less than

a threshold, Rw. This can be done swiftly if the vocabulary

contains few clusters or if the words are arranged in a tree

structure that speeds up this search. It is important to note

2We do not use the ’bags’ in this work only the words. The bags might
be useful to chose which two frames to try to register to one another which
is a question not addressed here.



that this is only done once per frame, i.e., if we match the

frames to many other frames we need not recompute Ψ.

When searching for the closest match to a particular

keypoint in one frame we use only its closest word. We

then search the other frame’s Ψ(pk)
3 for all occurrences of

that word and compare to the corresponding keypoints. The

result of this is that instead of having to match all points to

all points we only match each point to a (small) subset of

the points in the other frame.

As we will show this can speed up the expensive asso-

ciation step by an order of magnitude in most cases. We

consider this a generalization of the original algorithm as

using Rw = ∞ is equivalent to the original algorithm.

As the descriptor space is vast, most of the space will

not be near any word. We are therefore relying on the

words being a good representation for most of the common

keypoints that are found in images. We expect that the

keypoint clusters will be mostly tight and few points will

be far from any word.

IV. EXPERIMENTAL SETUP

In order to evaluate our method we employed a publicly

available dataset designed for the purpose of benchmark-

ing RGB-D SLAM algorithms in realistic indoor environ-

ments [5]. The dataset contains sequences of RGB-D data

captured using the Kinect sensor along with ground truth

acquired with a motion capture system. We use a part of

the dataset captured in an office space with the RGB-D

sensor handheld. In particular, we use the sequence fr1/room

which at the time of writing this paper was the longest of all

the sequences in the natural office environment subset (see

fig. (1) for sampled images from the dataset). This data set is

well suited to its designed purpose of testing state of the art

registration algorithms in that the motion has all 6 degrees of

freedom and the movement is both rapid and uneven. Fig. (2)

shows an example sequence undergoing rapid motion, which

is indicated by the presence motion blur.

A. Performance Measure

In order to enhance comparability of the results, we

employed a performance measure provided together with the

dataset [5]. The measure is based on the relative pose error,

which is found by first transforming the origin pose using

the estimated transformation and then transforming it back

using the inverse of the ground truth transformation. In a

perfect case without error, this results in a pose matching

the origin pose.

Ei = G−1

i Qi − I, (3)

Where Gi is the ground truth transformation for transfor-

mation i, Qi is the estimated transformation and I is the iden-

tity matrix. As suggested in [5] we analyze the translation

component of Ei by measuring the relative distance between

the pose obtained after the two transformations described

3By creating an index per frame from words to keypoints based on the
Ψ(pk) we can find the points to compare quickly.

Fig. 1. Sample views from the test set.

Fig. 2. Consecutive frames captured at 30fps from the test sequence
exemplifying the rapid movement of the handheld camera.

above and the origin pose. This error will be given in meters,

see eq. (4) for mathematical formulation. As a means of

summarizing the results for a set of translation errors we

define success ratio as the ratio of translation errors smaller

than some threshold λt in the set. That is the registration is

considered a ’success’ if it satisfies eq. (4).

ETranslation
i = (

2∑

j=0

||Ei,j,3||
2)1/2 < λt. (4)

It is worth noting that when success ratio = 0.5, λt is

the median error. Similarly to using the median error the

success ratio considers all outliers as equal, meaning that



gross outliers does not bias the analysis. This formulation

allows us to analyze the distribution of errors by varying the

threshold λt.

B. Algorithms tested

We ran and compared three different registration algo-

rithms in addition to AICK4 on the test set. The parameters

for the algorithms were optimized by hand by testing a

large set of values to yield good performance within a

maximum of roughly five minutes of execution time per

pairwise registration.

1) GICP: We use the GICP implementation provided by

the Point Cloud Library (PCL [32])5.

2) 3D-NDT: We use the 3D-NDT implementation pro-

vided by the Point Cloud Library (PCL [32])6.

3) 3-POINT RANSAC: We used the RANSAC algorithm

on this problem by first forming a list of potential matching

keypoint pairs based on the similarity of the descriptors only.

We then randomly select three of these pairs to define a

transformation between the frames, which we will call the

’model’. We then count the number of ’inliers’ according

to the model. The model with the most inliers is chosen

and updated by using all of the found inliers. In forming

the list of potential matched pairs only associations between

keypoints with descriptor distance dd ≤ λf are used. Inliers

are calculated by transforming the keypoints in one frame by

the model and associating the transformed keypoints to the

closest keypoint in the other frame. If the euclidean distance

de ≤ λe between these keypoints the association is counted

as an inlier 7. For the 3-point RANSAC algorithm we use

SURF keypoints.

We will use two different types of keypoints, SURF [21]

and ORB [23]. The Surf keypoints will be extracted using

OpenSURF Library[33]8. Using our test set we found an

average of 906 surf keypoints with valid depthdata in an

average of 0.12 seconds. To extract the ORB keypoints we

use OpenCV [34]9. Using our test set we found an average

of 857 ORB keypoints with valid depthdata in an average of

0.011 seconds.

