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Abstract. A cornerstone for cognitive mobile agents is to represent the
vast body of knowledge about space in which they operate. In order to
be robust and efficient, such representation must address requirements
imposed on the integrated system as a whole, but also resulting from
properties of its components. In this paper, we carefully analyze the
problem and design a structure of a spatial knowledge representation for
a cognitive mobile system. Our representation is layered and represents
knowledge at different levels of abstraction. It deals with complex, cross-
modal, spatial knowledge that is inherently uncertain and dynamic. Fur-
thermore, it incorporates discrete symbols that facilitate communica-
tion with the user and components of a cognitive system. We present
the structure of the representation and propose concrete instantiations.

1. Introduction

Many recent advances in the fields of robotics and artificial intelligence have been
driven by the ultimate goal of creating artificial cognitive systems able to perform
human-like tasks. Several attempts have been made to create integrated cogni-
tive architectures and implement them on mobile robots [2,3,13,1,4]. There is an
increasing interest in, and demand for, robots that are capable of dealing with
complex and dynamic environments outside the traditional industrial workplaces.
These next generation robots will not only have to track their position and nav-
igate between points in space, but reason about space and their own knowledge,
plan tasks and knowledge acquisition and interact with people in a natural way.

Spatial knowledge constitutes a fundamental component of the knowledge
base of a cognitive agent providing a basis for navigation, reasoning, planning and
episodic memories. Moreover, it is a common ground for communication between
a robot and a human. In order for the process of acquisition, interpreting, storing
and recalling of the spatial knowledge to be robust and efficient under limited
resources and in realistic settings, the knowledge must be properly structured and
represented. Such knowledge representation must address requirements imposed
on the integrated system as a whole, but also resulting from properties of its com-
ponents. Due to this central role, the design of a spatial knowledge representation
should be one of the first steps in building a cognitive system.

In this work, we develop a structure of a spatial knowledge representation for
a cognitive mobile system that we call COARSE (Cognitive 1Ayered Representa-
tion of Spatial knowledgE). We carefully analyze the role of a spatial represen-



tation and formulate design assumptions and requirements imposed by the func-
tionality and components of an integrated system. Our representation is layered
and represents knowledge at different levels of abstraction, from low-level sensory
input to high level conceptual symbols. It is designed for representing complex,
cross-modal, spatial knowledge that is inherently uncertain and dynamic and in-
cludes discrete symbols that facilitate communication with the user and compo-
nents of the system. Moreover, we propose models and algorithms that could be
used as instantiations of each layer of the representation.

This paper is motivated by the desire to create a framework that is power-
ful, robust and efficient, but most importantly suited for mobile agents perform-
ing typical human-like tasks. The literature contains many algorithms for spatial
mapping and instantiations of mobile robotic systems. However, the existing rep-
resentations are either designed for a very specific domain [7,12], they concentrate
on a fraction of the spatial knowledge [20,23] or are designed to solve a single al-
gorithmic task very efficiently rather than for use within a larger system [8,10,18].
The idea of this paper, is to take a step back, focus on structuring the whole body
of spatial knowledge and see how an analysis of requirements can lead the way
towards a powerful spatial representation for a cognitive mobile robot.

2. Related Work

There exists a broad literature on mobile robot localization, navigation and map-
ping and many algorithms relying on spatial knowledge have been proposed. These
include solutions to such problems as Simultaneous Localization and Mapping
(SLAM) [8,15,10,18] or place classification [16,20]. Every such algorithm main-
tains a representation of spatial knowledge. However, this representation is usu-
ally specific to the particular problem and designed to be efficient within the
single mapping system detached from any other interacting components. Other,
more general concepts, such as the Spatial Semantic Hierarchy [14] concentrate
on lower levels of spatial knowledge abstraction and do not support higher-level
conceptualization or representation of categorical information.

At the same time, we witness a growing interest in building artificial mobile
cognitive systems [2,3,1,4]. These are complex, usually modular, systems that
require a unified and integrated approach to spatial knowledge representation. The
central role of spatial knowledge in those systems has been recognized and several
authors proposed subsystems processing spatial knowledge integrated with other
components such as dialogue systems [25,22]. However, neither of those provides
a clear structure of the represented knowledge, perform a thorough analysis of
the needs of different components of a mobile cognitive system or encapsulates
all major aspects of spatial knowledge.

