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Abstract

After decades of unrealistic predictions and expectations, robots have fi-
nally escaped from industrial workplaces and made their way into our homes,
offices, museums and other public spaces. These service robots are increas-
ingly present in our environments and many believe that it is in the area of
service and domestic robotics that we will see the largest growth within the
next few years. In order to realize the dream of robot assistants perform-
ing human-like tasks together with humans in a seamless fashion, we need to
provide them with the fundamental capability of understanding complex, dy-
namic and unstructured environments. More importantly, we need to enable
them the sharing of our understanding of space to permit natural cooper-
ation. To this end, this thesis addresses the problem of building internal
representations of space for artificial mobile agents populated with human
spatial semantics as well as means for inferring that semantics from sensory
information. More specifically, an extensible approach to place classification
is introduced and used for mobile robot localization as well as categorization
and extraction of spatial semantic concepts from general place appearance and
geometry. The models can be incrementally adapted to the dynamic changes
in the environment and employ efficient ways for cue integration, sensor fu-
sion and confidence estimation. In addition, a system and representational
approach to semantic mapping is presented. The system incorporates and in-
tegrates semantic knowledge from multiple sources such as the geometry and
general appearance of places, presence of objects, topology of the environment
as well as human input. A conceptual map is designed and used for modeling
and reasoning about spatial concepts and their relations to spatial entities
and their semantic properties. Finally, the semantic mapping algorithm is
built into an integrated robotic system and shown to substantially enhance
the performance of the robot on the complex task of active object search. The
presented evaluations show the effectiveness of the system and its underlying
components and demonstrate applicability to real-world problems in realistic
human settings.

Keywords: spatial understanding, semantic mapping, place recognition,
place categorization, mobile robotics.
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Part I

Introduction





“The eye sees only what the mind is prepared to comprehend”
Henri-Louis Bergson, 1859 –1941

Chapter 1

Introduction

The recipient of the 1969 Turing Award and the pioneer of robotics and artificial
intelligence summarized the progress of robotics in the second half of the 20th
century by saying:

In the fifties, it was predicted that in 5 years robots would be everywhere.
In the sixties, it was predicted that in 10 years robots would be everywhere.
In the seventies, it was predicted that in 20 years robots would be everywhere.
In the eighties, it was predicted that in 40 years robots would be everywhere.

Marvin Minsky

Those sentences clearly illustrate the unrealistic beliefs and expectations of the
robotics community which did not foresee the challenges stemming from the com-
plexity of unstructured human environments. Challenges, which required decades
of research in such fields as signal processing, statistics, machine learning and com-
puter vision to reach the level where the developed algorithms can be applied in
real-world, practical applications.

Despite the fact that we might still be far from building robots that could pos-
sess human-like intelligence, we are closer than ever to actually fulfilling the dream
of ubiquitous robots. Robots have already made their way to our homes, and many
believe that within the next few years, we will see a dramatic growth in the area
of domestic and service robotics [68, 67, 44]. Our idea of robots diverges from
stationary machines operating in typical industrial workplaces and starts to resem-
ble what Karel Čapek [127], the inventor of the word robot itself, had in mind:
cheap, mobile intelligent machines present in every home. Those expectations are
further confirmed by the development programs implemented by the robotics in-
dustry [68, 44] as well as government agencies ([23], the Korean Ubiquitous Robot
Companion program) which assumes popularization of cheap service robots to the
extent of one robot in every household. It is not uncommon to hear statements of
the following kind:
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(a) iRobot Roomba [30] (b) Pleo [35]
(c) Aldebaran Robotics

Nao [19]

(d) Anybots [20]
(e) Home Assistant

Robot AR [134]
(f) Care-O-Bot [21]

Figure 1: Examples of commercially available service and domestic robots.

The question is no longer, Will you have a robot in your home in the future?
But instead, How many?

Helen Greiner, iRobot Chairman and Co-founder, 2005

These next generation robots will not only have to track their position and navigate
between points in space, but reason about space and their own knowledge, plan
tasks and knowledge acquisition and interact with people in a natural way.

