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Abstract— A cornerstone for cognitive mobile agents is to
represent the vast body of knowledge about space in which they
operate. In order to be robust and efficient, such representation
must address requirements imposed on the integrated system as
a whole, but also resulting from properties of its components.
In this paper, we carefully analyze the problem and design a
structure of a spatial knowledge representation for a cognitive
mobile system. Our representation is layered and represents
knowledge at different levels of abstraction. It deals with com-
plex, cross-modal, spatial knowledge that is inherently uncertain
and dynamic. Furthermore, it incorporates discrete symbols
that facilitate communication with the user and components
of a cognitive system. We present possible instantiations for
each layer of the representation and provide a proof of concept
realized within an integrated cognitive system.

I. INTRODUCTION

Many recent advances in the fields of robotics and artificial

intelligence have been driven by the ultimate goal of creating

artificial cognitive systems able to perform human-like tasks.

Several attempts have been made to create integrated cogni-

tive architectures and implement them on mobile robots [2],

[3], [19], [1], [4]. There is an increasing interest in, and

demand for, robots that are capable of dealing with complex

and dynamic environments outside the traditional industrial

workplaces. These next generation robots will not only have

to track their position and navigate between points in space,

but do so robustly, reason about space and their own knowl-

edge, plan tasks including acquiring missing knowledge and

interact with people in a natural way.

A cornerstone for cognitive mobile agents is to under-

stand the space in which they operate. Spatial knowledge

constitutes a fundamental component of the knowledge base

of a cognitive agent providing a basis not only for reliable

navigation but also abstract and cross-modal reasoning, plan-

ning and episodic memories as well as common ground for

communication between a robot and a human. In order for

the process of acquisition, interpreting, storing and recalling

of the spatial knowledge to be robust and efficient under

limited resources and in realistic settings, the knowledge

must be properly structured and represented within the sys-

tem. Due to its central role, the design of spatial knowledge

representation should be one of the first steps in building a

cognitive system and result from the requirements placed
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on the system as a whole as well as resulting from the

limitations of all interacting components.

In this work, we develop a structure of a spatial knowl-

edge representation for a cognitive mobile system that we

call COARSE (Cognitive lAyered Representation of Spatial

knowledgE). We carefully analyze the role of a spatial repre-

sentation and formulate design assumptions and requirements

imposed by the functionality and components of an inte-

grated system. Our representation is layered and represents

knowledge at different levels of abstraction, from low-level

sensory input to high level conceptual symbols. It is designed

for representing complex, cross-modal, spatial knowledge

that is inherently uncertain and dynamic and includes discrete

symbols that facilitate communication with the user and

components of a cognitive system. Then, we present possible

instantiations for each layer of the representation and propose

models and algorithms that could be used to store and

maintain information. Finally, we briefly describe a proof

of concept for most of the elements of the representation

realized within the integrated system of the EU FP7 project

CogX.

This paper is motivated by the desire to create a framework

that is powerful, robust and efficient, but most importantly

suited for mobile agents performing typical human-like tasks

within complex, dynamic environments. Although the lit-

erature contains many algorithms for spatial mapping and

instantiations of mobile robotic systems, there is little work

on structuring the whole body of spatial knowledge within

an integrated cognitive system. Moreover, little emphasis is

placed on rigorous analysis of fundamental requirements and

properties of a spatial representation. The existing representa-

tions are either designed for a very specific domain [9], [16],

they concentrate on a fraction of the spatial knowledge [28],

[31] or are designed to solve a single algorithmic task very

efficiently rather than for use within a larger system [10],

[12], [26]. The idea of this paper, is to take a step back and

see how an exhaustive analysis of requirements can lead the

way towards a powerful spatial representation for cognitive

mobile robot and provide a guidebook for selecting the most

suitable instantiations.

II. RELATED WORK

There exists a broad literature on mobile robot localization,

navigation and mapping and many algorithms relying on spa-

tial knowledge have been proposed. These include solutions

to such problems as Simultaneous Localization and Mapping



(SLAM) [10], [24], [12], [26] or place classification [25],

[28]. Every such algorithm maintains a representation of

spatial knowledge. However, this representation is usually

specific to the particular problem and designed to be efficient

within the single mapping system detached from any other

interacting components. Other, more general concepts, such

as the Spatial Semantic Hierarchy [21] concentrate on lower

levels of spatial knowledge abstraction and do not support

higher-level conceptualization or representation of categori-

cal information.

