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T
his article describes the Robot Vision challenge, a 
competition that evaluates solutions for the visual 
place classification problem. Since its origin, this 
challenge has been proposed as a common bench-
mark where worldwide proposals are measured 

using a common overall score. Each new edition of the com-
petition introduced novelties, both for the type of input data 
and subobjectives of the challenge. All the tech-
niques used by the participants have been 

gathered up and published to make it accessible for future 
developments. The legacy of the Robot Vision challenge 
includes data sets, benchmarking techniques, and a wide 
experience in the place classification research that is reflected 
in this article.

The Challenge Over Time
The Robot Vision challenge started as part of 

the ImageCLEF lab in 2009. The challenge 
has since been organized five times, ini-

tially devoted to image-based place 
categorization, how to determine 
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from a single image which room the robot is in. This would 
be equivalent to localization in a topological map. One of the 
motivations for this was the significant progress on image 
categorization. Recent results [1]–[3] show that it is possible 
to recognize both manufactured and natural objects, such as 
cars, cows, or offices in natural images. This motivated the 
challenge of using place recognition for robot tasks. Initially, 
the task was focused on the use of intensity images for place 
categorization; participants were asked to process each image 
individually. Over time, the challenge has been expanded to 
include red, green, blue-depth (RGB-D) data and to perform 
both place and object categorization. Due to the environ-
mental variations, such as lighting or moving furniture 
around, a holistic analysis of an image may not generate ro-
bust results. A set of objects may point to a particular room 
category (i.e., pots in the kitchen and book shelves in the of-
fice). Given progress on object categorization and a need for 
further robustness, there was a need to provide multimodal 
sensor data and a richer challenge in terms of categorization 
of places and objects.

Creating a Categorization Competition 
Performing repeatable experiments that produce quantita-
tive, comparable results is a major challenge in robotics. First, 

running experiments 
often requires expensive 
hardware. Historically, 
such hardware has been 
custom built and stan-
dardized, and complete 
robot platforms started to 
emerge only recently. 
Furthermore, executing 
experiments involving 
real robots is often time 
consuming and can be a 
major engineering chal-
lenge. As a result, a large 
chunk of robotics re-

search has been evaluated using simulation or on a very lim-
ited scale.

The results of robotics experiments depend greatly on the 
sensory data captured by the robot operating in its environ-
ment. Such data are inherently unstable over time and depend 
on the actions taken by the robot and on the dynamic proper-
ties of real-world environments. This aspect is particularly 
pronounced in the case of visual and multimodal place classi-
fication, where the data of interest capture the general appear-
ance of large-scale environments. The appearance of places 
varies in time because of illumination changes (day and night, 
artificial light turned on and off) and because of human activ-
ities (furniture moved around, objects being taken out of 
drawers, and so on). All this calls for standardized bench-
marks and databases allowing for fair comparisons and sim-
plification of the experimental process and, as a result, would 
provide a boost for progress in the field of robotics.

Databases and standard benchmarks have long been ex-
ploited in the computer vision community, especially for 
the tasks of object recognition and categorization [4]–[6] as 
well as scene understanding [7], [8]. Also in robotics, re-
search on simultaneous localization and mapping (SLAM) 
heavily exploits publicly available data sets [9]–[11]. An im-
portant component when providing the community with a 
standard data set is to also provide a standard evaluation 
procedure. As a result, several research-oriented challenges 
and competitions emerged around publicly available data 
sets [5], [12].

The Robot Vision challenge was motivated by those prin-
ciples and the need to provide the community with a similar 
benchmark for the task of visual and multimodal place classi-
fication. Our aim was to address the distinct characteristics of 
the problem that were not reflected by the standard computer 
vision benchmarks or the typical robotics SLAM evaluations. 
In the case of place classification, we assume that the data are 
captured by a mobile robot platform. This defines a specific 
visual domain in which occlusions and noninformative sam-
ples are typical and data consist of a continuous stream of 
heavily dependent samples. Moreover, additional information 
from other robotics sensors, such as laser range scanners, 
might be available.

