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I. INTRODUCTION

Spatial knowledge constitutes a fundamental component of

the knowledge base of a cognitive, mobile agent. The typical

spatial knowledge representations are purely metrical and

rely on information extracted from simple, but accurate met-

ric sensors. However, in large-scale, dynamic environments,

metrical global maps become harder to control and observe.

The agent should be able to exploit sensory information that

might be complex and non-metric, yet reflect crucial aspects

of the environment [1]–[3], [5]. Moreover, it is not clear that

the level of detail offered by metric maps is necessary, or

even desirable, when the agent is a cognitive system intended

to interact with the world in a human-like way [6].

This work introduces a rigorously defined framework for

building an abstracted cognitive spatial map that permits high

level reasoning about space along with robust navigation

and localization while maintaining a description that per-

mits formal proofs and derivations. Although the literature

contains many algorithms for spatial mapping [1], [2], there

is little work on the formal analysis of their fundamental

requirements and properties. The idea of this work, is to

take a step back and see how a rigorous formal treatment

can lead the way towards a powerful spatial representation.

II. OVERVIEW OF THE FRAMEWORK

Our framework is built around the assumption that the

role of a cognitive map is not to represent the world as

accurately as possible, but rather to allow the agent to act in

an environment despite uncertainty and dynamic variations.

Such a map does not need to provide perfect global consis-

tency as long as the local spatial relations are preserved with

sufficient accuracy. In our framework, the map is represented

as a collection of basic spatial entities called places.

A place is defined by a subset of values of arbitrary,

possibly complex, distinctive features and spatial relations

reflecting the structure of the environment. Consider a set

{fi}
nf

i=1
of features fi (x, t) : C × R → Fi ∈ R

n, where

C represents the configuration space of the agent, t ∈ R

represents time, and Fi is the range of values of the feature

fi. Together, the Fi’s give rise to the definition of the feature

space F = F1 × F2 × . . . × Fnf
, in which each tuple

(ζ1, . . . , ζnf
) ∈ F of the feature values ζi = fi(x, t) corre-

sponds to a single point. The features provide information

about the world as it can be perceived by an agent when at
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a place and can range from simple metric features (e.g. Eu-

clidean distances to landmarks) to complex appearance-based

descriptors typically used in visual topological localization

(e.g. the “gist” of a scene [5], SIFT [3] or SURF [1]).

Additionally, we introduce the concept of a scene which

facilitates generation of places and serves as a basis for

defining spatial relations by providing groupings of similar

feature values. Consider a set {Si}
ns

i=1
of scenes Si =

{

(ζ1, . . . , ζnf
)
}

⊆ F , such that each scene is a non-empty

and non-overlapping collection of tuples of features that

could be perceived by the robot. Intuitively, the definition

of scenes leads to a division of metric space into regions

based on properties such as appearance. However, this seg-

mentation may not reflect the spatial relationships in the

world that constitute a large portion of the spatial knowledge.

For instance, two distant disconnected regions could share

similar properties (see e.g. Figure 1(a)). Additional power

to distinguish between such regions can be attained using

knowledge about spatially neighboring regions.

Consider a set {ri}
nr

i=1
of spatial relations ri (x, t) : C ×

R → Ri ∈ R
m, where Ri is the range of values of the

relation ri. Each spatial relation ri is defined with respect

to the set of scenes {Si}i and describes the spatial relation

of the point x in the configuration space C at time t to some

or all of those scenes (e.g. adjacency to a scene). In many

cases, the values of relations can be estimated in practice

by performing a dynamic action in the environment (e.g.

the agent moving between points in configuration space that

correspond to different scenes).

Analogously to the feature space, we introduce the place

descriptor space D = F ×R1 ×R2 × . . .×Rnr
, in which

each tuple D = (ζ1, . . . , ζnf
, ρ1, . . . , ρnr

) ∈ D of the feature

values and relation values ρi = ri(x, t) corresponds to a

single point. The place map can now be defined as a set

M =
{

P1,P2, . . . ,Pnp

}

of places Pi = {D} ⊆ D, such

that ∀iPi 6= ∅ and ∀i6=jPi∩Pj = ∅. In other words, similarly

to scenes, places are groups of values of features; however,

they encompass additional knowledge about the structure of

the world encoded in the values of relations. In this sense,

the places build on the perception of the agent and are

based on its perceptual capabilities. Details on the properties

of places that can be derived from the above definitions

and segmentations of the descriptor space in terms of real-

valued functions which encode the degree of belonging to

the different places can be found in [4].