The robots deployed in real-world human environments are mostly relatively
small and simple service robots with, so far, very limited capabilities. The market
is dominated by cleaning robots such as iRobot Roomba [30] sometimes enhanced
with additional functionalities such as visual navigation [37] or teleoperation [38].
Telepresence is another quickly developing application area which require robots
operating among humans [43, 20, 29]. Simple robots are becoming popular also in
the education and entertainment sector with such examples as Nao [19] or Pleo [35].
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More complex commercially available platforms are mostly found in the surveil-
lance [31] and human assistance [21, 40, 36] application areas. Those platforms are
not only capable of navigation, but are expected to autonomously interact with the
environment and communicate with the human user. At the forefront of the applied
science of service robotics, we see multiple research and prototyping platforms with
the software and embodiment designed to operate in man-made environments. Plat-
forms such as the Home Assistant Robot [134], Asimo [28] or PR2 [41] were already
shown to perform complex manipulation and navigation tasks (e.g. performing
typical household chores or even preparing pancakes). Pictures presenting some of
the commercially available service and domestic robots are shown in Figure 1.

Many recent advances in fields such as computer vision and cognitive robotics
have been driven by the goal of creating artificial cognitive systems able to perform
human-like tasks in real-world settings. Several attempts have been made to design
integrated cognitive architectures and implement them on mobile robots [24, 111,
26, 54, 27, 69, 25, 85]. Those attempts focused on creating future systems that are
more versatile than those commercially available, able to operate in unstructured
environments and still providing a sufficient level of robustness. The tasks that have
been envisioned for those future robots involve interaction with the environment
and non-expert human users.

A cornerstone for such robotic assistants is their understanding of the space they
are to be operating in. Spatial understanding is a prerequisite for such basic tasks
as navigation, obstacle avoidance, autonomous exploration or even manipulation.
While knowing the position in the world, being able to explore the environment or
find routes to known locations is a fundamental capability for a mobile agent, there
are many other tasks of the future service robots that depend on the ability to per-
ceive and understand space. These include action planning, recording and recalling
episodic memories, reasoning about spatial concepts and their relations, interacting
with objects in the environment and, finally, human-robot communication.

Spatial knowledge constitutes a fundamental component of the knowledge base
of an embodied agent operating in large scale spaces. It is considered founda-
tional to all commonsense knowledge and provides grounding for other knowledge
types [76]. Research on such problems as human augmented mapping identified
spatial knowledge as one of the major elements permitting and facilitating human
robot interaction [71, 75]. In such view, the environment can be considered an ad-
ditional communication channel which allows for disambiguation and extension of
the communicated information. Furthermore, it can be seen as a common ground
or even a “representation” shared between the agent and the human user [51].

We can identify several different types of spatial knowledge depending on the
source, point of reference, spatial scale or level of abstraction and thus different
approaches to spatial knowledge representation. Geometric aspects of space can
be represented in terms of a metric map in which the agent’s location is simply a
set of raw metric coordinates. A different representation could abstract the metric
space into a set of discrete units and focus on the spatial topology. This distinction
resulted, over the years, in a broad range of approaches spanning from purely metric
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[59, 131, 87, 99], to topological [122, 109, 56, 86], and hybrid [117, 118, 110, 52, 135,
48]. Recently, particularly in the case of integrated robotic systems performing more
complex tasks requiring action planning in large-scale environments, topological and
hybrid models are gaining popularity allowing for better scalability as well as easier
access and maintenance [54].

Another important type of spatial knowledge stems from the semantics encoded
in various observable properties of space. In the case of indoor spaces, the environ-
ment provides valuable semantic information originating from humans as designers
and users. Indeed, the ability to understand the semantics of space and associate
semantic terms like “corridor” or “office” with spatial locations, gives a much more
intuitive idea of the position of the robot than pure metric or topological location.
If further extended with such semantic concepts as room shape, size and appearance
or presence of objects of certain types, the robot’s spatial knowledge representation
becomes much more meaningful from the point of view of the robot’s performance
on complex tasks and human interaction. Let’s take the example of a domestic
gopher robot, the task of which is to find objects. Clearly, such a robot could
greatly increase its performance by considering semantic types of rooms and their
correlation with the location of the searched object. Moreover, such a robot should
be able to communicate its internal state of knowledge using concepts known to the
operator to minimize training efforts. At the same time, the semantic information
can extend the capabilities of a robot in the traditional tasks of localization [107],
exploration [112], or navigation [65].