The most comprehensive relevant representation has been proposed in [25].
However, it has several major drawbacks that makes it unsuitable for systems that
deal with dynamic and uncertain knowledge within large-scale, complex environ-
ments. First of all, the knowledge is never fully abstracted and is always grounded
in an accurate global metric map. This makes the system less robust and scalable.
Moreover, the categorical knowledge is not explicitly represented. The high-level
conceptualization relies on rigid ontologies and ignores uncertainties associated



with represented symbols. Finally, it is modality-specific and does not allow for
knowledge fusion from multiple sources. In the rest of the paper, we propose an
approach to spatial knowledge representation that addresses those problems.

3. Analysis of the Problem

Before designing a representation of spatial knowledge, it is important to review
the aspects a representation should focus on. In this section, we analyze those
aspects and propose our definition of a generic spatial knowledge representation.
Then, we formulate the problem within the context of cognitive systems.

3.1. What is a Spatial Knowledge Representation?

Following the analysis by Davis [9], we formulate several points that characterize
a general representation of spatial knowledge. A spatial representation can be
seen as:

a) A substitution (surrogate) for the world that allows the agent to perform
reasoning about the parts of the environment which are beyond its sensory hori-
zon. Such a surrogate is naturally imperfect, and is incomplete (some aspects are
not represented), inaccurate (captured with uncertainty), and will become invalid
(e.g. due to dynamics of the world that cannot be observed and is too complex
to be captured by the representation). Moreover, since the representation cannot
be perfect, all the inferences based on that representation, such as the outcomes
of the localization process, are uncertain. The only perfect representation of the
world or the environment in which the agent operates is the environment itself.

b) A set of ontological commitments that determine the terms in which the
agent thinks about space. The representation defines the aspects of the world that
should be represented. Moreover, it defines the level of detail at which they should
be represented as well as their persistence. The ontology should be understood
in more general terms, from spatial concepts and their relations to categorical
models or types of features extracted from the sensory input.

¢) A set of definitions that determine the reasoning that can be (and that
should be) performed within the framework and the possible inferences and their
outcomes. The reasoning will typically correspond to determining the current lo-
cation with respect to the internal map (topologically, semantically etc.), provid-
ing necessary knowledge for the navigation process, determining the properties
of a location in space etc. Moreover, the representation defines how the location
of the agent is represented and in what terms it is possible to refer to points in
space (e.g. in terms of metric coordinates, semantic category of a place etc.).

d) A way of structuring the spatial information so that it is computationally
feasible to perform all the necessary processing and inferences in a specified time
(e.g. in real time) despite limited resources.

e) A medium of communication between the agent and human. If the agent is
supposed to exchange information with humans, the representation must be de-
signed in a way that allows the agent to interpret human expressions and generate
expressions that are comprehensible to humans.

f) Similarly, a medium of communication between components of an inte-
grated system.



8.2. Spatial Representation for Mobile Cognitive Systems

In this work, we narrow the focus to mobile cognitive systems. Based on the
analysis of existing approaches [3,1,23] as well as ongoing research on artificial
cognitive systems [2], we have identified several areas of functionality, usually
realized through separate subsystems, that must be supported by the represen-
tation. These include localization, navigation, and autonomous exploration, but
also understanding and exploiting semantics associated with space, human-like
conceptualization and categorization of space, reasoning about spatial units and
their relations, human-robot communication, action planning, object finding and
visual servoing, and finally recording and recalling episodic memories.

Having in mind the aforementioned functionalities, aspects covered by a rep-
resentation of spatial knowledge as well as limitations resulting from practical
implementations, we have identified several desired properties and designed a
representation reflecting those properties.

Complex, cross-modal, spatial knowledge in realistic environments is inher-
ently uncertain and dynamic. Therefore, it is futile to represent the environment
as accurately as possible. A very accurate representation must be complex, re-
quire a substantial effort to synchronize with the world and still cannot guarantee
that sound inferences will lead to correct conclusions [9]. Our primary assumption
is that the representation should instead be minimal and inherently coarse and
the spatial knowledge should be represented only as accurately as it is required
to support the functionality of the system. Furthermore, redundancy should be
avoided and whenever possible and affordable, new knowledge should should be
inferred from the existing information. It is important to note that uncertainties
associated with represented symbols should be explicitly modeled.