At the same time, we witness a growing interest in building

artificial mobile cognitive systems [2], [3], [1], [4]. These

are complex, usually modular, systems that require a unified

and integrated approach to spatial knowledge representation.

The central role of spatial knowledge in those systems has

been recognized and several authors proposed subsystems

processing spatial knowledge integrated with other compo-

nents such as dialogue systems [34], [30]. However, neither

of those provides a clear structure of the represented knowl-

edge, perform a thorough analysis of the needs of different

components of a mobile cognitive system or encapsulates all

major aspects of spatial knowledge.

The most comprehensive relevant representation has been

proposed in [34]. However, it has several major drawbacks

that makes it unsuitable for systems that deal with in-

herently dynamic and uncertain knowledge within large-

scale, complex environments. First of all, the knowledge

is never fully abstracted and is always grounded in an

accurate global metric map. This makes the system less

robust and scalable. Moreover, the categorical knowledge is

not explicitly represented. The high-level conceptualization

relies on rigid ontologies and ignores uncertainties associated

with represented symbols. Finally, it is modality-specific and

does not allow for knowledge fusion from multiple sources.

In the rest of the paper, we propose an approach to spatial

knowledge representation that addresses the aforementioned

problems.

III. ANALYSIS OF THE PROBLEM

In this section, we first propose our definition and analyze

the roles of a generic spatial representation. Then, we for-

mulate the problem within the context of cognitive systems

in terms of requirements and desired properties.

A. What is a Spatial Knowledge Representation?

Following the analysis by Davis [11], we formulate several

points that characterize a general representation of spatial

knowledge. A spatial representation can be seen as:

a) A substitution (surrogate) for the world that allows the

agent to perform reasoning about the parts of the environ-

ment which are beyond its sensory horizon. Such a surrogate

is naturally imperfect, and is incomplete (some aspects are

not represented), inaccurate (captured with uncertainty), and

will become invalid (e.g. due to dynamics of the world that

cannot be observed and is too complex to be captured by the

representation). Moreover, since the representation cannot be

perfect, all the inferences based on that representation, such

as the outcomes of the localization process, are uncertain.

The only perfect representation of the world or the environ-

ment in which the agent operates is the environment itself.

b) A set of ontological commitments that determine the

terms in which the agent thinks about space. The repre-

sentation defines the aspects of the world that should be

represented. Moreover, it defines the level of detail at which

they should be represented as well as their persistence. The

ontology should be understood in more general terms, from

spatial concepts and their relations to categorical models or

types of features extracted from the sensory input.

c) A set of definitions that determine the reasoning that can

be (and that should be) performed within the framework and

the possible inferences and their outcomes. The reasoning

will typically correspond to determining the current location

with respect to the internal map (topologically, semantically

etc.), providing necessary knowledge for the navigation pro-

cess, determining the properties of a location in space etc.

Moreover, the representation defines how the location of the

agent is represented and in what terms it is possible to refer to

points in space (e.g. in terms of metric coordinates, semantic

category of a place, e.g. a kitchen, spatial relations etc.).

d) A way of structuring the spatial information so that

it is computationally feasible to perform all the necessary

processing and inferences in a specified time (e.g. in real

time) despite limited resources.

e) A medium of communication between the agent and

human. If the agent is supposed to exchange information with

humans, the representation must be designed in a way that

allows the agent to interpret human expressions and generate

expressions that are comprehensible to humans.

f) Similarly, a medium of communication between compo-

nents of an integrated system. Apart from a middleware that

can provide exchange of information, the information must

be structured in a way that it can be efficiently accessed and

interpreted by each of the communicating components.

In view of the description given above, a cognitive spatial

representation is much broader than a cognitive map as

defined by Kuipers [20].