C. Experimental Procedure

We performed registration experiments by estimating

transformations between consecutive frames of the data se-

quence. In order to test robustness to larger transformations,

we performed the experiments for pairs of frames sepa-

rated by different lengths of time. Performance is measured

4AICK using λe = 0.01m and λf = 0.2.
5GICP was allowed to run for 25 iterations. Rejection threshold =

0.004m.
6To keep the runtime reasonably low the pointclouds were subsampled

through the use of a voxelgrid with a voxel size of 0.02m. 3D-NDT was
allowed to run for 25 iterations, with resolution = 0.1 and stepsize =
0.09.

7We iterated the RANSAC over 400 random models in searching for the
best model using λe = 0.02m and λf = 0.2.

8With upright = true, octaves = 5, intervals = 5, init sample =
2 and threshold = 0.00001

9With nfeatures = 1100,scaleFactor = 1.2, nlevels = 8,
edgeThreshold = 2, firstLevel = 0, WTA K = 2, scoreType =
ORB :: HARRIS SCORE, patchSize = 31
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Fig. 3. The success ratio as a function of the threshold on the translation
error in m. Here we use all the found keypoints. The red dashed line shows
the threshold used in fig. (4). Meaning that the intersections with the red
dashed line are equivalent to values for the success ratio in fig. (4) when
the time difference between frames equals 30 ms.
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Fig. 4. success ratio as a function of the time difference between frames
with a fixed threshold on the translation error of 0.01 m. Here we use all
the found keypoints.

quantitatively using the measure described in Eq. 4. The

point clouds were created with calibrated camera parameters.

In section V-B we visualize the effects of accumulat-

ing a sequence of consecutive frame transformations and

transforming the appropriate pointclouds into a common

coordinate frame.

V. EXPERIMENTAL RESULTS

In fig. (3)10 we plot the success ratio versus a varying

λt (of eq. (4)) up to 0.05 meters using consecutive frames

(around 30ms apart) for the different algorithms. This allows

us to see both the size and variation of the translation error

of the different methods when the transformation between

frames is relatively small. A steep curve can be interpreted

as good performance as that would mean that the method

often yields a transformation with a small translation error.

One sees that, for consecutive frames, all of the methods

reach nearly 100% success ratio at a relatively small λt.

The conclusion is that while AICK using surf keypoints

10AICK was run for 25 iterations with α = 0.8 and Rw = ∞
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Fig. 5. Effects of limiting the number of surf keypoints used in AICK on
the success ratio as a function of the threshold on the translation error.
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Fig. 6. Effects of limiting the number of surf keypoints used in AICK on
the success ratio as a function of the time difference between frames with
a fixed threshold on the translation error of 0.01 m.

outperforms the other methods in this test all of the methods

are fairly accurate given small displacements of the camera.

It is also interesting to note that the difference between the

use of surf and orb keypoints is relatively small for AICK.

In order to evaluate robustness to large camera displace-

ments it is informative to see the result on the success ratio

by using a fixed λt and varying the time difference between

the frames being matched. This is shown in fig. (4)10 for a

threshold of 0.01 meters. It is clear that the AICK and 3-

point RANSAC degrades much slower than GICP and NDT

when the camera displacement increases.

A. Convergence and Speed

We can control the runtime to performance trade-off of

the algorithm using three main parameters: the number

of keypoints used, the number of iterations the algorithm

is allowed to run and the threhold Rw. By limiting the

maximum number of keypoints used in each frame, the

runtime can be significantly reduced. Fig. (5) and fig. (6)

indicate that a higher number of keypoints tend to generate

better transformations. However, there are clear diminishing

returns for using more than 200 surf keypoints. The effect

of having many keypoints is also greater when dealing with
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Fig. 7. Effects of limiting the number of iterations using orb keypoints
in AICK on the success ratio as a function of the time difference between
frames with a fixed threshold on the translation error of 0.01 m.
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Fig. 8. Effects of changing Rw using surf keypoints in AICK on success

ratio as a function of the time difference between frames with a fixed
threshold on the translation error of 0.01 m.

larger differences in frame capture timestamps. We theorize

that the reason is a higher chance of finding stable keypoints

if more keypoints are available. Similar investigations show

that AICK using ORB keypoints have similar properties, but

does however require around 350 keypoints to maintain most

of its performance.

In previous tests AICK has been allowed to run for

25 iterations in an attempt to guarantee convergence. The

algorithm tends to converge well after the fifth iteration using

SURF keypoints given a suitable α value as is apparent in

fig. (7). Similar experiments show that AICK using ORB

keypoints need about 10 iterations to converge. By looking

at the case where the algorithm was run for only one iteration

it is clear that the adaptive inclusion of the geometric

information greatly reduces the reliance on a good initial

keypoint match. The reduction on the number of iterations

the algorithm is run significantly cuts down the average

runtime per registration.