Information should be abstracted as much as possible to make it robust to
dynamic changes. Moreover, representations that are more abstract should be
used for longer-term storage. At the same time, knowledge extracted from im-
mediate observations can be much more accurate (e.g. for the purpose of visual
servoing). In other words, the agent should use the world as an accurate repre-
sentation whenever possible. It is important to mention that rich and detailed
representations should not constitute a permanent base for more abstract ones
(as is the case in [25]). Similarly, space should be represented on different spatial
scales from single scenes to whole environments.

Space should be discretized into a finite number of spatial units. Discretization
of continuous space is one of the most important abstracting steps as it allows to
make the representation robust, compact and tractable. Discretization drastically
reduces the number of states that have to be considered e.g. during the planning
process [11] and serves as a basis for higher level conceptualization [25].

A representation should allow not only for representing instantiations of spa-
tial segments visited by the robot. It is equally important to provide means for
representing unexplored space. Furthermore, categorical knowledge should be rep-
resented that is not specific to any particular location and instead corresponds
to general knowledge about the world. Typical examples would be categorical
models of appearance of places [20] or objects [19].

Finally, we focus on the fundamental role of the representation in human-
robot interaction. Spatial knowledge representation should model correspondence



between the represented symbols and human concepts of space. Spatial properties
(e.g. shape, size), semantic categories of rooms (e.g. kitchen, office) or spatial
segments (e.g. rooms, floors, buildings) recognized by humans are examples of
such concepts. This correspondence could be used to generate and resolve spatial
referring expressions [24] or path descriptions.

4. Structure of the Representation

In this section, we propose a representation of spatial knowledge that adheres
to the desired properties formulated above. Figure 1 gives a general overview of
the structure of the representation. It is sub-divided into four layers which can
be regarded as sub-representations focusing on different aspects of the world,
abstraction levels of the spatial knowledge and different spatial scales. Moreover,
each layer defines its own spatial entities and the way the agent’s position in the
world is represented. The properties of each layer are summarized in Table 1.
At the lowest abstraction level, we have the sensory layer which maintains an
accurate representation of the robot’s immediate environment extracted directly
from the robot’s sensory input. Higher, we have the place and categorical layers.
The place layer provides fundamental discretisation of the continuous space into
a set of distinct places. The categorical layer focuses on low-level, long-term cate-
gorical models of the robot’s sensory information. Finally, at the top, we have the
conceptual layer, which associates human concepts with the categorical models in
the categorical layer and groups places into human-compatible spatial segments
such as rooms. The following sections provide details about each of the layers.

4.1. Sensory Layer

In the sensory layer, a detailed robocentric model of the robot’s immediate en-
vironment is represented based on direct sensory input as well as data fusion
over space around the robot and short time intervals. The sensory layer stores
low-level features and landmarks extracted from the sensory input together with
their exact position with respect to the robot. Measures of uncertainty are also
included in this representation. Landmarks that move beyond a certain distance
are forgotten and replaced by new information. Thus, this representation is akin
to a sliding window, with robocentric and up-to-date direct perceptual informa-
tion. It is also essentially bottom-up only, though directives and criteria, such as
guiding the attentional process, may be imposed from upper layers.

The representation in the sensory layer helps to maintain stable and accurate
information about the relative movements of the robot. Moreover, it allows for
maintaining and tracking the position of various features while they are nearby.
This can be useful for providing ”virtual sensing” such as 360° laser scans based
on short-term temporal sensory integration as well as generation of features based
on spatial constellations of landmarks located outside the field of view of the
sensor. Additionally, it could be used for temporal filtering of sensory input or
providing robustness to occlusions. Finally, the sensory layer can provide the low
level robotic movement systems with data for deriving basic control laws such as
for obstacle avoidance or visual servoing.



