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Abstract. The capability to learn from experience is a key property for a visual recognition
algorithm working in realistic settings. This paper presents an SVM-based algorithm, capable of
learning model representations incrementally while keeping under control memory requirements.
We combine an incremental extension of SVMs [1] with a method reducing the number of support
vectors needed to build the decision function without any loss in performance [2], introducing a
parameter which permits a user-set trade-off between performance and memory. The resulting
algorithm is guaranteed to achieve the same recognition results as the original incremental method
while reducing the memory growth. Moreover, experiments in two domains of material and place
recognition show the possibility of a consistent reduction of memory requirements with only a
moderate loss in performance. For example, results show that when the user accepts a reduction
in recognition rate of 5%, this yields a memory reduction of up to 50%.
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1 Introduction

Basic visual operations such as categorization and complex tasks such as scene interpretation have long
been major challenges in computer vision. A system able to perform these tasks should include facilities
for understanding and learning, where understanding here means both recognition and categorization
of objects and scenes. A system with a realistic complexity cannot be engineered: this calls for methods
for automatic acquisition of models and representations allowing the system to work in an open-ended
fashion, i.e. beyond initial specification. A highly desirable property for a visual recognition algorithm
working in realistic settings is the capability to learn from experience and update incrementally its
internal representation. The possibility to learn continuously is particularly important for all those
applications where, in spite of a vast batch training set and unlimited training time, it is impossible
to provide a database which will remain representative of the modeled visual class during time. For
instance, some visual categories like phones or computers have grown dramatically over the last 20
years. New category members like cell phones and laptops have appeared, changing our visual models
of these categories. Another example is indoor place recognition, where the variability of a room’s
appearance is so high (people using the room, furniture relocated or changed, objects being taken
out of drawers, illumination changes and so forth) that is virtually impossible to collect a training
database covering all these possibilities.

Discriminative methods have become widely popular for visual recognition, achieving impressive
results on several applications [3, 4, 5, 6]. Within discriminative classifiers, SVM techniques provide
powerful tools for learning models with good generalization capabilities; in some domains like object
and material categorization, SVM-based algorithms are state of the art [7, 8]. This makes it worth to
investigate whether it is possible to perform continuous learning with this type of methods. Several
incremental extensions of SVMs have been proposed in the machine learning community [9, 10, 1,
11, 12]. Between these methods, the approximate techniques [9, 11, 1] seem better suited for visual
recognition because, at each incremental step, they discard non-informative training vectors, thus
reducing the memory requirements. Other methods, such as [10], instead require to store in memory
all the training data, eventually leading to a memory explosion; this makes them unfit for continuous
learning of visual patterns.

This paper presents an SVM-based incremental method which performs like the batch
algorithm while reducing the memory requirements. We combine an approximate technique for incre-
mental SVM [1] with an exact method that reduces the number of support vectors needed to build
the decision function without any loss in performance [2]. This results in an algorithm performing as
the original incremental method with a reduction in the memory requirements. We then present an
extension of the method for the exact simplification of the support vector solution [2]. We introduce
a parameter that links SVM’s performance to the amount of vectors that is possible to discard. This
allows a user-set trade-off between performance and memory reduction. The algorithms were tested
in two domains, material categorization and indoor place recognition, using several descriptors and
kernel types. For this last application, we recorded a new database in our laboratory which images
office environments across a time-range of three months, thus capturing the natural variability of
rooms. In summary, the contributions of this paper are:

• We implemented and tested the fixed-partition incremental SVM [1] and benchmarked it against
the batch algorithm. Results show that their performance is statistically equivalent, but the
incremental method does not consistently achieve a memory reduction compared to the batch
model.

• We implemented and tested a method for the exact simplification of the support vector solution
[2]. The algorithm was further extended by introducing a parameter, to be set by the user,
which allows a trade-off between performance and memory. Although our interest here was in
combining these algorithms with incremental SVM, these methods can be used for any SVM-
based classification algorithm.
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• We combined these algorithms obtaining a new incremental SVM with a mechanism for memory
control. At each incremental step the number of support vectors to be stored can be reduced,
depending on the application, (a) without any loss in performance, or (b) with a controlled
decrease in recognition rate which yields a consistent memory reduction. Experiments show
that in the case (a) the algorithm achieves a reduction on the number of stored support vectors
of 32%. In the case (b), results show that when it is acceptable a reduction in recognition rate
of 5%, this yields a reduction of 50% in the number of stored support vectors.