Since the early editions of the Robot Vision challenge, our 
focus was on addressing those specific characteristics of the 
place classification problem. Equally important was the ro-
bustness to real-world variations in typical human environ-
ments. This included illumination and weather conditions as 
well as the short-term and long-term dynamic changes (e.g., 
the presence of people, rooms being redecorated, and so on). 
This resulted in a series of data sets, benchmarks, and a chal-
lenge that became a unique and important event for the ro-
botics community.

Related Challenges
The use of competitions in robotics has encouraged the pro-
posal of solutions to some of the most well-known problems 
over the past two decades [13]. The RoboCup competition 
can be considered the most representative challenge [14], as 
it includes several leagues where a large set of tasks is evaluat-
ed, such as robot design and construction, navigation, local-
ization, mapping, perception, decision making, and 
human–robot interaction. The requested infrastructure is the 
main drawback of the RoboCup. Namely, a research group 
aiming to participate at a RoboCup league should include a 
medium/large number of members and robotic platforms, 
but also an appropriate environment for the deployment of 
the competition scenario.

Unlike the RoboCup, challenges based on data sets are 
approachable for most researchers. This encourages partici-
pation and promotes heterogeneous proposals from multi-
disciplinary groups. The PASCAL Visual Object Classes 
(VOCs) challenge [5] was first proposed in 2005, and it in-
troduces the object detection and recognition problem rely-
ing on the use of data sets. This competition evaluates pure 

The use of generalist 

images prevents us 

from using PASCAL 

VOC proposals to solve 

the problem of robot 

localization.
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computer vision proposals for de-
tecting and recognizing objects in 
images obtained from Flickr. Despite 
the intrinsic relationship between 
object recognition and robotics, the 
use of generalist images prevents us 
from using PASCAL VOC proposals 
to solve the problem of robot local-
ization. The ImageNET Large Scale 
Visual Recognition Challenge (ILS-
VRC) [12] can be seen as the natural 
successor of PASCAL VOC, which 
ended in 2012.

The Reconstruction Meets Recog-
nition Challenge (RMRC) [15] start-
ed in 2013 and is similar to the Robot 
Vision challenge. First, this challenge 
evaluates proposals for two robotic problems as segmenta-
tion and detection. Moreover, these tasks are presented for 
indoor environments that have been imaged using RGB-D 
sensors (using images from the New York University [8] data 
set). The main difference with respect to the Robot Vision 
task is the annotation scheme: RGB-D images are labeled at 
pixel/point level with object categories. In addition, the 
RMRC RGB-D images were not recorded using a temporal 
continuity, which is an important issue to keep in mind when 
trying to solve a localization task.

We can also find an ongoing challenge proposal with a 
strong relationship with the Robot Vision task. This is the 
Large-Scale Scene Understanding Challenge (LSUN) (http://
lsun.cs.princeton.edu), which holds a scene classification 
task. In this task, perspective images should be classified with 
the scene category using ten different options. Some of the 
scene categories used in the LSUN challenge have been al-
ready used in the Robot Vision task, like the conference 
room or the kitchen. 

Task Evolution
Despite the fact that the robot vision challenge was initially 
planned as a visual place recognition competition, other addi-
tional tasks have been included since its birth. Moreover, the 
information provided to the participants has also changed 
from one edition to the other. A summary of this evolution 
can be seen in Table 1.

The first edition of the competition [16] included room 
annotations, but also poses annotations. Concretely, each 
image was annotated with two different types of information: 
1) the label of the room where the image was acquired from 
and 2) the specific , ,x y< >i  pose of the robot. Although 
pose annotations were included in the training data, partici-
pants were encouraged not to use this information in their 
final proposals.

In the second and third editions [17], [18], pose annota-
tions were removed and monocular images were replaced by 
stereo ones, allowing participants to exploit the three dimen-
sional (3-D) configuration of the environment. The fourth 

edition of the challenge [19] included two different cues: visual 
information and depth information. In this edition, the depth 
information was provided in the form of depth images. Finally, 
the fifth edition [20] included unprocessed 3-D information in 
the form of point cloud files (PCD format [21]).

