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Abstract— In this paper we present an hierarchical approach
to place categorization. Low level sensory data is processed
into more abstract concept, named properties of space. The
framework allows for fusing information from heterogeneous
sensory modalities and a range of derivatives of their data. Place
categories are defined based on the properties that decouples
them from the low level sensory data. This gives for better
scalability, both in terms of memory and computations. The
probabilistic inference is performed in a chain graph which
supports incremental learning of the room category models.
Experimental results are presented where the shape, size and
appearance of the rooms are used as properties along with the
number of objects of certain classes and the topology of space.

Index Terms— place categoriation; graphical models; semantic
mapping; machine learning

I. INTRODUCTION

The topic of this paper is place categorization, denoting

the problem of assigning a label (kitchen, office, corridor,

etc) to each place in space. To motivate why this is useful,

consider a domestic service robot. Such a robot should be

able to “speak the language” of the operator/user to minimize

training efforts and to be able to understand what the user

is saying. That is, the robot should be able to make use of

high level concepts such as rooms when communicating with a

person, both to verbalize spatial knowledge but also to process

received information from the human in an efficient way.

Besides robustness and speed, there are a number of

additional desirable characteristics of a place categorization

system:

C1: Categorization The system should support true catego-

rization and not just recognition of room instances. That is, it

should be able to classify an unknown room as ”a kitchen”

and not only recognize ”the kitchen”.

C2: Spatio-temporal integration The system should support

integration over space and time as the information acquired

at a single point rarely provides enough evidence for reliable

categorization

C3: Multiple sources of information No single source of

information will be enough in all situations and it is thus

important to be able to make use of as much information as

possible.

C4: Handles input at various levels of abstraction The

system should not only be able to use low level sensor data

but also higher level concepts such as objects.

C5: Automatically detect and add new categories The sys-

tem should be able to augment the model with new categories

identified from data.

C6: Scalability and complexity The system should be scal-

able both in terms of memory and computations. That is, for

example, it should not be a problem to double the number of

room categories.

C7: Automatic and dynamic segmentation of space The

system should be able to segment space into areas (such as

rooms) automatically and should be able to revise its decision

if new evidence suggesting another segmentation is received.

C8: Support life-long incremental learning The robot sys-

tem cannot be supplied with all the information at production

time, it needs to learn along the way in an incremental fashion

throughout its life.

C9: Measure of certainty There are very few cases where

the categorization can be made without uncertainty due to

imperfections in sensing but also model ambiguities. Ideally

the system should produce a probability distribution over all

categories, or at least say something about the certainty in the

result.

In out previous work we have designed methods that meet

C1, C3, C7 and partly C2, C4 and C9. In this paper we

will improve on C4 and C9 and add C6 and C7. The main

contribution of the paper relates to C4, C6 and C9.

A. Outline

In Section II presents related work and describes our con-

tribution with respect to that. Section III describes our method

and Section IV provides implementation details. Finally, Sec-

tion V describes the experimental evaluation and Section VI

draws some conclusions and discusses future work.

II. RELATED WORK

In this section we give an overview of the related work

in the area of place recognition and categorization. Place

categorization has been addressed both by the computer vision

and the robotics community. In computer vision the problem is

often referred to as scene categorization. Although also related,

object categorization methods are not covered here. However,

we believe that objects are key to understanding space and we

will include them in our representation but will make use of

standard methods for recognizing/categorizing them. Table II

maps some of the methods presented below to the desired

characteristics presented in the previous section.

In computer vision one of the first works to address the

problem of place categorization is [19] based on the so called

”gist” of a scene. One of the key insights in the paper is that the

context is very important for recognition and categorization of

both places and objects and that these processes are intimately

connected. Place recognition is formulated in the context of

localization and information about the connectivity of space

is utilized in an HMM. Place categorization is also addressed

using a HMM. In [23] the problem of grouping images into

semantic categories is addressed. It is pointed out that many
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[19] X x X

[23] X

[20] x

[10] X

[12] X x X x x

[14]

[9, 15] X

[13] x

[26] x x x

[16] X x X x

[24] X x

[18] X

[17] X X X X X

[22] X X

[21] x X X

This work X x X X X x x X

TABLE I

CHARACTERIZING SOME OF THE PLACE CATEGORIZATION WORK BASED

ON THE DESIRABLE CHARACTERISTICS FROM SECTION I.

natural scenes are ambiguous and the performance of the

system is often quite subjective. That is, if two people are

asked to sort the images into different categories they are

likely to come up with different partitions. [23] argue that

typicality is a key measure to use in achieving meaningful

categorizations. Each cue used in the categorization should

be assigned a typicality measure to express the uncertainty

when used in the categorization, i.e. the saliency of that cue.