• We built a new database for indoor place recognition. It consists of several sets of pictures taken
in five rooms of different functionality, under various conditions. We placed a special emphasis on
capturing the variability of the environments, and we imaged each room under many viewpoints
and angles, across a range of time of several months. Because of the high resolution of the images
(1024×768 pixels), the database can be used for testing scene recognition systems, context-based
object recognition methods and visual attention algorithms.

The paper is organized as follows: after a review of the existing literature (section 2), section
3 describes the databases and relative feature types used throughout the paper. Section 4 reviews
approximate techniques for incremental SVM and presents an experimental evaluation of one of these
methods. Section 5 describes the memory reduction algorithms and evaluates their performance for
different kernel types. Section 6 presents our memory-controlled incremental SVM and shows its
effectiveness with a set of experiments. The paper concludes with a summary discussion and possible
directions for future work.

2 Related Work

In the recent years, the need for continuous and incremental learning methods is becoming more and
more acknowledged. This stimulated the research in the machine learning community directed towards
developing extensions for algorithms that were commonly used due to their superior performance
but were missing the ability to be trained incrementally. As a result, methods such as Incremental
PCA have been invented and successfully applied e.g. for mobile robot localization [13, 14]. As it
was already mentioned, several incremental extensions have been introduced also for Support Vector
Machines [9, 10, 1, 11, 12]. However, the results of experiments that can be found in the literature
do not give a clear answer if it is possible to apply them for complex real-world problems such as e.g.
scene recognition. The question how to maintain the complexity of a continuously trained classifier
also remained unanswered. At the same time, several methods have been proposed that allow to reduce
the complexity of SVM solutions and make it more suitable for large-scale problems [2, 15, 16, 17, 18].
However, to the knowledge of the authors, non of them has so far been tried in the incremental learning
scheme.

3 Experimental Setup

In this section we describe the databases and the feature types used in this paper. For the experiments
on material categorization we used a database recently presented [7] and state of the art descriptors
[19] (section 3.1). For the experiments on indoor place recognition, we present a new database which
captures the variability of five different rooms in a working environment across a span of time of three
months (section 3.2). Previous work on scene recognition makes use of global descriptors [20] as well
as local features [21]. In order to asses the difficulty of the database, we used two feature types: a
rich global descriptor [22] and SIFT features [23].
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Figure 1: The variations within each category of the TIPS2 database. Each row shows one example
image from each of four samples of a category. In addition, each sample was imaged under varying
pose, illumination and scale conditions.

3.1 Material Categorization

We performed the material categorization experiments on the TIPS2 database, which contains 4 planar
samples of each of 11 materials ([7], Fig 1). Many of these materials have 3D structure, implying that
their appearance can change considerably as pose and lighting are changed. TIPS2 contains images
at 9 scales equally spaced logarithmically over two octaves. At each scale, materials were imaged
under 3 poses (frontal, rotated 22.5◦ left and 22.5◦ right) and 4 illumination conditions (frontal, 45◦

from the top and 45◦ from the side, all taken with a desk-lamp with a Tungsten light bulb; the
fourth illumination condition consisted of the fluorescent lights in the laboratory). In total there are
9× 3× 4 = 108 images per sample. As descriptors we used the rotationally invariant MR8 [19] which
has shown good performances on this database [7].

