A Discriminative Approach to Robust Visual Place Recognition

A. Pronobis[®], B. Caputo^{\$}, P. Jensfelt[®], H.I. Christensen[®]

CAS/KTH, Stockholm, Sweden
{pronobis, patric, hic}@nada.kth.se

*IDIAP, Martigny, Switzerland bcaputo@idiap.ch

- Vision-based indoor place recognition system robust to visual variability introduced by
 - Varying illumination (natural/artificial light)
 - Human activity
 - Small view-point variations

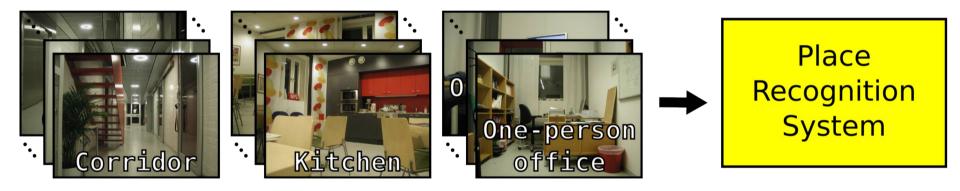
- Vision-based indoor place recognition system robust to visual variability introduced by
 - Varying illumination (natural/artificial light)
 - Human activity
 - Small view-point variations
- Thorough experimental evaluation in the domain of mobile robot topological localization
 - Using three different platforms
 - Under varying illumination
 - Over a significant time span

Motivation

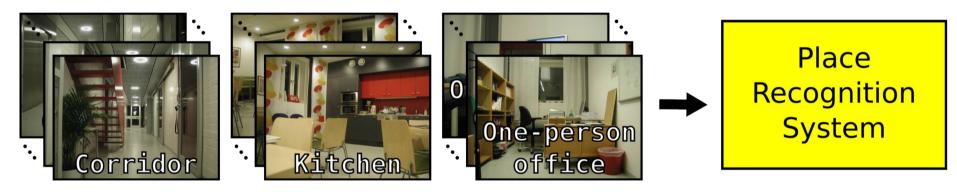
- Localization a fundamental competence for mobile autonomous systems
- Place recognition for topological localization
 - Method for loop closing
 - Recovery from the kidnapped robot problem
 - Source of contextual information
 - Possible solution for scalability issues
- Vision-based solutions
 - Provide cues unavailable for other sensors
 - Portable and cost-effective

Fully supervised, appearance-based method

- Fully supervised, appearance-based method
- Training:



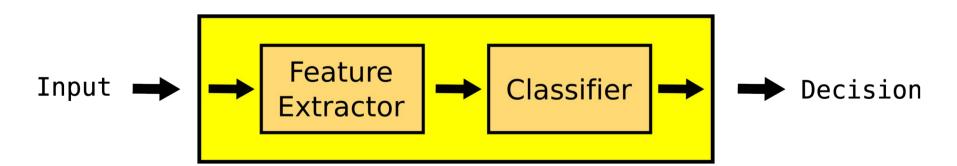
- Fully supervised, appearance-based method
- Training:



Recognition:

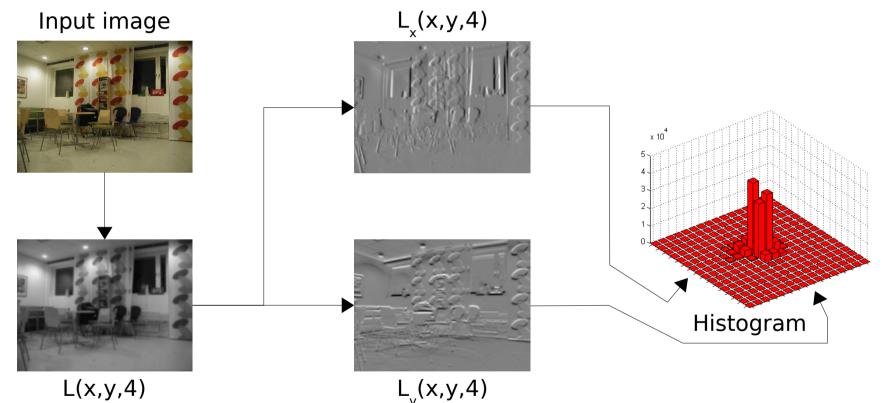
- Assumption: encoding of the global configuration of a scene is informative enough for recognition
- The system consists of two parts:
 - Feature extractor High Dimensional Composed Receptive Field Histograms (CRFH) [Linde and Lindeberg '04]
 - Classifier