With respect to the objectives of the competition, two 
main tasks have been proposed since the first edition. Both 
tasks focus on visual 
place recognition, but 
they differ in the source 
of information. For the 
first task, participants 
have to provide informa-
tion about the location of 
the robot separately for 
each test image. On the 
other hand, in the second 
task, the temporal conti-
nuity of the sequence can be used to classify images. When 
presented with a test image, participants can rely on the in-
formation obtained using the previous images, making this 
task closer to real-world robotic localization scenarios. The 
fifth edition of the challenge also introduced an object recog-
nition task. Visual place recognition and object recognition 
can be considered as two subproblems of semantic localiza-
tion, where each location is described in terms of its seman-
tic contents.

Data Sets
Since 2009, several data sets have been created for the Robot 
Vision competition. The first data set used in the challenge 
was the KTH-IDOL2 database [22]. This data set was ac-
quired using a mobile robot platform in the indoor environ-
ment of the Computer Vision and Active Perception 
Laboratory (CVAP) at the Royal Institute of Technology 
(KTH) in Stockholm, Sweden. Each training image was an-
notated with the topological location of the robot and its 
pose , , .x y< >i  As previously mentioned, although the pose 
information was provided in the training data, participants 

Table 1. The task evolution.

First 
Edition

Second 
Edition

Third 
Edition

Fourth 
Edition

Fifth 
Edition

Sources Monocular images X — — X X

Stereo images — X X — —

Depth images — — — X —

Point clouds — — — — X

Semantic annotations X X X X X

Pose annotations X — — — —

Objective Two tasks X X X X —

Unknown classes — X X — —

Kidnappings — — — X —

Object detection — — — — X

The organizers proposed a 

baseline method for both 

the feature extraction and 

the classification steps.
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were encouraged not to 
make use of this informa-
tion in their final submis-
sion. The two editions of 
the competition that took 
place in 2010 were based 
on COLD-Stockholm, an 
extension of the COsy 
Localization Database 
[23]. This data set was 

generated using a pair of high-quality cameras for stereo vi-
sion inside the same environment, similar to the KTH-
IDOL2 data set. The fourth edition of the challenge used 

images from the unreleased VIDA data set [19]. This data 
set includes perspective and range images acquired with a 
Kinect camera at the Idiap Research Institute in Martigny, 
Switzerland. Depth information was provided in the form of 
depth images, with color codes used to represent different 
distances. Finally, the fifth edition of the competition used 
images from the Visual and Depth Robot Indoor Localiza-
tion with Objects (ViDRILO) information data set [24]. 
This data set includes images of the environment and point 
cloud files (in PCD format) [20].

Important variations in the data provided to the partici-
pants in each of the five editions of the competition also exist. 
Since the visual place recognition task was treated as a classifi-
cation problem, two key factors must be analyzed: 1) the type 
and number of classes and 2) the number of training, valida-
tion, and test images. In Table 2, we report the number of 
classes, as well as the number of training, validation, and test 
images in each edition of the competition. It should be noted 
that the second and third editions included an unknown class 
not imaged in the training/validation sequences.

All classes were named according to the common name of 
the place/room (e.g., kitchen, corridor) or its expected 
functionality (printer area, video conference room). The 
complete list of classes and their inclusion in each edition of 
the challenge are reported in Table 3. As can be seen, the 

number of classes increased from five to ten since 
2009. The first three editions of the competition 
used different class labels for rooms that actually 
shared a common semantics, but with spatial 
differences (e.g., a meeting room and a large 
meeting room). Since the fourth edition, class 
labels only represent semantic categories (no 
spatial characteristics) and are expected to lead 
into a standard semantic labeling system.

Figure 1 shows an exemplar image for each 
class in all the challenge editions. In this figure, 
we have used the class keys defined in Table 3. 
This table shows how some classes have been 
maintained throughout most of the editions of 
the challenge (e.g., corridor, elevator area, and 
student office). Moreover, there are some classes 
with different names but representing similar 
places (e.g., professor’s office, one-person office, 
small office, and small office 2). As has been 
introduced, the evolution in the class naming 
has been carried out with generalization 
purposes. For illustration purposes, Figure 2 
shows exemplar images from these classes for 
three different editions of the competition.