3.2 Place Recognition

We performed the place recognition experiments on the INDECS database (INDoor Environment
under Changing conditionS) [24], a new database which represents one of the contributions of this
paper. The database consists of 5 different rooms (a one-person office, a two-persons office, a kitchen,
a corridor and a printer area) imaged under different viewpoints and locations. Images were acquired
using an Olympus C-3030ZOOM digital camera mounted on a tripod. The height of the tripod was
constant and equal to 76 cm; all images were acquired with a resolution of 1024×768 pixels, with the
flesh disabled, the zoom set to wide-angle mode and the auto-focus enabled. Fig 2 shows examples of
the images recorded. For each room, images were taken at different times of the day and with different
weather conditions (sunny, cloudy and night), across a span of time of three months. In this way, we
captured the visual variability of each room under different illumination conditions and we recorded
the normal activities in the rooms (presence/absence of people, furniture relocated, changed, added
or removed). Fig 3 shows some examples of these types of variability for some rooms. We marked
out in each room several points (approximately one meter from each other) where we positioned the
camera for each acquisition. The number of points changed with the dimension of the room and goes
from a minimum of 9 for the one-person office to a maximum of 32 for the corridor. At each location
we took 12 pictures, one every 30◦. In total there are 3264 images (324 for the one-person office, 492
for the two-persons office, 648 each for the kitchen and the printer area, and 1152 for the corridor).
Experiments were conducted using SIFT features [23] as local descriptors and Composed Receptive
Fields Histograms (CRFH, [22]) as global features. For this last feature type, we tested several different
combinations of receptive fields in a set of preliminary experiments. Based on the results we obtained,
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One-person office Corridor Two-persons office

Kitchen Printer area

Figure 2: Some examples from the INDECS database

we decided to use CRFH computed from second order normalized Gaussian derivative filters, at two
different scales, throughout the paper.

4 Incremental SVM

This section presents the incremental SVM technique that will be one of the building blocks of our
memory-controlled algorithm. After a brief review of the theory behind this type of algorithms (section
4.1), the remaining of the section describes the approximate technique used in this paper (section 4.2)
and presents an experimental evaluation of its performance against the batch method (section 4.3).

4.1 SVM: the batch algorithm

Support Vector Machines (SVMs, [25, 26]) belong to the class of large margin classifiers. Consider the
problem of separating the set of training data (x1, y1), . . . (xm, ym), where xi ∈ ℜN is a feature vector
and yi ∈ {−1, +1} its class label. If we assume that the two classes can be separated by an hyperplane
w ·x + b = 0, the optimal hyperplane is the one which has maximum distance to the closest points in
the training set. The optimal values for w and b can be found by solving a constrained minimization
problem, which results in a classification function

f(x) = sgn

(
m∑

i=1

αiyiw · x + b

)
, (1)

where αi and b are found by using an SVC learning algorithm [25, 26]. Most of the αi’s take the value
of zero; those xi with nonzero αi are the “support vectors”. It can be seen from eq. 1 that the speed
of classification as well as the memory required to store a trained model are directly proportional to
the number of support vectors. The extension to multiclass can be done following several strategies
[26, 25]; here we used the pairwise approach [26, 25]. To obtain a nonlinear classifier, one maps the
data from the input space ℜN to a high dimensional feature space H by x → Φ(x) ∈ H, such that
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Corridor

Kitchen

Surroundings of the printer

Cloudy Night Sunny

Figure 3: Examples of pictures from the INDECS database, taken under three different illumination
and weather conditions for some rooms.

the mapped data points of the two classes are linearly separable in the feature space. Assuming there
exists a kernel function K such that K(x, y) = Φ(x) · Φ(y), then a nonlinear SVM can be construct
by replacing the inner product x · y in the linear SVM by the kernel function K(x, y)

f(x) = sgn

(
m∑

i=1

αiyiK(xi, x) + b

)
(2)

This corresponds to constructing an optimal separating hyperplane in the feature space. In this paper
we will use the folowing kernel functions:

• polynomial: K(x, y) = (x · y + 1)d,

• RBF (Gaussian): K(x, y) = exp{−γ||x− y||2},

• χ2: K(x, y) = exp{−γχ2(x, y)},

• the local kernel proposed in [27].
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4.2 SVM: an Incremental Extension

Among all incremental SVM extensions proposed in the machine learning literature so far [1, 9, 28, 10],
approximate methods seem to be the most suitable for visual recognition: firstly - as opposed to exact
methods like [10]- they discard a significant amount of the training data at each incremental step.
Secondly, they are expected to achieve performances not too far from those obtained by an SVM
trained on the complete data set (batch algorithm), because at each incremental step the algorithm
remembers the essential class boundary information regarding the data seen so far (in form of support
vectors). This information contributes properly to generate the classifier at the next iteration.