Support Vector Machines [Vapnik '98]



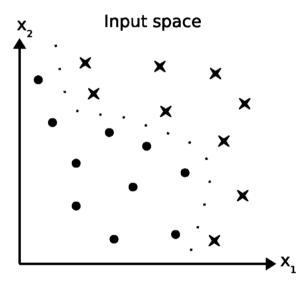
Our Approach Feature extraction – High dimensional CRFH

 Sparse multi-dimensional statistical representation of responses of several descriptors applied to the input image

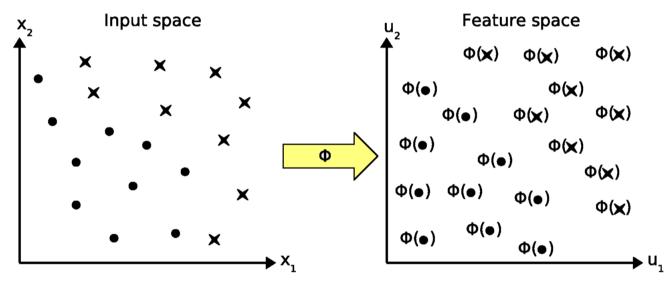


 Our case: 6 dimensional histograms, 2nd order Gaussian derivative filters applied to the intensity channel

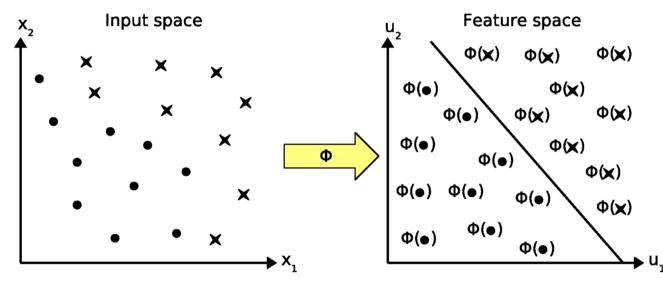
 Large margin, discriminative classifier separating training data by a hyperplane in a high dimensional feature space



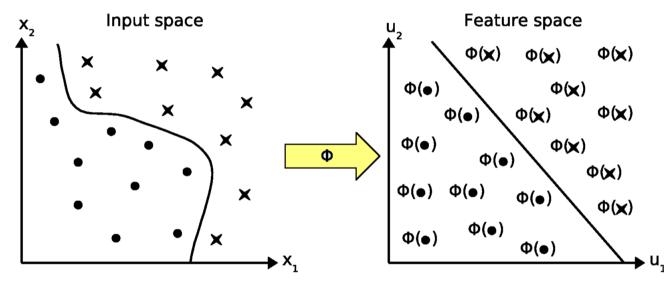
 Large margin, discriminative classifier separating training data by a hyperplane in a high dimensional feature space



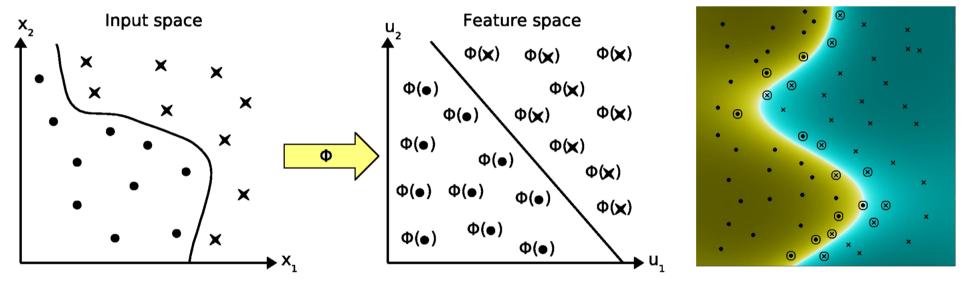
 Large margin, discriminative classifier separating training data by a hyperplane in a high dimensional feature space