Participation
The robot vision challenge has received consider-
able attention from the research community 
since its release. We observed a similar scenario 
during all these years: a large number of research 
groups registered, but a small percentage of them 

All the editions used 

a score that computed 

the performance of the 

participant submission.

Table 2. The number of classes and training,  
validation, and testing instances.

Task  
Edition

Number 
of Classes

Number of Images

Training Validation Test

First 5 2,899 2,789 1,690

Second 9 12,684 4,783 5,102

Third 10 4,782 2,069 2,741

Fourth 9 7,112 0 6,468

Fifth 10 5,263 1,869 3,515

Table 3. The scene classes.

Scene Class Key

Task Edition

First Second Third Fourth Fifth

Corridor CR X X X X X

Kitchen KT X X X – –

Printer area PA X X X X –

One-person office 1PO X – – – –

Two-person office 2PO X – – – –

Elevator area EA – X X X X

Large office 1 LO1 – X – – –

Large office 2 LO2 – X – – –

Small office 2 SO2 – X – – –

Student’s office STO – X – X X

Lab LAB – X – – –

Large office LO – – X – –

Meeting room MR – – X – –

Recycle area RA – – X – –

Small office SO – – X – –

Toilet TL – – X X X

Large meeting room LMR – – X – –

Lounge area LGA – – – X –

Professor’s office PO – – – X X

Video conference 
room

VC – – – X X

Technical room TR – – – X X

Hall HA – – – – X

Secretary SC – – – – X

Warehouse WH – – – – X
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submitted results and wrote a working note with their pro-
posal details (see Table 4).

With respect to the obtained results, all the editions used a 
score that computed the performance of the participant sub-
mission. This score was always based on positive values for 
test images correctly classified and negative values for mis-
classified ones. We also allowed the possibility of not classify-
ing test images, resulting in nonaltering the score. The 
maximum reachable scores for the mandatory task of each 
edition were 1,690, 5,102, 2,741, 2,445, and 7,030, respectively. 
Regarding the optional task, the maximum scores were 1,690, 
5,102, 2,741, and 4,079, respectively for the first to fourth edi-
tions. The fifth edition of the task had no optional task. All 
the results are shown in Tables 5 and 6 for the mandatory and 
optional tasks of each edition, respectively.

In order to graphically present the results obtained for all 
the editions of the challenge, we have created two boxplots 
shown in Figures 3 and 4. We can observe how the first two 
editions of the competitions were quite balanced, both for the 

mandatory and optional subtasks. The experience achieved in 
the first year was successfully used to obtain higher results in 
the second one. The third edition notoriously increased the 
difficulty of the competition, with low results in the mandato-
ry subtask. This happened because the test sequence was ac-
quired on a different floor 
of the building, which in-
troduced important 
changes in the objects’ 
distribution in the scene. 
The changes introduced 
in the fourth edition were 
translated into larger vari-
ations between partici-
pant results. Finally, the 
fifth edition of the compe-
tition was properly managed by participants, with five out of 
six groups obtaining results higher than the 60% of the maxi-
mum score.

CR 2PO PA

(a)

KT 1PO

CR EA STO LO2 PA

(b)

LO1 KT LAB SO2

CR EA LO SO MR PA

(c)

KT TL RA LMR

CR EA STO LGA PA

(d)

PO TL TR VC

CR EA STO HA PO

(e)

SE WH TL TR VC

Figure 1. The exemplar images for every class and edition combination. Classes are named using the keys defined in Table 3.  
(a) RobotVision at ImageCLEF 2009. (b) RobotVision at ImageCLEF 2010 ICPR. (c) RobotVision at ImageCLEF 2010. (d) RobotVision 
at ImageCLEF 2012. (e) RobotVision at ImageCLEF 2013.