Once a new batch of data is loaded into memory, there are different possibilities for the updating
of the current model, which might discard a part of the new data according to some fixed criteria
[9, 1]. In this paper we use the fixed-partition technique, which was introduced first in [1]. In this
method the training data set is partitioned in batches of fixed size k:

T = {(x1, y1), . . . , (xm, ym)} = {T 1, T 2, . . . T n},

with
T i = {(xi

j , y
i
j)}

k
j=1.

At the first step, the model is trained on the first batch of data T 1, obtaining a classification function

f1(x) = sgn

(
m1∑

i=1

α1
i y

1
i x1

i · x + b1

)
.

At the second step, a new batch of data is loaded into memory; then, the new training set becomes

T inc
2 = {T 2 ∪ SV 1}, SV 1 = {(x1

i , y
1
i )}m1

i=1,

where SV 1 are the support vectors learned at the first step. The new classification function will be:

f2(x) = sgn

(
m2∑

i=1

α2
i y

2
i x2

i · x + b2

)
.

Thus, as new batches of data points are loaded into memory, the existing support vector model is
updated, so to generate the classifier at that incremental step. Note that this incremental method
can be seen as an approximation of the chunking technique used for training SVM [25]. Indeed, the
chunking algorithm is an exact decomposition which iterates through the training set to select the
support vectors. The fixed-partition incremental method instead scan through the training data just
once, and once discarded, does not consider them anymore. The fixed-partition incremental algorithm
has been tested on several benchmark databases commonly used in the machine learning community
[9] and on a simple optical character recognition problem [28], obtaining good performances compared
to the batch algorithm and other approximate methods.

4.3 Experimental Evaluation

We performed two sets of experiments to evaluate the fixed-partition incremental SVM. The first set
was performed on the material categorization database; the second on the place recognition database.
For these experiments we employed our extended version of the libsvm [29] software, and we set
C = 100. We used RBF kernel in case of material categorization and χ2 (for global features) or local
kernel [27] (for local features) in case of place recognition. Kernel parameters were determined via
cross-validation.

For the material categorization experiments, we splitted the TIPS2 database in a training and
test set, with the training set consisting of three samples per material, and the test set consisting of
the remaining fourth sample; as in [7], we considered 4 possible splits. The training set was further
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B a t c hI n c r e m e n t a l
Figure 4: Results on the TIPS2 database using fixed-partition incremental SVM and the batch algo-
rithm. The incremental method achieves a memory reduction while obtaining the same performance
as batch SVM.

divided in three subsets, each consisting of all the views for one sample per material. Each subset was
added to the model during each incremental step. For each partition, we performed experiments on
four different orderings of the incremental steps. For instance, for the partition with sample 1, 2, 3
into the training set we ran 4 different experiments considering the incremental sequences (a) 1, 2, 3;
(b) 2, 1, 3; (c) 2, 3, 1 (d) 3, 2, 1. Thus, in total we ran 16 different experiments; here we report the
averaged results with standard deviations. Fig 4, left, shows the recognition rates obtained, at each
step of the incremental update, using the batch SVM on the whole training data and the fixed-partition
incremental algorithm. Fig 4, right, shows the number of support vectors stored by both algorithms at
each step of the incremental procedure. We see that there is no loss in performance of the incremental
algorithm compared to the batch one, while there is a statistically significant reduction of the number
of support vectors in the incremental algorithm. It is interesting to observe that the reduction in
memory requirements for the incremental algorithm is more pronounced at the third (and last) step,
which also corresponds to a less pronounced growth in recognition rate. This might indicate that, for
this categorization problem, the statistic relative to each material is already representative at that
step, and the incremental procedure acts like a noise filter with respect to the previous incremental
steps, actually helping the learning algorithm to find a more compact representation. These results
are in agreement with those reported in [9], where only two-class problems were considered.