B. Spatial Representation for Mobile Cognitive Systems

In this work, we narrow the focus to mobile cognitive

systems. Based on the analysis of existing approaches [3],

[1], [31] as well as ongoing research [2] on artificial cog-

nitive systems, we have identified several areas of func-

tionality, usually realized through separate subsystems, that

must be supported by the representation. These obviously

include spatial localization, navigation, route finding and

autonomous exploration, but also understanding and exploit-

ing semantics associated with space, human-like conceptual-

ization and categorization of space, reasoning about spatial

units and their relations, human-robot communication, action

planning, object finding and visual servoing, and finally

recording and recalling episodic memories.

Having in mind the aforementioned functionalities, char-

acteristics of a spatial representation as well as limitations

resulting from practical implementations, we have identified



several desired properties of a spatial representation for

mobile cognitive systems.

First, since the representation is unavoidably uncertain, it

is futile to represent the world as accurately as possible. A

very accurate representation must be complex, require a sub-

stantial effort to synchronize with the dynamic world and still

cannot guarantee that sound inferences will lead to correct

conclusions [11]. Here, we assume that the representation

should instead be minimal and inherently coarse. Only as

much knowledge should be represented as it is required

to provide all the necessary functionality for the system.

Furthermore, redundancy should be avoided and whenever

possible and affordable, new knowledge should be inferred

from the existing information. It is important to note that

uncertainties associated with represented symbols should be

explicitly modeled.

Information should be abstracted as much as possible in

order to make it robust to the dynamic changes in the world

and representations that are more abstract should be used for

longer-term storage. At the same time, knowledge extracted

from immediate observations might be much more accurate

(e.g. for the purpose of visual servoing). In other words,

the agent should use the world as an accurate representation

whenever possible. It is important to mention that rich and

detailed representations should not constitute a permanent

base for more abstract ones (as is the case in [34]). Addi-

tionally, it should be possible to determine the location of

the agent as well as interpret references to points in space at

each level of abstraction.

Similarly to abstraction levels, space should be represented

on different spatial scales from single scenes to whole

environments. Moreover, space should be discretized into a

finite number of spatial units. Discretization of continuous

space is one of the most important abstracting steps in

representing spatial knowledge as it allows to make the

representation robust, compact and tractable. Discretization

drastically reduces the number of states that have to be

considered e.g. during the planning process [13] and serves

as a basis for higher level conceptualization [34].

A representation should allow not only for representing

instantiations of spatial segments visited by the robot. It is

equally important to provide means for representing unex-

plored space which relate to spatial entities already explored.

Furthermore, categorical knowledge should be represented

that is not specific to any particular location and instead

corresponds to general knowledge about the world. Typical

examples would be categorical models of appearance of

places [28], objects [27] or properties of space recognized

by humans (e.g. shape, size etc.).

Another important group of properties is related to the

fundamental role of the representation in human-robot in-

teraction. The representation should allow for modelling

correspondence between the represented symbols and human

concepts of space. A typical example would be human-like

segmentation of space (e.g. into rooms, floors, buildings)

or human spatial properties. This correspondence should

allow for generating and resolving spatial referring expres-

Fig. 1. The layered structure of COARSE. The position of each layer
within the representation corresponds to the level of abstraction of the spatial
knowledge.

sions [33] as well as path descriptions.

Finally, the representation should be adaptable and should

not grow unbounded despite the continuous changes in the

environment. In the next sections, we propose a repre-

sentation of spatial knowledge that adheres to the desired

properties formulated above.

IV. STRUCTURE OF THE REPRESENTATION

The primary contribution of this paper is the cognitive

layered representation of spatial knowledge (COARSE). A

general overview of the structure of the representation is

presented in Figure 1. The fundamental building block of

the representation is a layer which can be regarded as a

sub-representation focusing on a different abstraction of the

spatial knowledge. We distinguish between 4 layers: sensory

layer, place layer, categorical layer and conceptual layer.

Each layer focuses on different aspects of the world and

represents those aspects using specific symbols. The layers

focus on different spatial scales, define their own spatial

entities and the way the agent’s location in the world is

represented. Finally, the layers define the persistence of the



Property Sensory Layer Place Layer Categorical Layer Conceptual Layer

Aspects represented Accurate geometry and ap-
pearance

Local spatial relations,
coarse appearance, geometry

Perceptual categorical
knowledge

High-level spatial concepts /
Links concepts ↔ entities

Agent’s position Pose within the local map Place ID Relationship to the categor-
ical models

Expressed in terms of high
level spatial concepts

Spatial scope Small-scale, local Large-scale Global Global

Knowledge persistence Short-term Long-term Very long-term Life-long / Very long-term

Knowledge decay Replacement Generalization, forgetting Generalization None / Forgetting

Information flow Bottom-up Primarily bottom-up Primarily bottom-up Top-down and bottom-up

TABLE I

COMPARISON OF PROPERTIES OF THE FOUR LAYERS OF COARSE.

information they represent. A comparison of properties of

the four layers of COARSE is presented in Table I.