 Large margin, discriminative classifier separating training data by a hyperplane in a high dimensional feature space

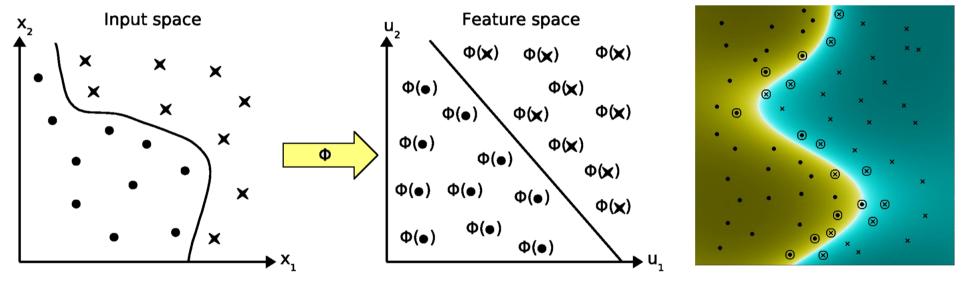


 Large margin, discriminative classifier separating training data by a hyperplane in a high dimensional feature space

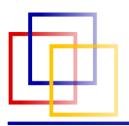


 The discriminant function is parametrized by a subset of training vectors

 Large margin, discriminative classifier separating training data by a hyperplane in a high dimensional feature space



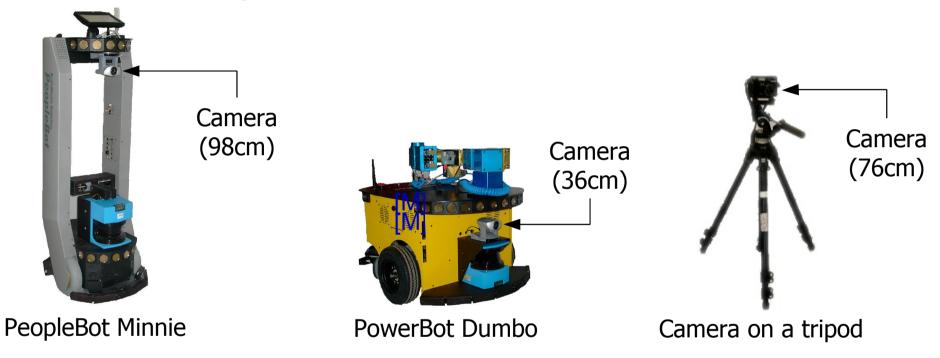
- The discriminant function is parametrized by a subset of training vectors
- Very good generalization performance
- Can be performed efficiently kernel trick