We followed a similar procedure for the place recognition experiments. The INDECS database was
partitioned into a training and test set, where the training set consisted of the images acquired under
two different weather conditions from 9 locations in each room. The test set consisted of the images of
the remaining weather condition acquired from the same 9 locations (6 images per location). We ran
experiments on all three possible splittings into training and test set. Within each split, the training
set was sub-partitioned into 9 subsets for each weather condition, resulting in 18 incremental batches
in total. At every split, we considered two possible orderings for the weather conditions. Thus, in
total, we performed six experiments for each of the two feature types. Fig 5 shows the average results
obtained using both the CRFH global representation and the SIFT local descriptor. We see that once
again incremental and batch SVM obtain the same performance at each incremental step (Fig 5, left),
but on this application the incremental method does not achieve any memory reduction compared to
the batch algorithm (Fig 5, right). The same behaviour can be observed for both types of features.
This might depend on the intrinsic difficulty of the problem: rooms exhibit a considerable variability
in their visual appearance, and each incremental subset consists of images taken at different positions
in the environments.

From these results, and from those reported in [9, 1, 28], we can conclude that the fixed-partition
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Figure 5: Results on the INDECS database using incremental SVM and the batch algorithm, for
both global and local features. On this application, in both cases, the two methods have comparable
performance and memory requirements.

incremental SVM performs as the batch algorithm. A significant drawback of the method is that
it does not guarantee a reduction of the number of stored support vectors. For visual applications
like place recognition for topological mapping, this is a serious issue, as it may lead to a memory
explosion. In the next section we will present a method for the reduction of the memory requirements
of the support vector solution. As it will be shown in section 6, this method, combined with the
fixed-partition approach, can be used to design a memory-controlled incremental SVM.

5 Exact Simplification of SVM Solution

Experiments presented in section 4 showed that the fixed-partition incremental SVM can achieve
the classification performance of the batch algorithm while using fewer support vectors. While this
suggests that the solution found using the standard SVC learning algorithm is not always minimal,
experiments presented in [1] showed that rejecting even a small amount of support vectors may cause
a strong decrease in performance. This raises the question of whether the complexity of the support
vector solution can be reduced while preserving its optimal performance. A possible solution has
been proposed by Downs et al [2]. Their method reduces the number of support vectors of a trained
classifier, eliminating those which can be expressed as a linear combination of the others in the feature
space. The weights are updated accordingly, which ensures that the decision function is exactly the
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same as the original. This results in a reduction of the complexity of the classifier, without any loss
in performance.

The rest of this section is organized as follows: section 5.1 reviews the method presented in [2],
gives some details on its implementation and presents an extension of the algorithm that allows the
user to trade performance for memory requirements, when necessary. Section 5.2 describes a series
of experiments evaluating both methods on our two chosen applications. Although we developed the
algorithm having in mind its integration with incremental SVM techniques, it can be used for reduc-
ing the memory requirements (as well as speed during recognition) of any SVM-based classification
method.

5.1 The Algorithm

The idea behind the algorithm by Downs et al [2] is that the set of support vectors X = {xi}
m
i=1 is

not guaranteed to be linearly independent. Let us suppose that the first r support vectors are linearly
independent, and the remaining m− r depend linearly on those in the feature space: ∀j = r+1, . . .m,
xj ∈ span{xi}

r
i=1. Then it holds

K(x, xj) =

r∑

i=1

cijK(x, xi), (3)

and the classification function (2) can be rewritten as

f(x) = sgn (

r∑

i=1

αiyiK(x, xi)+

+

m∑

j=r+1

αjyj

r∑

i=1

cijK(x, xi) + b). (4)

If we define the coefficients γij such that αjyjcij = αiyiγij and γi =
∑m

j=r+1
γij , then eq. (4) can be

written as

f(x) = sgn (

r∑

i=1

αiyiK(x, xi)+

r∑

i=1

αiyi

m∑

j=r+1

γijK(x, xi) + b)

= sgn

(
r∑

i=1

α̂iyiK(x, xi) + b

)
(5)

where

α̂i = αi(1 + γi) = αi



1 +

m∑

j=r+1

αjyjcij

αiyi



 . (6)

Thus, the resulting classification function (eq. (5)) requires now m − r less kernel evaluations than
the original one (eq. (2)). In order to find the linearly independent subset of the support vectors and
the values of the cij coefficients, we applied the QR factorization algorithm with column pivoting [30]
to the support vector matrix.