As previously mentioned, redundancy should be avoided;

however, information might be abstracted and thus moved

between the layers. As a result, each layer also corresponds

to a map and an actual storage of information. Apart from

layers, the representation provides interfaces that can be seen

as sets of inferences used to derive new symbols for specific

purposes. However, those symbols are outside the scope of

the layers and thus will not be updated.

The following sections provide details about each of the

layers as well as a general overview of possible interfaces.

A. Sensory Layer

In the sensory layer, a detailed robocentric model of

the robot’s immediate environment is represented based

on direct sensory input as well as data fusion over space

around the robot and short time intervals. The sensory layer

stores low-level features and landmarks extracted from the

sensory input together with their exact position with respect

to the robot. Measures of uncertainty are also included in

this representation. Landmarks that move beyond a certain

distance are forgotten and replaced by new information.

Thus, the representation in the sensory layer is akin to

a sliding window, with robot-centric and up-to-date direct

perceptual information. It is also essentially bottom-up only,

though directives and criteria, such as guiding the attentional

process, may be imposed from upper layers. It can contain

data of both a 2D and 3D nature.

The representation in the sensory layer helps to maintain

stable and accurate information about the relative movements

of the robot. Moreover, it allows for maintaining and tracking

the position of various features while they are nearby. This

can be useful for providing ”virtual sensing” such as 360◦

laser scans based on short-term temporal sensory integration

as well as generation of features based on spatial constella-

tions of landmarks located outside the field of view of the

sensor. Additionally, it could be used for temporal filtering of

sensory input or providing robustness to occlusions. Finally,

the sensory layer can provide the low level robotic movement

systems with data for deriving basic control laws such as for

obstacle avoidance or visual servoing.

B. Place Layer

The place layer is responsible for the fundamental, bottom-

up discretization of continuous space. In the place layer,

the world is represented as a collection of basic spatial

entities called places as well as their spatial relations. Each

place is defined in terms of features that are represented

in the sensory layer, but also spatial relations to other

places. The aim of this representation is not to represent

the world as accurately as possible, but at the level of

accuracy sufficient for robust localization despite uncertainty

and dynamic variations. Similarly, the relations do not have

to be globally consistent as long as they are preserved locally

with sufficient accuracy. The representation of places in the

place layer persists over long term; however, knowledge that

is not accessed or updated can be compressed, generalized

and finally forgotten.

Besides places, the place layer also needs to define paths

between them. The semantic significance of a path between

two places is the possibility of moving directly between one

and the other. This does not necessarily imply that the robot

has traveled this path previously. A link might be created for

unexplored place e.g. based on top-down cues resulting from

the dialogue with the user (e.g. when the robot is guided and

the user indicates part of the environment that should be of

interest to the robot, but not immediately).

The place layer operates on distinct places as well as

their connectivity and spatial relations to neighboring places.

No global representation of the whole environment is main-

tained. Still, since the local connectivity is available, global

representation (e.g. a global metric map) can be derived

when needed. This representation will not be accurate, but

will preserve the connectivity and relaxed spatial relations

between all the places.

C. Categorical Layer

The categorical layer contains long-term, low-level rep-

resentations of categorical models of the robot’s sensory

information. The knowledge represented in this layer is

not specific to any particular location in the environment.

Instead, it represents a general long-term knowledge about

the world at the sensory level. For instance, this is the layer

where models of landmarks, objects or appearance-based

room category or other properties of spatial segments such as

shape, size or color are defined in terms of low-level features.

The position of this layer in the spatial representation reflects

the assumption that the ability to categorize and group

sensory observations is the most fundamental one and can

be performed in a feed-forward manner without any need for



higher-level feedback from cognitive processes.