In order to use the vocabulary of words to speed up our

registration we needed to chose parameters for the size of

the vocabulary and the Rw. We varied the vocabulary size

from 10 to 5,000 and found that above 1,000 there was



Algorithm success ratio for threshold λt

Keypoints Rw Iterations Avg runtime [s] λt = 0.0033 λt = 0.01 λt = 0.05

AICK on avarage 906 surf keypoints ∞ 25 0.180 0.374 0.944 0.993

AICK on avarage 857 orb keypoints ∞ 25 0.135 0.276 0.885 0.999

AICK max 200 surf keypoints ∞ 5 0.00385 0.281 0.902 0.993

AICK max 350 orb keypoints ∞ 10 0.0113 0.209 0.833 0.998

AICK max 200 surf keypoints 0.26 5 0.000445 0.258 0.888 0.992

AICK max 350 orb keypoints 0.165 10 0.000717 0.209 0.828 0.995

GICP 25 224 0.070 0.366 0.996

NDT 25 237 0.177 0.706 1

3-point RANSAC 400 4.09 0.255 0.860 0.993

TABLE I

RUNTIME COSTS AND PERFORMANCES FOR THE TESTED ALGORITHMS. Rw IS THE RADIUS AROUND THE KEYPOINT TO FIND MATCHING WORDS.

no improvement in performance which indicated that 1,000

words was a good vocabulary size. In fig. (8) we see how

the success ratio depends on Rw for surf features.

The effects of these parameter changes together with

the success ratio of the registration for two consecutive

views for different thresholds can be seen in Table I while

fig. (9)11,12 shows the effects on the robustness to large

camera displacements. The cost for extracting keypoints

used by AICK or 3-point RANSAC is not included in the

table. The reason being that in many applications keypoint

extratction is only done once per frame whereas frame to

frame registration may be run multiple times per frame. For

the frames in the test set we found an average of 906 surf

keypoints with valid depthdata in an average of 0.12 seconds

and an average of 857 ORB keypoints with valid depthdata in

an average of 0.011 seconds. It can be seen that the keypoint

based methods are much faster than the non-keypoint based

methods. Obviously runtime is dependent on implementation

but since the keypoint methods deal with significantly less

data there are less calculations to be done. By controlling the

parameters for the AICK algorithm robustness and precision

similar to that of the 3-point RANSAC can be achieved in a

fraction of the time.

Rw = ∞ indicates not using words at all. Table (I) shows

that tuning the parameters of the algorithm can greatly speed

up the registration while fig. (9)11,12 shows that the drop in

performance was relatively small.

B. Visual inspection

The results presented above clearly show that AICK

outperforms other methods in robustness and precision. In

fig. (10) we visualize the results of accumulating transfor-

mations estimated by AICK over a sequence of 1000 frames.

This is a common and effective way to allow for a qualitative

evaluation by visual inspection. Because transformations are

added frame by frame, i.e. pure dead-reckoning, errors, espe-

cially in orientation, will result in clearly visible distortions.

The data is captured at 20 frames per second using [35]

with an uncalibrated handheld PrimeSense sensor. To remove

11AICK orb fast was run 10 iterations with α = 0.6, a maximum of 350
orb keypoints and Rw = 0.165.

12AICK surf fast was run 5 iterations with α = 0.3, a maximum of 200
surf keypoints and Rw = 0.26.
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Fig. 9. success ratio as a function of the time difference between frames
with a fixed threshold on the translation error of 0.01 m.

Fig. 10. Rendering of the points given by frame-to-frame transformation
estimates when walking next to a series of bookshelves in the KTH library.
The data is displayed from three different view points. The bookshelves
are lined up in the library and the upper part of the image shows that our
method produces results very close to this even using pure dead-reckoning.

the background and avoid displaying noisy data, only data

captured close to the sensor is displayed. The absence of

distortions during 50s of pure-deadreckoning with the sensor

moving in 6D lends credibility to the practical use of the

AICK method on real world systems.

VI. SUMMARY AND CONCLUSIONS

We proposed a unified method for transitioning between

coarse, appearance-based registration with no initial estimate

and fine registration using position-based ICP on distinctive

keypoints. In order to verify the performance of our method,



we employed a standard benchmark consisting of a dataset

and performance measure [5]. We compared the method

to three different high performance registration techniques.

In the experiments our method showed a significant im-

provement of both robustness to larger transformations and

precision of the final result which can be attributed to the

adaptive distance metric. Furthermore, sub-sampling of the

point cloud into a selection of keypoints together with a good

search heuristic(close visual words) resulted in an algorithm

orders of magnitudes faster than the algorithms used for

comparison while providing better performance.

Our results clearly show the feasibility of building real-

time systems using visual cues for robust RGB-D data

registration. We also believe that the proposed algorithm is a

suitable data registration algorithm for real-time, large-scale

simultaneous localization and mapping (SLAM) systems.
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