Pose annotations were 

removed and monocular 

images were replaced by 

stereo ones.
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Participant Proposals and Remarkable Results

First Edition
Twenty-nine different groups registered for the first edition 
of the Robot Vision challenge [16], organized in 2009. 
Among them, seven groups submitted at least one run to the 
competition, with four groups competing both the mandato-
ry and the optional task. For the mandatory task, a wide 

range of techniques was proposed for the image representa-
tion and classification steps. The best result, 793 points out of 
1,690, was obtained by the Idiap group using a multicue dis-
criminative approach [25]. The visual cues considered by this 
group included two global descriptors: 1) composite recep-
tive field histogram (CRFH) [26] and 2) principal compo-
nent analysis of census transform [27]; as well as two local 
descriptors: 1) scale invariant feature transform (SIFT) [27] 
and 2) speeded-up robust features (SURF) [28]. A support 
vector machine (SVM) [29] was trained for each visual cue, 
and a high-level cue integration scheme, the discriminative 
accumulation scheme (DAS) [30], was used to combine the 
scores provided by the different SVMs. Interestingly, the 
DAS cue-integration method assigned the highest weight to 
the SIFT features and a zero weight to the SURF features (i.e., 
the SURF features were actually not used in the final system). 
A threshold-based system was then used to refrain from 
making a decision. For the optional task, the best result, 
916.5 points, was obtained by the Sistemas Inteligentes y 
Mineria de Datos (SIMD) group [31] using a particle filter 
approach to estimate the position of the robot given the pre-
vious position. A set of candidate positions (particles) were 
sampled around the previous estimated position and sepa-
rately evaluated using the similarity between the query image 
and the training images whose annotated positions (obtained 
using the annotated odometry information) were the closest 
to the considered particle.

Second Edition 
The 2010@ICPR edition [32] had participation similar to the 
first edition, with eight participating groups, out of which four 
competed for both the mandatory and the optional task. As 
mentioned above, participants were provided with the stereo 
images obtained from two cameras mounted on the robot in 
this edition. Among the proposals for the mandatory task, the 
approach adopted by the computer vision and geome-
try (CVG) group [33] stood out for its full usage of the stereo 
images to reconstruct the 3-D geometry of the rooms. Using 
the reconstructed geometry, the authors could extract view-
point invariant features [34], while canonical SIFT features 

were also extracted from monocular images. 
Using this approach, the CVG group achieved 
the best score of 3,824 points out of 5,102. The 
optional task was once again won by the SIMD 
group [35], this time by computing SIFT similar-
ities between test frames and a set of training 
candidate frames, which was selected by means 
of clustering techniques.

Third Edition
The third edition of the Robot Vision challenge 
[36] was attended by seven groups, three of 
which particpated in both the mandatory and 
optional tasks. For this edition, participants were 
asked to classify images recorded on a floor dif-
ferent from the one used to acquire the training 

(g) (h) (i)

(d) (e) (f)

(a) (b) (c)

Figure 2. The class evolution. Images for (a), (d), and (g) classes 
corridor, (b), (e), and (h) elevator area, and (c), (f), and (i) 
student office.

Table 4. The participation.

Participation

Task Edition

First Second Third Fourth Fifth

Registered groups 19 28 71 43 39

Participant groups 7 8 7 8 6

Working notes 
submitted

5 3 3 4 2

Table 5. The mandatory task results.