The categorical models stored in this layer give rise to

properties that are utilized by higher-level layers. In order

to enhance communication with the user, in many cases, the

values of those properties will correspond to human spatial

concepts, not to internal concepts of the robot (e.g. office-like

appearance or elongated shape). The properties might require

complicated models that can only be inferred from training

data samples. In case of models that correspond to human

concepts, they can be learned in a supervised fashion, using

a top-down supervision signal. Due to the high complexity

of the models, unused knowledge might be compressed and

generalized.

D. Conceptual Layer

The conceptual layer provides an ontology that represents

taxonomy of the spatial concepts and properties of spatial

entities that are linked to the low-level categorical models

stored in the categorical layer. This associates semantic

interpretations with the low-level models and can be used to

specify which properties are meaningful e.g. from the point

of view of human-robot interaction. Moreover, the conceptual

layer represents relations between those concepts and the

spatial entities. This makes the layer central for verbalization

of spatial knowledge and interpreting and disambiguating

verbal expressions referring to spatial entities.

The second important role of the conceptual layer is to

provide definitions of the spatial concepts related to the

semantic segmentation of space based on the properties of

segments observed the environment. A building, floor, room

or area are examples of such concepts. The conceptual layer

contains information that floors are usually separated by

staircases or elevators and that rooms usually share the same

general appearance and are separated by doorways. Those

definitions can be either given or learned based on asserted

knowledge about the structure of a training environment

introduced to the system.

Another role of the conceptual layer is to provide def-

initions of semantic categories of segments of space (e.g.

areas or rooms) in terms of the values of properties of those

segments. These properties can reflect the general appearance

of a segment as observed from a place, its geometrical

features or objects found in the place.

E. Interfaces

Apart from the layers, we propose to introduce a concept

of an interface, i.e. a set of inferences that might be used to

derive new symbols from the knowledge represented within

the layers. Interfaces usually support specific functionalities

within the system, which for the sake of robustness and

efficiency are not an inherent part of any layer and thus

are not updated or maintained. A typical example would be

visualization of information represented by the system. Here,

we give examples of two interfaces that could be realized

within the proposed spatial representation:

• Metric interface providing approximate global metric

maps or metric maps for a selected region of space.
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Fig. 2. Global SLAM map and estimated robot trajectory is rotated and
displaced quite significantly.

Metric maps could be generated based on the local

connectivity information preserved in the place layer,

relaxed e.g. using a method proposed in [24].

• Topological interface providing global topological graph

for the environment as well as approximate costs of

traveling between the topological nodes.

V. POSSIBLE INSTANTIATIONS

This section proposes and briefly describes specific models

that could be used to represent knowledge stored in each

layer and algorithms maintaining those models according to

the principles described in the previous section.

A. Sensory Layer

The sensory layer can be realized using a robocentric

SLAM algorithm. Robocentric mapping exhibits a number of

advantages over traditional SLAM methods. For example, the

traditional SLAM state vector in a global coordinate system

is not observable as discussed in [14] given only relative

landmark-robot measurements such range and/or bearing.

Another problem with global mapping algorithms is that of

estimator inconsistencies caused by accumulated lineariza-

tion errors [17], [5], [15]. Commonly, a global map and robot

pose estimate can rotate and/or translate a significant amount.

Figure 2 shows a birds-eye view of such a case and highlights

the flaws of world-centric mapping.

This distortion of the global map shown in Figure 2 is

caused by an unobservable state in global SLAM, as was

shown in [22]. In [8], [7], [6] the concept of robocentric

mapping is introduced and this concept is shown to better

deal with linearization errors than the traditional SLAM for-

mulation. In general, robocentric mapping constitutes a well-

posed problem with an observable state for many classes of

sensor measurement. From the point of view of a cognitive

agent, we are using a robocentric mapping algorithm in

order to emphasize the mapping function in a vicinity around



(a) Map of the environment and metric extents of places.

(b) Scenes defined in the feature space.

(c) Places defined in the descriptor space.

Fig. 3. Illustrative example of an environment and definitions of places in
the descriptor space.

the robot. This has practical importance for certain actions

likely to be performed by any cognitive agent such as object

manipulation.