Two interesting points can be made on the QR factorization and the column pivoting strategy:
first, it allows to reveal the numerical rank of the matrix with respect to a parameter τ , which acts
as a threshold in defining the condition of linear dependence. Second, the algorithm performs a
permutation of the columns of the matrix such that, if for a given value of τ the rank of the matrix
is r, then the linearly independent columns will occupy the first r positions. Also, these r columns
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Θ (%) Class. rate (%) No. of SVs Red. rate (%)

ORIG. 69.62±5.4 2001±61 —

R

E

D

U

f
¯

C

E

D

100 69.62±5.4 918±271 54.32±12.8
98 68.23±5.3 608±85 69.67±3.35
95 66.14±5.1 511±88 74.55±3.8
90 62.66±4.8 423±71 78.93±3.1
80 55.70±4.3 343±41 82.87±1.8

Table 1: Average results of the evaluation of the reduction algorithm on the TIPS2 database, for
the Gaussian kernel. The Θ parameter denotes a percentage of the original classification rate, that is
guaranteed to be preserved after the reduction. The uncertainties are given as one standard deviation.

Θ (%) Class. rate (%) No. of SVs Red. rate (%)

ORIG. 72.28±6.1 1525±36 —

R

E

D

U

f
¯

C

E

D

100 72.28±6.1 833±340 45.69±21.3
98 70.83±6.0 708±180 53.77±10.9
95 68.67±5.8 606±114 60.38±6.7
90 65.05±5.5 475±80 68.89±4.6
80 57.82±4.9 336±62 78.01±3.7

Table 2: Average results of the evaluation of the reduction algorithm on the TIPS2 database, for the
χ2 kernel. The Θ parameter denotes a percentage of the original classification rate, that is guaranteed
to be preserved after the reduction. The uncertainties are given as one standard deviation.

will be ordered according to the degree of their relative linear independence. On the basis of these
observations, we propose to consider the threshold τ as a parameter of the algorithm that allows
the user to control the number of support vectors to be kept in memory. Clearly, as the value of τ

grows, eq. (5) will become more and more an approximation of the exact solution. Anyway, we want
to underline that the informative content of a discarded support vector xj is not completely lost,
as its weight αj is used to compute the updated value of the weights α̂i for the remaining support
vectors. This should result in a graceful decrease of classification performance compared to the optimal
solution. Thus, the parameter τ can be used as an effective way to trade performance for memory
requirements and speed during classification, depending on the task at hand. This extended version
of the original algorithm by Downs et al can be seen as an alternative approach to approximate SVM
methods like [15, 16, 17].

5.2 Experimental Evaluation

We tested the algorithm with an extensive set of experiments on the TIPS2 and INDECS databases.
For each experiment, we first trained the classifier using the standard SMO algorithm. Then, starting
from the obtained decision function, we applied the reduction algorithm increasing the value of the
τ parameter, which led to a progressive reduction of the classification rates and of the number of
support vectors. Table 1-3 shows the results obtained on the TIPS2 database using three different
kernel functions (RBF, χ2, polynomial) for a series of experiments where the training set consisted
of 3 samples per material, and the test set consisted of the remaining sample. As in section 4.3,
experiments were performed on 4 different partitions and we report here the averaged results; the
symbol Θ was used to denote the percentage of the original classification rate that is guaranteed to
be preserved after the reduction. Note that, in the experiments presented here, we considered the
classification rate of the resulting solution as a constraint on the amount of reduced support vectors.
However, depending on the application, the problem may be reformulated to provide the amount



12 IDIAP–RR 06-51

Θ (%) Class. rate (%) No. of SVs Red. rate (%)

ORIG. 69.09±6.9 1543±31 —

R

E

D

U

f
¯

C

E

D

100 69.09±6.9 870±115 43.60±7.3
98 67.71±6.7 768±103 50.15±6.7
95 65.64±6.5 670±79 56.58±5.0
90 62.18±6.2 582±89 62.26±5.5
80 55.27±5.5 442±91 71.35±5.7

Table 3: Average results of the evaluation of the reduction algorithm on the TIPS2 database, for the
polynomial kernel. The Θ parameter denotes a percentage of the original classification rate, that is
guaranteed to be preserved after the reduction. The uncertainties are given as one standard deviation.