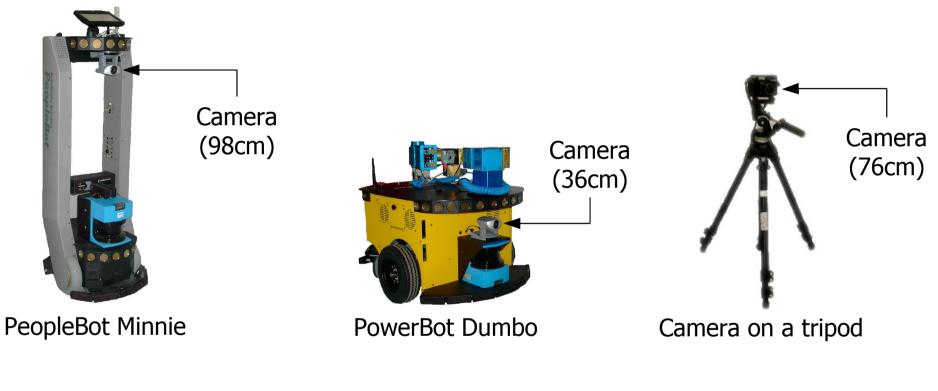
Experimental Setup The Environment

- Real office environment
- Each room represents a different functional area

Three different platforms



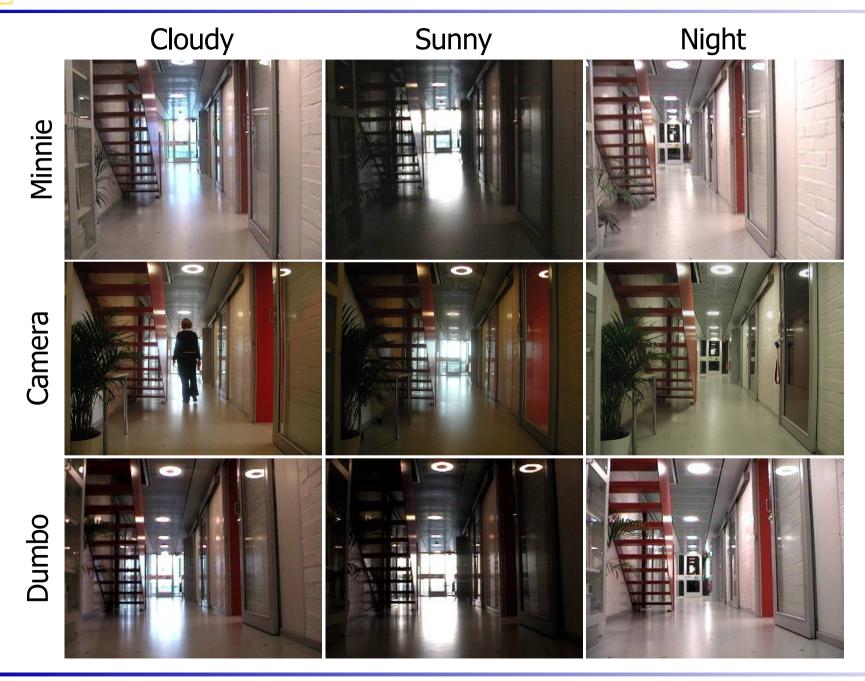
Three different platforms



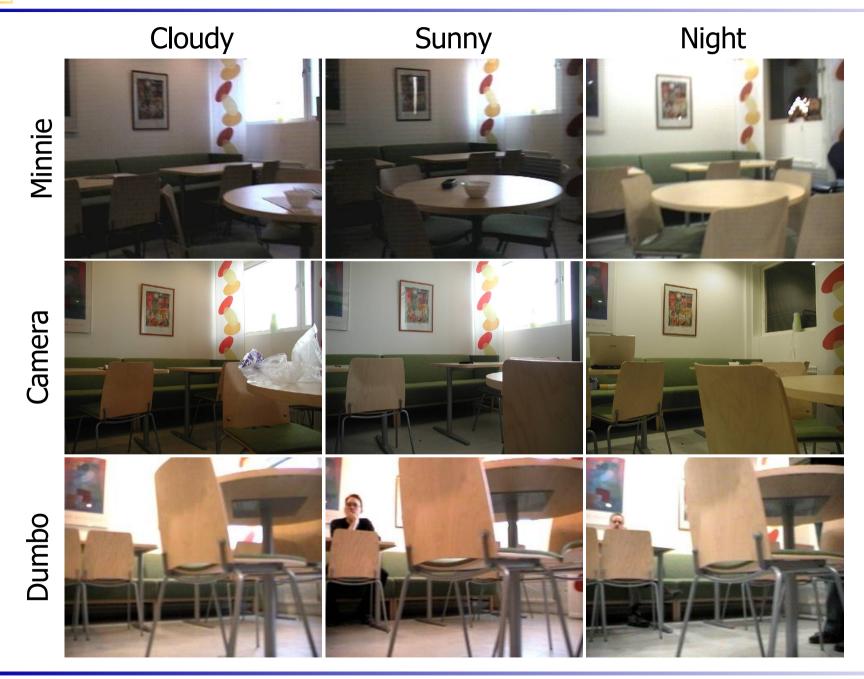
- Three illumination conditions
- Significant span of time