Consider a simple example of a small environment pre-

sented in Figure 1(a) consisting of 4 rooms characterized by

the color of the floor. We define a single feature f1(x, t) :
C×R → F1 that corresponds to the hue of the floor color at



(a) Map of the environment and metric extents of places.

(b) Scenes defined in the feature space.

(c) Places defined in the descriptor space.

Fig. 1. Illustrative example of an environment consisting of 4 rooms
characterized by the color of the floor and definitions of scenes and places
in the feature and descriptor space.

the location x ∈ C = R
2. Then, the feature space is simply

defined by the range of the hue values e.g. F1 = [0, 255].
If we divide the feature space into regions as presented in

Figure 1(b), we can differentiate between three scenes S1-

S3. The scene S1 corresponds to two separate rooms which

could be distinguished if we consider their relations to other

scenes. Let us define an adjacency relation with respect to

the scene S3, r1(x, t) : C ×R → R1 = {1, 0} that takes the

value of 1 if the point x is adjacent to the scene S3 and create

the place descriptor space D = F1 ×R1. In that space, we

can create four non-overlapping places P1-P4 by dividing

the scene S1 into two places, one of which is adjacent to the

scene S3 and the other is not. This division is reflected in the

clustering of the descriptor space presented in Figure 1(c).

III. LOCALIZATION AND NAVIGATION

According to the definition of places, given the true

values of place descriptors Dt (features and spatial relations)

obtained at time t for location x(t), the place to which that

x corresponds is uniquely identified and given by Lt , i :
Dt ∈ Pi. However, in the real world an agent is moving

through space and needs to maintain its localization in the

face of uncertainty. Let us denote the observation of all

descriptors at time t as D̂t = Dt + et, where e is an

error. We view the agent’s progress from place to place as a

Markov process with Lt the state at (discrete) time t and D̂t

the measurement. Localization is then carried out iteratively

according to the following formula:

p(Lt | {D̂}t, {α}t−1) =
∑

Lt−1

p(Lt | Lt−1, D̂t, αt−1)

× p(Lt−1 | {D̂}t−1, {α}t−2)

where {D̂}t represents all measurements up until time t,

and αt is the action taken at time t. As described below, this

corresponds to the path between two places that the robot

follows. The probability update is given by:

p(Lt | Lt−1, D̂t, αt−1) = γ · p(D̂t | Lt)p(Lt | Lt−1, αt−1),

where the factors represent respectively a normalization con-

stant, the measurement integration step, and the prediction

step of the localization update. Details on each of the steps

can be found in [4].

A map must, besides allowing for localization, provide a

means for navigating through it. We do this in terms of paths,

which represent the movement from one place to another.

Just as places are defined by descriptors, so each path is

associated with a single path precept being a mapping from

low-level sensory inputs available to the agent to a low-level

control output: πi : S 7→ O. S is given by the system

instantiation, and may include virtual sensor modalities, such

as local metric maps built over a period of time. It is in

general a richer representation than the feature space F ,

and allows for low-level considerations such as obstacle

avoidance and other reactive behaviours. At the same time,

as described in detail in [4], the form of the precept can

naturally arise from the descriptors that define places.

IV. SUMMARY

The structure of the framework represent a certain view

on a cognitive map. First, the map is defined in terms of

the agent’s perception of space and adapts to its perceptual

capabilities. Second, the perceived features can be abstract

and non-metric and describe for instance visual properties of

the world. In this sense, the map is subjective and robocentric

as the robot’s observations do not have to be expressed in

terms of any objectively defined quantities or any global

coordinate system. The map is discretized (consists of a

set of independent places), topological and does not require

maintaining global spatial consistency. Despite that, the

framework can accommodate a very wide range of different

methods for abstracting space into places as specific cases.

For instance, the topological map constituting a part of the

Multi-Layered Conceptual Spatial Representation presented

in [6] can easily be expressed in terms of our framework

given properly chosen features.

The framework is designed so that a robot can build from

the bottom-up a cognitive map of the environment which

follows certain cognitive principles. As shown in practical

demonstrations (see e.g. [1], [2]), such principles can lead

to better performance in localization, navigation and loop-

closing for robots moving in large-scale environments.
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