Θ (%) Class. rate (%) No. of SVs Red. rate (%)

ORIG. 75.67±3.89 1000±23 —

R

E

D

U

f
¯

C

E

D

100 75.67±3.89 990±25 1.04±0.43
98 74.16±3.81 953±31 4.75±0.9
95 71.89±3.69 823±29 17.70±2.01
90 68.11±3.50 677±43 32.33±3.23
80 60.54±3.11 405±28 59.49±1.94

Table 4: Average results of the evaluation of the reduction algorithm on the INDECS database, for the
χ kernel. The Θ parameter denotes a percentage of the original classification rate, that is guaranteed
to be preserved after the reduction. The uncertainties are given as one standard deviation.

of desired memory reduction. We see that the algorithm achieves a reduction in the number of
stored vectors within the range of ∼ 44-54%, depending on the kernel, while keeping the classification
rate intact. When the application allows a small loss in performance, memory requirements may be
further reduced by exploiting the ability of the algorithm to approximate the solution. Note that the
classification rate decreases monotonically with the number of support vectors.

All the results presented in this section were obtained for the pairwise multiclass SVM extension.
The experiments were repeated for the one-versus-all method [26, 25], and different number of training
samples per material (1 or 2), yielding results consistent with those reported here. It is interesting to
observe that the reduction rate in support vectors grows with the dimension of the training set. For
instance, the average reduction rate obtained training on one sample per material is ∼44% when it
is acceptable a decrease in recognition rate of 5%. This value is considerably lower of the ∼75% in
reduction rate obtained under similar conditions, using 3 samples per material during training.

The experiments with the INDECS database were performed in a similar fashion (we report the

Θ (%) Class. rate (%) No. of SVs Red. rate (%)

ORIG. 69.40±3.02 968±14 —

R

E

D

U

f
¯

C

E

D

100 69.40±3.02 929±45 3.95±3.36
98 68.01±2.96 805±37 16.83±3.73
95 65.93±2.87 662±18 31.54±1.70
90 62.46±2.72 492±51 49.23±4.70
80 55.52±2.42 284±28 70.68±2.75

Table 5: Average results of the evaluation of the reduction algorithm on the INDECS database,
for the local kernel. The Θ parameter denotes a percentage of the original classification rate, that is
guaranteed to be preserved after the reduction. The uncertainties are given as one standard deviation.
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results in Table 4-5). The training sets were formed from all the pictures acquired under one weather
condition, while the test sets consisted of the whole images of the remaining weather conditions. The
presented results were obtained using both global and local image descriptors and averaged over all
three possible splits. Again, the χ2 kernel was used for experiments with composed receptive field
histograms (CRFH), and the local kernel [27] was used in case of local features. We can observe
that, while the complexity of the place recognition problem makes the exact simplification method
less effective, in both cases, it is still possible to achieve substantial memory reductions by means of
approximation. Additionally, this suggests that the algorithm can be successfully applied for non-
Mercer kernels [27].

6 Memory-controlled Incremental SVM

The fixed-partition incremental learning algorithm described in section 4 was shown to perform well
on different kinds of visual data. However, experiments revealed that at each incremental step the
memory requirements can grow considerably. This is a serious limitation for an incremental method
aiming to work on real-world applications. In section, 5 we presented a technique for controlling the
amount of stored support vectors in a principled way, and we extended it so to obtain an even greater
reduction rate when the user accepts a fixed decrease in performance. This is a reasonable assumption,
particularly for multi-sensory systems. Our idea is to combine these two algorithms together, obtaining
an incremental SVM method with a mechanism for a controlled growth of the memory requirements.
We propose to apply the reduction algorithm at each incremental step. The new representation of the
data is then built from the remaining support vectors. We will show through experiments that this
approach can successfully control the amount of vectors to be kept in memory.