B. Place Layer

We propose to instantiate the place layer based on the

mapping framework recently proposed in [29]. Central to

the approach is the place map represented as a collection of

places. A place is defined by a subset of values of arbitrary,

possibly complex, distinctive features and spatial relations

reflecting the structure of the environment. The features

provide information about the world and can be perceived

by an agent when at that place. In this sense, the places

build on the perception of the agent and are based on its

perceptual capabilities.

The process of defining places consists of two steps.

First, the space of all features is divided into disjoint sets

termed scenes. This provides an initial segmentation of space

corresponding to groupings of similar feature values. Then,

spatial relations are formed (e.g. adjacency relation) for each

point in space with respect to the scenes e.g. by integrating

features temporally. This allows for disambiguating between

locations that have the same appearance but are separate in

space.

To illustrate the idea, let us consider a simple example of

a small environment presented in Figure 3(a) consisting of

4 rooms characterized by the color of the floor. We define a

single feature f1 ∈ F1 that corresponds to the hue of the floor

color at each location. Then, we can define a feature space

by the range of the hue values. If we divide the feature space

into regions as presented in Figure 3(b), we can differentiate

between three scenes: red (S1), yellow (S2) and green (S3).

We can clearly see that the scene S1 corresponds to two

separate rooms which could be distinguished if we consider

their relations to other scenes. Let us define an adjacency

relation with respect to the scene S3, r1 ∈ R1 = {1, 0}, and

create a descriptor space D = F1 × R1. In that descriptor

space, we can create four non-overlapping places P1-P4

by dividing the scene S1 into two places, one of which is

adjacent to the scene S3 and the other is not. This division is

reflected in the clustering of space presented in Figure 3(c).

The place map is defined in terms of the agent’s perception

of space and adapts to its perceptual capabilities. Moreover,

the perceived features can be abstract and non-metric and

describe for instance visual properties of the world. In this

sense, the map is subjective and robocentric as the robot’s

observations do not have to be expressed in terms of any

objectively defined quantities or any global coordinate sys-

tem. The map is fragmented (consists of a set of independent

places), topological and does not require maintaining global

spatial consistency.

C. Categorical Layer

The categorical layer can be seen as an ensemble of

categorical models of the robot’s sensory information. The

literature provides several models that could be used for

this purpose. Let’s concentrate on the available approaches

to place classification that could be used to represent

appearance-based or geometry-based properties of spatial

segments. These are either purely geometrical and rely on

cues extracted from laser range data, employ visual cues

or use a combination of both modalities. An approach

employing the AdaBoost classifier and a set of simple

geometrical features extracted from laser range scans was

proposed in [25]. Torralba et al. [32] employs a global visual

descriptor and a Hidden Markov Model in order to classify

places. Finally, combination of different sensory modalities

was used in [28], where discriminative models of places were

built using Support Vector Machines from geometric laser-

based features and a combination of global and local visual

cues. Apart from representing appearance or geometry-based

classes of rooms or areas, similar models could be used for

other properties of spatial entities such as shape, size or color.

Other methods could be employed for landmark and

object modelling, detection and categorization. Murillo et al.

describe a method for visual door detection using appearance

and shape cues. A system that uses information signs as

landmarks, and interprets them through its ability to read

text and recognize icons is proposed in [23]. Finally, the

vision literature provides a broad range of approaches to the

problem of object categorization. An extensive review of the

state-of-the-art can be found in [27].

D. Conceptual Layer

The conceptual layer provides an ontology that represents

the taxonomy of the spatial concepts and properties as well as

dependencies between the concepts, properties and instances

of spatial entities. Here, we propose a possible instantiation

of the layer presented in Figure 4. In order to address the

needs of the conceptual layer that represents conceptual

knowledge of different type, we propose to use a fixed,

handcrafted ontology for representing the taxonomy and a

probabilistic model for representing the dependencies. In

such an approach, the ontology is largely encoded in the

structure of the probabilistic model. We propose to represent
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Fig. 4. Overview of a possible instantiation of the conceptual layer. The
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ontology that represents the taxonomy of spatial concepts and properties of
spatial entities.

the location of the robot within segments of space (e.g. a

place, a room or an area such as a dining area), the observed

properties of areas and rooms as well as semantic categories

of areas and rooms in terms of random variables.