The system is evaluated in natural outdoor scenes. In [3]

another method is presented for categorization of outdoors

scenes based on representing the distribution of codewords

in each scene category. In [25] a new image descriptor, PACT,

is presented and shown to give superior results on the datasets

used in [19, 3].

In robotics, one of the early systems for place recognition

is [20] where color histograms is used to model the appearance

of places in a topological map and place recognition performed

as a part of the localization process. Later [10] uses laser data

to extract a large number of features used to train classifiers

using AdaBoost. This system shows impressive results based

on laser data alone. The system is not able to identify and

learn new categories: adding a new category required off-line

re-training, no measure of certainty and it segmented space

only implicitly by providing an estimate of the category for

every point in space. In [12] this work is extended to also

incorporate visual information in the form of object detections.

Furthermore, this work also adds a HMM on top of the

point-wise classifications to incorporate information about the

connectivity of space and make use of information such as

offices are typically connected to corridors. In [14] a vision

only place recognition system is presented. Support Vector

Machines (SVMs) are used as classifiers. The characteristics

are similar to those of [10]; cannot identify and learn new cate-

gorizes on-line, only works with data from a single source and

classification was done frame by frame. In [9, 15] a version

of the system supporting incremental learning is presented.

The other limitations remains the same. In [13] a measure

of confidence is introduce as a means to better fuse different

cues and also provide the consumer of the information with

some information about the certainty in the end result. In [16]

the works in [10, 14] are combined using an SVM on top of

the laser and vision based classifiers. This allows the system

to learn what cues to rely on in what room category. For

example, in a corridor the laser based classifier is more reliable

than vision whereas in rooms the laser does not distinguish

between different room types. Segmentation of space is done

based on detecting doors that are assumed to delimit the

rooms. Evidence is accumulated within a room to provide a

more robust and stable classification. It is also shown that

the method support categorization and not only recognition.

In [24] the work from [25] is extended with a new image

descriptor, CENTRIS, and a focus on visual place categoriza-

tion in indoor environment for robotics. A database, VPC, for

benchmarking of vision based place categorization systems

is also presented. A Bayesian filtering scheme is added on

top of the frame based categorization to increase robustness

and give smoother category estimates. In [17] the problem

of place categorization is addressed in a drastically different

and novel way. The problem is cast in a fully probabilistic

framework which operates on sequences rather than individual

images. The method uses change point detection to detect

abrupt changes in the statistical properties of the data. A Rao-

Blackwellized particle filter implementation is presented for

the Bayesian change point detection to allow for real-time

performance. All information deemed to belong to the same

segment is used to estimate the category for that segment

using a bag-of-words technique. In [27] a system for clustering

panoramic images into convex regions of space indoors is

presented. These regions correspond roughly with the human

concept of rooms and are defined by the similarity between

the images. In [21] panoramic images from indoor and outdoor

scenes are clustered into topological regions using incremental

spectral clustering. These clusters are defined by appearance

and the aim is to support localization rather than human robot

interaction. The clusters therefore have no obvious semantic

meaning.

As mentioned above [12] makes use of object observations

to perform the place categorization. In [5] objects play a key

role in the creation of semantic maps. In [18] a 3D model

centered around objects is presented as a way to model places

and to support place recognition. In [22] a Bayesian framework

for connecting objects to place categories is presented. In [26]

the work in [12] is combined with detections of objects to

deduce the specific category of a room in a first-order logic

way.

A. Contributions

In this paper we contribute a method for hierarchical cat-

egorization of places. The method can make use of a very

diverse set of input data, potentially also including spoken

dialogue. We make use of classical classifiers (SVM in our
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case, building on the work [16]) and a graphical model to

fuse information at a higher level. The categorical models for

rooms are based on so called properties of space, rather than

the low level sensor characteristics which is the case in most

of the other work presented above. This also means that a

new category could be defined without having the need to re-

train from the sensor data level. The properties decouples the

system. The introduction of properties also makes the system

more scalable as the low level resources (memory for models

and computations for classifiers) can be shared across room

categorizers. The system we present still rely on the detection

of doors like [16] but the graphical model allows us to add and

remove these doors and thus change the segmentation of space.