Results

Task Edition

First Second Third Fourth Fifth

Maxmimum score 1,690 5,102 2,741 2,445 7,030

Score first group 793 3,824 677 2,071 6,033

Score second group 787 3,674 662 1,817 5,722

Score third group 784 3,372.5 638 1,348 5,004.750

Score fourth group 544 3,344 253 1,225 4,638.250

Score fifth group 511 3,293 62 1,028 4,497.875

Score sixth group 456 3,272 -20 551 -487

Score seventh group — 2,922.5 -77 462 —

Score eighth group — 2,283.5 — -70 —
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images. Consequently, this edition of the competition re-
quired the algorithms to show higher generalization capabili-
ties. For the second time, the CVG group won the 
mandatory task with an approach combining a weighted k-
NN search using global features, with a geometric verifica-
tion step [37]. Surprisingly, this winning approach made use 
of only a single holistic image representation (GIST) [38]. 
Furthermore, the GIST representation of a query image was 
directly matched with the GIST representations of the train-
ing images, by sorting the training images according to their 
R2  distance to the query image. An image was finally as-
signed to the class of the matching image at the lowest angu-
lar distance. This approach obtained a score of 677 points out 
of 2,741. For the optional task, the approach proposed by the 
Idiap group [39] proved to be the most effective. The pro-
posed multi-cue system combined up to three different visu-
al descriptors (namely, pyramid histogram of oriented 
gradients (PHOG) [40], CRFH [26], and principal local bi-
nary pattern [41]), in a discriminative multiple kernel SVM. 
A door detector was implemented to determine the transi-
tion from one room to another, while a stability estimation 
algorithm was used to evaluate the stability of the classifica-
tion process. Using this approach, the Idiap group obtained 
the winning score of 2,052 points out of 2,741.

Fourth Edition
As mentioned above, the 2012 edition [19] introduced range 
images obtained with a Microsoft Kinect sensor. Up to 43 
groups were recorded in the task, but only eight submitted 
their results. The organizers proposed a baseline method for 
both the feature extraction and the classification steps [42]. 
Regarding feature extraction, the pyramid PHOG [40] (for 
visual images) and the normal aligned radial feature [43] 
(for depth images) were proposed. Concerning classification 
and cue integration, the Batch Strongly Convex Multi On-
line Kernel Learning (OBSCURE) [44] method was select-
ed. Because of this proposal, the results of the baseline 
submission were 462 out of 2,445 for the mandatory task 
and 1,041 out of 4,079 for the optional task. The group from 
the Universidad Tecnologica Nacional, Cordoba, Argentina 
(CIII UTN FRC) [45] was the winner for both tasks with a 
score of 2,071 and 3,930, respectively. This group made use 
of the depth information (in fact, they were only group that 
used it). For low-level features, they used the SIFT descrip-
tor [46], reducing the dimensionality of this descriptor with 

principal components analysis (PCA) and encoding the in-
formation in Fisher Vectors image signatures [47] for both 
color and depth images. Finally, the classification phase re-
lied on SVMs. The group 
from the Alexandru Ioan 
Cuza University, Iasi, Ro-
mania (UAIC2012) [48] 
presented an interesting 
approach for the manda-
tory task, which used a 
combination of hue, satu-
ration, and value and 
RGB color histograms in 
conjunction with SIFT 
descriptors (following a 
bag-of-word approach). 
They achieved 1,348 points. The group from the Ural Feder-
al University, Yekaterinburg, Russian Federation (USU room 
409) [49] proposed the use of a growing Kohonen network. 
They obtained 1,225 points in the mandatory task using sta-
tistical pixel values like expected value, variance, and stan-
dard deviation as inputs.
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Figure 3. The results out of the maximum score for the 
mandatory task.
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Figure 4. The results out of the maximum score for the optional task.

Table 6. The optional task results.

Results

Task Edition

First Second Third Fourth

Maxmimum score 1,690 5,102 2,741 4,079

Score first group 916.5 3,881 2,052 3,930

Score second group 890.5 3,783.5 62 3,859

Score third group 884.5 3,453.5 -67 3,169

Score fourth group 853 2,822 — 1,041

The Robot Vision task 

has served for sharing 

techniques and knowledge 

between worldwide 

researchers.
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Fifth Edition
The fifth edition [20] encouraged participants to use 3-D 
information (point cloud files) with the inclusion of rooms 
completely imaged in dark. It also introduced the 
identification of the objects present in the scene, as well as a 
proposed classification method similar to that of the 2012 
edition, used to present a baseline score of 5,004.75 out of 
7,030 points. The highest result, 6,033.5 points, was obtained 
by the Institute of Computing Technology, Chinese Academy 
of Sciences, Beijing, China (MIAR ICT) [50]. They proposed 
the use of kernel descriptors [51] for both visual and depth 
information, while PCA was applied for dimensionality 
reduction. They used SVM classifiers and managed object 

recognition and room 
classification separately. 
Actually, both problems 
were expected to be 
handled together, but 
none of the participants 
presented a proposal 
where the appearance of 
the object (or lack thereof) 
is used to classify the 
room. The group from the 