We benchmarked our new algorithm against the fixed-partition incremental SVM by repeating
the experiments described in section 4.3. Fig 6 reports the results obtained on the TIPS2 database.
On the left, it shows the recognition rates achieved using different values of the parameter Θ; in
the middle, it shows the recognition rates obtained when considering the first two best hypothesis.
Finally, on the right, the figure presents the number of support vectors stored at each incremental
step. Results for the INDECS database, for both feature types, are reported in a similar fashion in
Fig 7 and 8. Note that the parameter Θ decides the amount of discarded support vectors at each
incremental step.

We first observe that our method controls the memory growth more successfully than the original
incremental technique (Fig 6-8, top). This is especially true when it is accepted a few percent reduction
in classification rate (e.g. Θ = 95% or 90%) (Fig 6-8, middle and bottom). For instance, for the TIPS2
database, the number of support vectors stored after the third step is ∼32% lower than for the original
incremental method. Also, for Θ = 90%, we see that the memory requirements of our algorithm after
the third step are equal to those of the original method at the first iteration (Fig 6, bottom, right).
Second, we observe that the gain in memory compression is always greater than the overall decrease in
performance, even in the less favorable cases (see for instance results obtained on the INDECS database
with Θ = 90%, Fig 7 bottom). The trade-off between performance and memory reduction becomes
even better for our technique if we look at classification rates considering the best two hypothesis
(Fig 6-8, middle). This would be reasonable in application like topological mapping for multi-sensory
systems. A last word should be said regarding the training time at each incremental step. On one
side, our method uses two algorithms in cascade while the original incremental technique uses just
one. On the other side, the training time for an SVM depends on the dimension of the training set,
and we have shown experimentally that our method yields far more consistent reductions. Thus, as
the incremental learning proceeds, the training time of our algorithm actually becomes comparable,
and eventually lower, than the original methods.
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Figure 6: Results on the TIPS2 database obtained using batch SVM, the fixed-partition incremental
method, and the memory controlled incremental algorithm, for two values of the parameter Θ. The
top row reports classification rates obtained considering the first best hypothesis only. The middle
row reports classification rates obtained considering the first two best hypotheses. The bottom row
shows the number of support vectors stored at each incremental step.
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Figure 7: Results on the INDECS database obtained for global features (CRFH) and Gaussian kernel
using batch SVM, the fixed-partition incremental method, and the memory controlled incremental
algorithm, for two values of the parameter Θ. The top row reports classification rates obtained con-
sidering the first best hypothesis only. The middle row reports classification rates obtained considering
the first two best hypotheses. The bottom row shows the number of support vectors stored at each
incremental step.
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Figure 8: Results on the INDECS database obtained for local features (SIFT) and local kernel using
batch SVM, the fixed-partition incremental method, and the memory controlled incremental algo-
rithm, for two values of the parameter Θ. The top row reports classification rates obtained consid-
ering the first best hypothesis only. The middle row reports classification rates obtained considering
the first two best hypotheses. The bottom row shows the number of support vectors stored at each
incremental step.
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7 Conclusions

In this paper we explored the possibility to extend SVMs to incremental learning for visual recognition.
Starting from an existing incremental SVM algorithm, we proposed a new method which is capable
of learning model representations incrementally while controlling the number of support vectors to be
stored. This is obtained combining the fixed-partition incremental technique with a method which
reduces the number of support vectors needed to build the decision function without any loss in
performance. A further extension of the algorithm permits a user-set trade-off between performance
and memory reduction. An extensive experimental evaluation of the method shows its potential for
computer vision applications.

This work can be extended in many ways. First, here we chose the fixed partition technique for
incremental SVM, but other approximate methods might be more suitable and/or perform better.
Thus, we plan to develop memory-controlled version of those algorithms and to benchmark them with
our method. These methods should also be compared with other incremental methods presented in
the vision literature, like for instance [14]. Second, we would like to study the algorithm’s performance
as the dimension of the batch set changes, with respect to different multi-class extension, and to test
it on the domain of human action recognition. A final word should be said about the training time
during each incremental step. Nor our algorithm, neither the fixed-partition method can be used
for on-line, continuous learning. To the best of our knowledge, this holds for any incremental SVM
technique presented in the literature so far. Incorporating into our algorithm recent approaches to
fast SVM training like [18] could solve this problem and open the door to real-world applications to
incremental SVM.
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