The system will automatically adjust the category estimates for

each room taking into account the new topology of space.

III. HIERARCHICAL MULTI-MODAL CATEGORIZATION

We pose the problem of place categorization as that of

estimating the probability distribution of category labels, ci,

over places, pj . That is, we want to estimate p(ci, pj). We

consider a discrete set of places rather than a continuous space.

In our implementation the places are spread out over space like

bread crumbs every one meter [26]. The places become nodes

(representing free space) in a graph covering the environment.

Edges are added when the robot has traveled directly between

two nodes.

In our previous work [26] we performed place catego-

rization by combining a room/corridor classifier (based on

[10]) with an ontology that related objects to specific room

types. For example, we inferred being in a living room if the

classification system reported a room and a sofa and a TV set

were found (objects associated with a living rooms according

to the ontology). This method had some clear and severe

shortcomings that made it only appropriate for illustrating

ideas rather than being a real world categorization system in

anything but simple and idealized test scenarios. Furthermore,

because the system was unable to retract inferred information

any categorization was crisp and set in stone. Conceptually

the solution has several appealing traits. It allowed us to teach

the system, at a symbolic level, to distinguish different room

categories simply by assigning specific objects to them. It

combined information from low level sensor data (to classify

room/corridor) with high level concepts such as objects.

The place categorization system in this paper provides a

principled way to maintain the advantages mentioned above

even in natural environments. Our approach is based on the

insight that what made the previous system easy to re-train was

that the categorization was based on high level concepts rather

than on low level sensor data. For this purpose, we introduce

what we call properties of space where in the previous system

the properties corresponded to the existence of certain types

of objects. In general these properties could be related to, for

example, the size, shape and appearance of a place.

The introduction of properties decomposes our approach hi-

erarchically. The categories are defined based on the properties

and the properties are defined based on sensor data, either

directly or in further hierarchies. This is closely related to the

work on part based object recognition and categorization [2].

The property based decomposition buys us better scalability

in several ways. Instead of having to build a model from the

level of sensor data for every new category, we can reuse the

low level concepts. This saves memory (models for SVMs can

be hundreds of megabytes in size) and saves computations

(calculations shared across categories). The introduction of

properties also makes training easier. Once we have the mod-

els for the properties, training the system for a new category

is decoupled from low level sensor data. The properties can

be seen as high level basis functions on which the categories

are defined, providing a significant dimensionality reduction.

The graph made up of the free space nodes can be used to

impose topological constraints on the places as well and help

lay the foundation for the segmentation process.

Fig. 1. Structure of the graphical model for the places showing the influence
of the properties and the topology on the categorization and segmentation.

We use a graphical model to structure the problem, start-

ing from the place graph. More precisely we will use a

probabilistic chain graph model [7]. Chain graphs are a

natural generalization of directed (Bayesian Networks) and

undirected (Markov Random Fields) graphical models. As

such, they allow for modelling both “directed” causal as

well as “undirected” symmetric or associative relationships,

including circular dependencies. Figure 1 shows our graphical

model. The structure of model depends on the topology of

the environment. Each discrete place is represented by a set

of random variables connected to variables representing the

semantic category of areas. Moreover, the category variables

are connected by undirected links to one another according

to the topology of the environment. The potential functions

φrc(·, ·) represent the knowledge about the connectivity of

areas of certain semantic categories (e.g. kitchens are typically

connected to corridors). The remaining variables represent

properties of space. These can be connected to observations

of features extracted directly from the sensory input. Finally,

the functions pp1
(·|·), pp2

(·|·), . . . , ppN
(·|·) model spatial

properties.