Let’s focus on the example presented in Figure 4. We

can consider the circles as random variables and the solid

arrows as dependencies within a graphical model. At the

same time, the is-a relations link the random variables with

their values. The model represents the spatial hierarchy of

segments of space. There is clearly a dependency between

the location of the robot at different levels of this hierarchy

(e.g. a room and an area within the room). Moreover, the

model represents the dependency between the instance of a

place and the properties of areas and rooms observed from

this place. Those in turn influence the semantic categories of

areas or rooms to which the place belongs. For example, this

link represents the strong connection between the semantic

category of a room and typical objects found in that room.

Finally, the proposed model represents the dependency

between the area and room properties observed as the robot

explores the environment and the probability that the robot

crossed a boundary of a spatial segment. This link effectively

defines the concepts of a room and an area in terms of the

properties and can be used to provide semantic segmentation

of space.

VI. PROOF OF CONCEPT

In this section, we briefly describe a proof of concept for

most of the elements of the representation realized within

the integrated system of the EU FP7 project CogX. In this

initial implementation, we simulated the general knowledge

structure, still on top of algorithms that do not adhere fully to

the principles behind the representation. This way, the whole

system violates some of the assumptions behind the proposed

representation; however, it allows validating correctness and

usefulness of the general knowledge structure within an

integrated cognitive system.

We assembled a system consisting of several subarchi-

tectures (groupings of large functional portions) within the

software framework based on the CoSy Architecture Schema

(CAS, [18]). The following subarchitectures were included:

the spatial subarchitecture responsible for maintaining the

spatial knowledge and relating the robot to that knowledge;

the planning subarchitecture, which given goals, dynamically

decides which subarchitectures need to provide which data

in order to achieve them; the motivation subarchitecture

which monitors the system state and decides which goals

should be concatenated into a single one for the planner;

and finally the binding subarchitecture which unifies cross-

modal information.

Within the spatial subarchitecture, we implemented the

place layer as a set of independent places connected with

neighboring places using paths. These places were generated

on top of a global metric map, which effectively replaced

most of the functionality of the sensory layer; however, other

components of the system did not have access to global

metric coordinates. Moreover, according to the requirements

for the spatial representation, we introduced the concept of

placeholders in order to represent hypotheses for places in

the yet unexplored part of the environment. The categori-

cal layer was realized through categorical models of room

appearance and geometry based on the algorithm proposed

in [28]. Additionally, a simple door detection algorithm was

used as a replacement for a more sophisticated landmark

model. Finally, the conceptual layer was instantiated using a

description-logic based deductive reasoning that relied on the

the discretization of space and properties assigned to places,

maintained a taxonomy of concepts and the knowledge about

individuals and performed reasoning resulting in semantic

segmentation of space.

The system was successfully tested in an autonomous

exploration scenario on a Pioneer differential-drive robot

base, equipped with a Hokuyo laser scanner, and surmounted

by a custom superstructure bearing a stereo camera and

a laptop that performs all information processing. Based

on the outcomes of the initial experiment as well as the

design process of the integrated system, we can conclude

that the framework facilitates integration between the sub-

architectures and greatly enhances the scalability of the

whole system. Additionally, the experiments demonstrated

the feasibility of the representation in carrying out spatial

abstraction from continuous sensory information to amodal

symbolic planning.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented a thorough analysis of the

requirements for a spatial knowledge representation for mo-

bile cognitive systems and proposed a layered representation

that conforms to those requirements. The representation

provides a unified and coherent view on the structure of

spatial knowledge and a basis for designing artificial cog-

nitive systems. Moreover, it facilitates integration between



components improving the scalability of the system. We

further proposed specific models and algorithms as possible

instantiations and provided a proof of concept based on an

initial implementation within an integrated system.

The future work will focus on creating components provid-

ing instantiations for each of the layers of the representation

that fully adhere to presented principles and constitute a

part of an integrated system. Currently, we pursue research

on robocentric SLAM algorithms, semantic categorization

of space, high-level probabilistic conceptual reasoning and

efficient instantiations of the place map. From the point

of view of the structure of the representation, we plan to

investigate how small-scale and large-scale space could be

represented within the same, unified framework.
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