Several types of variability captured

Exemplary Pictures – The Corridor



Exemplary Pictures – The Kitchen



Experimental Evaluation

The system was evaluated in three sets of experiments

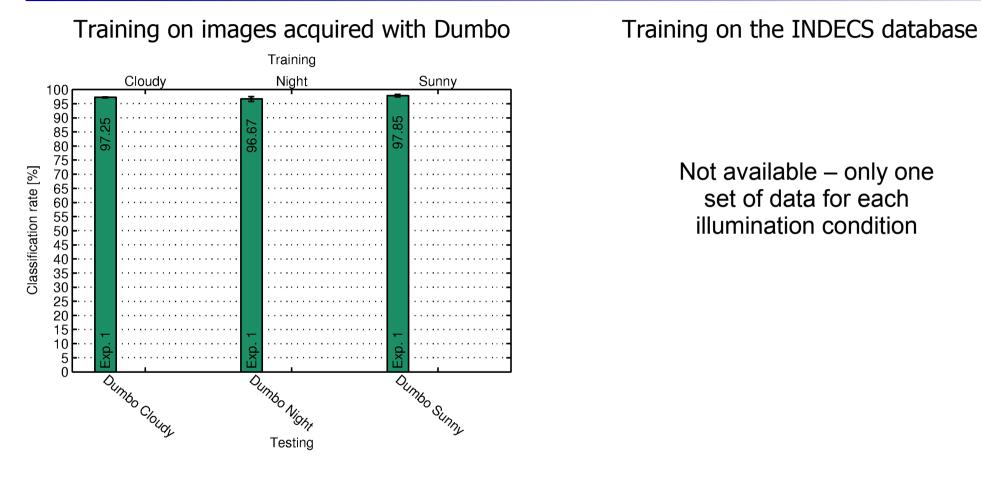
Experimental Evaluation

- The system was evaluated in three sets of experiments
- Experiment 1 Stable illumination conditions
 - Reference experiment

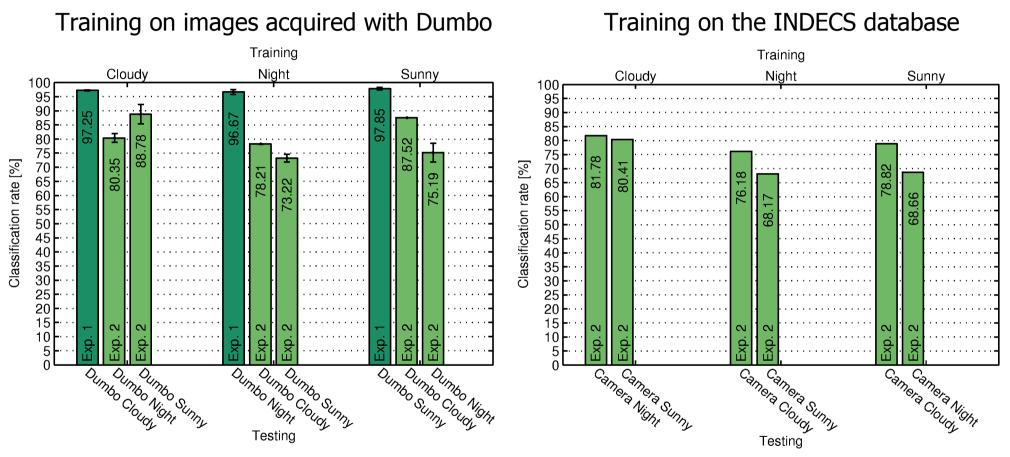
- The system was evaluated in three sets of experiments
- Experiment 1 Stable illumination conditions
 - Reference experiment
- Experiment 2 Varying illumination conditions
 - Evaluating robustness

- The system was evaluated in three sets of experiments
- Experiment 1 Stable illumination conditions
 - Reference experiment
- Experiment 2 Varying illumination conditions
 - Evaluating robustness
- Experiment 3 Recognition across platforms
 - Can a model trained on images acquired using one device be useful for localization of another device?