57

Landmark
models
.

i

plac>e_1 7 ?
&

Object
models

J19heT AJosuéé"x\__

I Q!
! semantic 2 !
| room category boundary, goundary 8 I
| ) ‘ is-a A 1’?" |
I kitchen T g |
| area room 51
o o BN F
! semantic : !
| area category !
I ?is-a !
1 dining-area I
| |
| |
| |
| |
| |
| |
| |
|

. > 2,
. | : il
1 placeholder_1 g g' !
| 3 g 1
| Iace:Z - 'I}aor? cn; ran%zeeal; ': |

¥ Q

| “ ; <
I ol
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

Figure 1. The layered structure of the spatial representation. The position of each layer within
the representation corresponds to the level of abstraction of the spatial knowledge.

Property

Sensory Layer

Place Layer

Categorical
Layer

Conceptual
Layer

Aspects repre-
sented

Accurate  ge-
ometry and
appearance

Local
tial

coarse appear-
ance, geometry

spa-
relations,

Perceptual cat-
egorical knowl-
edge

High-level spa-
tial concepts /
Links concepts
« entities

Agent’s  posi- Pose within the | Place ID Relationship to | Expressed in
tion local map the categorical | terms of high
models level spatial
concepts
Spatial scope Small-scale, lo- | Large-scale Global Global

cal

Knowledge
persistence

Short-term

Long-term

Very long-term

Life-long /
Very long-term

Table 1. Comparison of properties of the four layers of the spatial representation.




4.2. Place Layer

The place layer is responsible for the fundamental, bottom-up discretization of
continuous space. In the place layer, the world is represented as a collection of
basic spatial entities called places as well as their spatial relations. Each place
is defined in terms of features that are represented in the sensory layer, but
also spatial relations to other places. The aim of this representation is not to
represent the world as accurately as possible, but at the level of accuracy sufficient
for performing required actions and robust localization despite uncertainty and
dynamic variations. Similarly, the relations do not have to be globally consistent
as long as they are preserved locally with sufficient accuracy. The representation
of places in the place layer persists over long term.

Besides places, the place layer also defines paths between them. The semantic
significance of a path between two places is the possibility of moving directly
between one and the other. This does not necessarily imply that the robot has
traveled this path previously. A link might be created for unexplored place e.g.
based on top-down cues resulting from the dialogue with the user (e.g. when the
user indicates part of the environment that should be of interest to the robot, but
not immediately). In addition, the place layer explicitly represents unexplored
space. Tentative places are represented which the robot would probably uncover
if it moved in a certain direction.

The place layer operates on distinct places as well as their connectivity and
spatial relations to neighboring places. No global representation of the whole en-
vironment is maintained. Still, since the local connectivity is available, global rep-
resentation (e.g. a global metric map) can be derived when needed. This represen-
tation will not be accurate, but will preserve the connectivity and relaxed spatial
relations between all the places.

4.8. Categorical Layer

The categorical layer contains long-term, low-level representations of categorical
models of the robot’s sensory information. The knowledge represented in this layer
is not specific to any particular location in the environment. Instead, it represents
a general long-term knowledge about the world at the sensory level. In this layer
models of landmarks, objects or appearance-based room category or other prop-
erties of spatial segments such as shape, size or color are defined in terms of low-
level features. The position of this layer in the spatial representation reflects the
assumption that the ability to categorize and group sensory observations is the
most fundamental one and can be performed in a feed-forward manner without
any need for higher-level feedback from cognitive processes.

The categorical models stored in this layer give rise to properties that are
utilized by conceptual layer. In many cases, the values of those properties will
correspond to human spatial concepts, not to internal concepts of the robot (e.g.
office-like appearance or elongated shape). The properties might require compli-
cated models that can only be inferred from training data samples. In case of
models that correspond to human concepts, they can be learned in a supervised
fashion, using a top-down supervision signal.



4.4. Conceptual Layer

The conceptual layer provides an ontology that represents taxonomy of the spa-
tial concepts and properties of spatial entities that are linked to the low-level
categorical models stored in the categorical layer. This associates semantic inter-
pretations with the low-level models and can be used to specify which properties
are meaningful e.g. from the point of view of human-robot interaction. Moreover,
the conceptual layer represents relations between the concepts and instances of
those concepts linked to the spatial entities represented in the place layer. This
makes the layer central for verbalization of spatial knowledge and interpreting
and disambiguating verbal expressions referring to spatial entities.