The joint density f of a distribution that satisfies the Markov

property associated with a chain graph can be written as [7]:

f(x) =
∏

τ∈ T

f(xτ |xpa(τ)),
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where pa(τ) denotes the set of parents of vertices τ . This

corresponds to an outer factorization which can be viewed

as a directed acyclic graph with vertices representing the

multivariate random variables Xτ , for τ in T (one for each

chain component). Each factor f(xτ |xpa(τ)) factorizes further

into:

f(xτ |xpa(τ)) =
1

Z(xpa(τ))

∏

α∈A(τ)

φα(xα),

where A(τ) represents sets of vertices in the moralized

undirected graph Gτ∪pa(τ), such that in every set, there exist

edges between every pair of vertices in the set. The factor Z

normalizes f(xτ |xpa(τ)) into a proper distribution.

In order to perform inference on the chain graph, we first

convert it into a factor graph representation [8]. To meet

the real time constraints posed by most robotics applications

we then use an approximate inference engine, namely Loopy

Belief Propagation [11].

IV. IMPLEMENTATATION

In our implementation, each object class results in one

property, encoding the expected/observed number of such

objects. In addition, we use of the following properties:

• shape (e.g. elongated, square) –

Extracted from laser data

• size (e.g. large (compared to other typical rooms)) –

Extracted from laser data

• appearance (e.g. office-like appearance) –

Extracted from visual data

• doorway (is this place in a doorway) –

Extracted from laser data

In indoor environments, rooms tend to share similar func-

tionality and semantics. In this work we cluster places into

areas based on the door property of places (using door detector

from [16]). The doorway property is considered to be crisp.

The door places are not part of the chain graph but rather act

as edges between areas. However, the graphical model allows

us to easily change the topology if new information becomes

available. The overall system therefore performs segmentation

automatically and the dynamic nature of it is based on re-

evaluating the existence of doors. Figure 2 illustrates how the

places (small circles) are segmented into areas (ellipses) by

the existence of doors (red small circles) and how this defines

the topology of the areas.

We build on the work in [16] when defining the prop-

erty categorizers for shape, size and appearance (see [16]

for details). The categorizers are based on Support Vector

Machines (SVMs) and the models are trained on features

extracted directly from the robot’s sensory input. A set of

simple geometrical features [10] are extracted from laser

range data in order to train the shape and size models. The

appearance models are build from two types of visual cues,

global, Composed Receptive Field Histograms (CRFH) and

local based on the SURF features discretized into visual

words [1]. The two visual features are further integrated

using the Generalized Discriminative Accumulation Scheme

(G-DAS [16]). The models are trained from sequences of

images and laser range data recorded in multiple instances

Fig. 2. The set of places, {pi}, is segmented into areas based on the door
places. The doors form the edges in the topological area graph.

of rooms belonging to different categories and under various

different illumination settings (during the day and at night).

By including several different room instances into training,

the acquired model can generalize sufficiently to provide

categorization rather than instance recognition. The estimate

for the uncertainty in the categorization results is based on the

distances between the classified samples and discriminative

model hyperplanes (see [13] for details).

To learn the probabilities associated with the relations

between rooms, objects, shapes, sizes and appearances we

analyzed common-sense resources available online (for details

see [6]) and the annotated data in the COLD-Stockholm

database1. The relations between rooms and objects were

bootstrapped from part of the Open Mind Indoor Common

Sense database2. The object-location pairs found through this

process were then used to form queries on the form ‘obj

in the loc’ that were fed to an online image search engine.

The number of hits returned was used as a basis for the

probability estimate. Relations that were not found this way

were assigned a certain low default probability not to rule them

out completely.

Fig. 3. The Poisson distributions modelling the existence of a certain number
of objects in a room on the example of computers present in a double office
and a professor’s office.

The conditional probability distributions ppi
(·|·) for the

object properties are represented by Poisson distributions. The

parameter λ of the distribution allows to set the expected

number of object occurrences. This is exemplified in Fig. 3

1http://www.cas.kth.se/cold-stockholm
2http://openmind.hri-us.com/

http://www.cas.kth.se/cold-stockholm
http://openmind.hri-us.com/
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which shows two distributions corresponding to the relation

between the number of computers in a double office and a

professor’s office. In the specific case of the double office,

we set the expected number of computers to two. In all

remaining cases the parameter λ is estimated by matching

pλ(n = 0) with the probability of there being no objects of

a certain category according to the common sense knowledge

databases.

V. EXPERIMENTS

A. Experimental Setup

The COLD-Stockholm database contains data from four

floors. We divide the database into two subsets. For training

and validation, we used the data acquired on floors 4, 5 and

7. The data acquired on floor 6 is used for evaluation of the

performance of the property classifiers and for the real-world

experiment.