University of Sfax National School of Engineers, Tunisia 
(REGIM) [52] achieved a score of 4,638.25 points, slightly 
lower than the baseline score. Visual images were processed 
using Pyramid Histogram of Visual Words [53], and linear 
SVMs were selected as the classification model.

As a general remark, we can point out that most editions 
were won by those participants taking advantage of the intro-
duced novelties. Namely, those proposals that ranked first in 
the second and third editions were based on the spatial geom-
etry acquired from stereo images. The winner of the fourth 
edition was the only proposal using range information, and a 
similar scenario was found in the 2013 edition.

Analysis of the Results
In addition to the generation of solutions to the problem 
provided by each edition, the Robot Vision task has served 
for sharing techniques and knowledge between worldwide 
researchers. This experience has helped several robotic 
laboratories generate their own place classifiers and also 
develop novel approaches that have been successfully de-
ployed in different environments. Here, we review some of 
these proposals.

The University of Glasgow only participated in the first 
edition of the challenge ranking second for the optional 
task [54], but their novel matching approach was used to 
develop a robust localization system [55]. The PicSOM 
content-based image retrieval system [56] from the Univer-
sity of Helsinki was evaluated in the second edition of the 
challenge. Despite their low ranking (fifth [57]), the experi-
ence gathered from the Robot Vision challenge allowed 
them to develop a concept detection system relying on the 
use of kernel maps [58]. Members from the CVG group, 

winner of the second and third editions, also presented an 
extension of their proposals, namely, the visual mapping 
and localization problem [59], for outdoor environments. 
Another remarkable proposal drawn from the Robot Vi-
sion competition is the generalist use of Fisher Vectors for 
image classification, as presented by the winner of the 
fourth edition of the task in [60].

The use of kernel descriptors, as part of the MIAR ICT 
participation in the 2013 edition, can be considered the 
most outstanding technique presented in the Robot Vision 
challenge [50]. This technique generates rich path-level 
features from pixel attributes, which are then used to 
generate image representations suitable for further 
classifications. Kernel descriptors have been previously used 
for scene labeling and classification [61], but the temporal 
continuity of the sequences of images has not been exploited 
in previous proposals. The MIAR ICT team approach 
smooths the score of their algorithm using a smoothing 
window, which increases its accuracy by 8.43% when 
validated against the validation sequence.

Conclusions
In this article we presented an overview of the five consecu-
tive editions of the Robot Vision challenge at ImageCLEF. 
First, we described the challenge and why we consider it a 
relevant and important competition for the robotics science 
community in particular, and to the research community in 
computer vision in general. We also described some related 
competitions and how the tasks proposed in each challenge 
have evolved from the first edition to the last one. The chal-
lenge has evolved over the different editions: different in-
formation sources, different scene categories, visual and 
depth images, intrascene object information, the amount of 
training and validation data, and baseline useful software 
have been used across editions. As a result of these changes, 
different data sets have been released and publicly provided 
as a testbed for the visual scene classification problem. Fi-
nally, we presented the more relevant proposals as well as a 
summary of the best results obtained in the five editions of 
the competition.

As a main conclusion, we argue that the Robot Vision 
challenge has provided valuable resources including data sets, 
benchmarking techniques, and state-of-the-art solutions to 
the visual place classification problem. Moreover, the chal-
lenge has contributed to the generation of a semantic localiza-
tion researcher community.

For future editions of the challenge, we plan to manage 
both room classification and object recognition problems 
jointly. Subsequently, we will challenge participants to classify 
rooms using the list of objects recognized in a scene as inputs. 
Also, the use of online development environments will be 
considered.
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