Experimental Results Exp. 1 - Stable Illumination Conditions

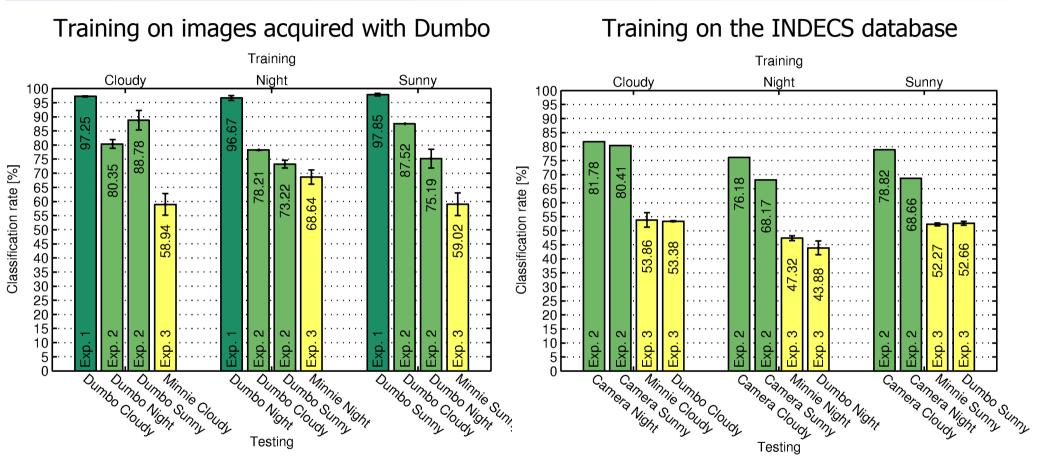


- Average class. rate: 97.2% for Dumbo and 95.5% for Minnie
- Each room treated equally, chance 20%



- Best performance when trained in cloudy weather (average class. rate: 84.6% for Dumbo, 81.0% for INDECS)
- 100% impossible to achieve with such approach

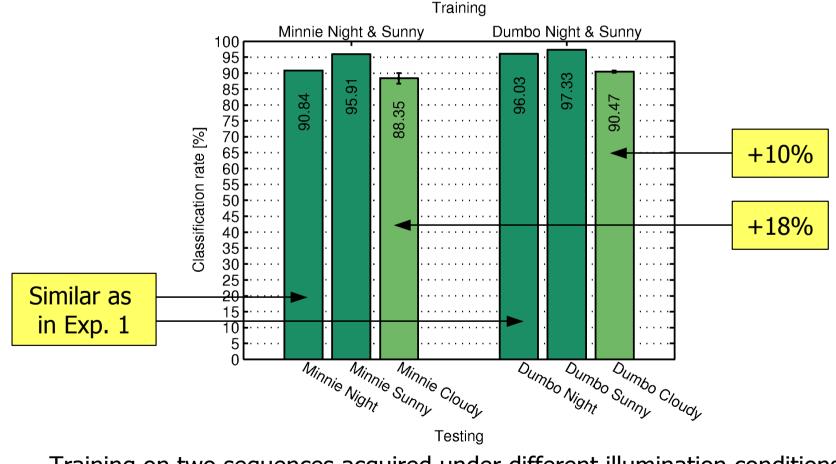
Experimental Results Exp. 3 – Recognition Across Platforms



- Still up to about 70% of images classified correctly
- INDECS: only about 50%, but very large variability

Experimental Results Robustness and Efficiency

- Our goal: robust and efficient solution (little training data)
- Robustness can be improved more data required



Training on two sequences acquired under different illumination conditions

Summary and Future Work

- Rich global descriptor + SVM = robust and efficient approach to visual-based place recognition
- Successful in handling significant changes in illumination and other variations that occur in real-world environments
- Recognition time 350ms
- Future work:
 - Incorporating illumination invariance into image descriptor
 - Fusing information from more than one image
 - Handling very long-time variations through incremental learning and adaptability (ongoing)
 - Place categorization

####