The second important role of the conceptual layer is to provide definitions of
the spatial concepts related to the semantic segmentation of space based on the
properties of segments observed in the environment. A building, floor, room or
area are examples of such concepts. The conceptual layer contains information
that floors are usually separated by staircases or elevators and that rooms usu-
ally share the same general appearance and are separated by doorways. Those
definitions can be either given or learned based on asserted knowledge about the
structure of a training environment introduced to the system.

Finally, the conceptual layer provides definitions of semantic categories of
segments of space (e.g. rooms) in terms of values of properties of those segments.
The properties can reflect the general appearance of a segment as observed from a
place, its geometrical features or objects that are likely to be found in that place.

5. Instantiations

This section indicates specific models and algorithms maintaining those models
that we propose to use for representing knowledge stored in each layer.

We propose to realize the sensory layer using a robocentric, metric SLAM [6,
5]. Robocentric mapping reflects the properties of the sensory layer and allows for
a straightforward treatment of forgetting knowledge that falls outside a certain
horizon around the robot. The robocentric map can be seen as a sliding window
centered on the robot and containing a detailed view of the world, which allows
the robot to maintain a drift free estimate of the pose as long as it stays in a
local region of space. The SLAM algorithm explicitly represents the uncertainty
associated with the pose of the robot and the location of all landmarks in the
local surrounding using a multivariate Gaussian distribution [6,5].

We propose to instantiate the place layer based on the mapping framework
proposed in [21]. Central to the approach is the place map represented as a col-
lection of places. A place is defined by a subset of values of arbitrary, possibly
complex, distinctive features and spatial relations reflecting the structure of the
environment. The features provide information about the world and can be per-
ceived by an agent when at that place. In this sense, the places build on the
perception of the agent and are based on its perceptual capabilities.

The categorical layer can be seen as an ensemble of categorical models of the
robot’s sensory information. The literature provides a broad range of models that
could be used for this purpose. First, in order to represent visual and geometrical
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properties of areas in the environment, we suggest to use the multi-modal place
classification algorithm presented in [20]. Other methods can be employed for
representing landmarks (e.g. doors [17]) and object categories [19].

For the conceptual layer, we propose a possible instantiation presented in Fig-
ure 2. The conceptual layer provides an ontology that represents the taxonomy of
the spatial concepts and properties as well as dependencies between the concepts,
properties and instances of spatial entities. We use a fixed, handcrafted ontology
for representing the taxonomy and a probabilistic model for representing the de-
pendencies. In such an approach, the ontology is largely encoded in the structure
of the probabilistic model. We represent the location of the robot within segments
of space (e.g. a room or an area such as a dining area), the observed properties
of areas and rooms as well as semantic categories of areas and rooms in terms of
random variables. In the illustration in Figure 2, we can consider the circles as
random variables and the solid arrows as dependencies within a graphical model.
At the same time, the is-a relations link the random variables with their values.
Further, the model represents the spatial hierarchy of segments of space. There
is a dependency between the location of the robot at different levels of this hi-
erarchy (e.g. a room and an area within the room). Moreover, the dependency
between the instance of a place and the properties of areas and rooms observed
from this place is represented. Those properties in turn influence the semantic
categories of areas or rooms to which the place belongs. Finally, the proposed
model represents the dependency between the area and room properties observed
as the robot explores the environment and the probability that the robot crossed
a boundary of a spatial segment. This link effectively defines the concepts of a
room and an area and can be used to provide semantic segmentation of space.

6. Conclusions and Future Works

In this paper, we presented an analysis of the requirements for a spatial knowl-
edge representation for cognitive systems and proposed a layered representation
that conforms to those requirements. The representation provides a unified and
coherent view on the structure of spatial knowledge and a basis for designing



artificial cognitive systems. We further proposed specific models and algorithms
as possible instantiations. Future work will focus on integrating those algorithms,
which so far were only evaluated in separation, into a complete spatial subsystem
providing spatial understanding capabilities for a mobile robot.
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