For the purpose of the experiments presented in this paper,

we have extended the annotation of the COLD-Stockholm

database to include 3 room shapes (elongated, square and

rectangular), 3 room sizes (small, medium and large) as well

as 7 general appearances (anteroom-, bathroom-, hallway-

, kitchen-, lab-, meetingroom- and office-like). The room

size and shape, were decided based on the length ratio and

maximum length of edges of a rectangle fitted to the room

outline. These properties together with 6 object types defined

11 room categories used in our experiments, see Figure 5.

B. Evaluation of Property Categorizers

The performance of each of the property categorizers was

evaluated in separation. Training and validation datasets were

formed by grouping rooms having the same values of prop-

erties. Parameters of the models were obtained by cross-

validation. All training and validation data were collected

together and used for training the final models which were

evaluated on test data acquired in previously unseen rooms.

Table II presents the results of the evaluation. The classifica-

tion rates were obtained separately for each of the classes and

then averaged in order to exclude the influence of unbalanced

testing set. As can be seen all classifiers provided a recognition

rates above 80%. Furthermore, integrating the two visual cues

(CRFH and BOW-SURF) increased the classification rate of

the appearance property by almost 5%. From the confusion

matrices in Fig. 4 we see that the cases with confusion occurs

between property values being semantically close.

Property Cues Classification rate

Shape Geometric features 84.9%

Size Geometric features 84.5%

Appearance CRFH 80.5%

Appearance BOW-SURF 79.9%

Appearance CRFH + BOW-SURF 84.9%

TABLE II

CLASSIFICATION RATES FOR EACH OF THE PROPERTIES AND CUES.

Shape Size

Appearance Appearance Appearance

CRFH BOW-SURF CRFH + BOW-SURF

Fig. 4. Confusion matrices for the evaluation of the property categorizers.

C. Real-world experiments

In the real-world experiment the robot was manually driven

through the environment using a joystick. The robot started

with only the models obtained in the evaluation of the property

categorizers. Laser based SLAM [4] was performed while

moving and new places were added every meter traveled into

unexplored space. The robot was driven through 15 different

rooms while performing real-time place categorization without

relying on any previous observations of this particular part of

the environment. The object observations where provided by

human input. The information comes into the change graph in

exactly the same was as would real object detections.

Figure 5 illustrates the performance of the system during

part of a run. The 11 categories can be found along the vertical

axis. The ground truth for the room category is marked with

a box with thick dashed lines. The Maximum a posteriori

(MAP) estimate for the room category is indicated with white

dots. The system correctly identified the first two rooms as

a hallway and a single office using only shape, size and

general appearance (no objects were found). The next room

was properly classified as a double office. The MAP estimate

switches to professors office for a short while when one

computer is found and switches back again when a second if

found. After some initial uncertainty where the MAP switches

category several times the next room is classified as a double

office until the robot finds a computer at which point it

switches to professor’s office. Later the robot enters a robot lab

which according to its models is very similar to a computerlab.

Initially there is a slightly higher probability for the hypothesis

that it is a computerlab, but once the robot detects a robot arm

the robotlab hypothesis completely dominates. The next non-

hallway room is a single person office currently occupied by a

bunch of Master’s students. Because of its current appearance,

the best match is a double office. The robot continues and the

rest of the categorizations are correct. The system is able to

perform the categorization in real-time as can be seen these

preliminary results indicate that the accuracy is quite good.
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Fig. 5. Visualization of the beliefs about the categories of the rooms. The room category ground truth is marked with thick dashed lines while the MAP
value is indicated with white dots.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a probabilistic framework

combining multi-modal and uncertain information in a hier-

archical fashion. So called properties were introduces as a

way to model high level characteristics of the environment.

These properties gave us a way to decouple the categorization

into categorization of the properties based on low level sensor

information and categorization of high level concepts such

as rooms based on the properties. A chain graph model was

used for the probabilistic inference. We provided an initial

evaluation of the system which indicates that it works in well

practice.

Part of the future work is to evaluate the system more

thoroughly. It is important to note that we are not able to

evaluate our system on other databases such as VPC [24] as

it does not contain laser data. We will also investigate the use

of the place categorization system in semantic mapping.
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