Despite the usefulness and importance of semantic spatial knowledge, this aspect
of spatial modeling has been left out by many of the previous works, mostly due to
its complexity. Producing real-time solutions extracting semantic information in a
robotic system is a challenging problem. In particular, realistic environments pose
challenges due to their dynamic character. Indoors, the appearance of places can
change due to human activity or influence of illumination. Additionally, single ob-
servations are usually not sufficiently informative and spatio-temporal information
fusion is required. Finally, most of the semantics can only be discovered through
visual sensing which tends to be noisy and difficult to interpret. For those reasons,
many of the previous works focused on such problems as pure localization and navi-
gation, and semantic knowledge has been included only in basic forms. At the same
time, the perception of semantics is greatly enhanced by the use and integration of
other information sources such as the general visual appearance, objects discovered
in the environment, topological connectivity or even human actions and dialogue.

To this end, this thesis focuses on providing a robot operating in a real-world
environment with a complete and efficient representation of space including seman-
tic information. The problem is constrained to man-made environments such as
homes or offices which will constitute the working space of many of the future ser-
vice robots [44] and as made by humans for humans are rich in human semantic
information. The representation is meant to support such typical human-like tasks
as retrieving objects, performing household chores or guiding visitors, all of which
require human interaction capabilities.
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More specifically, this work addresses the problem of semantic mapping, i.e.
creating a representation of the environment which grounds human spatial con-
cepts to instances of spatial entities. The problem is addressed holistically from the
point of view of systems and representations, starting from the level of topological
and metric maps, through place classification and building models associating con-
cepts with sensory information, up to the level of ontologies defining more abstract
concepts and their relations.

First, an extensible approach to place classification is introduced providing
models that link spatial concepts to sensory information originating from multiple
modalities such as vision and laser range data. The models can be incrementally
adapted to the dynamic changes in the environment and provide practical mea-
sures of confidence. Second, a complete systems and representational approach is
proposed to address the problem of semantic mapping. This system is capable of
incorporating semantic information extracted from such sources as the geometry
and general appearance of places, presence of objects, topology of the environment
and/or human input. Moreover, it is able to reason about spatial concepts and
infer new knowledge about the environment which cannot be directly observed.
Finally, the semantic mapping algorithm is built into an integrated robotic system
and shown to substantially enhance the performance of the robot on the problem
of active object search.

Thesis Outline

The rest of this thesis is structured as follows.

Chapter 2: Place Classification and Semantic Mapping

Chapter 2 discusses in detail the problems addressed in this thesis, the envisioned
scenario and the resulting challenges. Then, the contributions and proposed solu-
tions are roughly divided into four groups and briefly outlined.

Chapter 3: Related Work

Chapter 3 provides an overview of related work in the areas of place classification
and semantic mapping. Moreover, the approaches proposed in this thesis are placed
in context and compared to other works.

Chapter 4: Summary of the Papers

Chapter 4 introduces the reader to the papers included in the second part of the
thesis. First, an outline of each paper is given. Then, the contributions of the
author of the thesis are summarized.
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Chapter 5: Discussion

Part I concludes with a discussion of the presented solutions and lessons learned.
Moreover, the directions for future research stemming from the presented work are
proposed.

Part II: Included Papers

The second part of the thesis contains the included publications in the order sug-
gested in Chapter 4. The papers provide all the details about the proposed repre-
sentations, algorithms and systems.



Chapter 2

Place Classification and Semantic

Mapping

1 Problem Statement

The fundamental problem considered in this thesis is that of semantic mapping. In
order to provide a clear definition of the problem, a few words must be said about
the spatial semantics in general as seen in this work.

Spatial Semantics

In the view taken by this thesis, semantic information is expressed by the relations
between spatial entities and a set of predefined concepts. These concepts are meant
to be meaningful for humans and therefore are transferred to the robot either
by direct interaction with a human user or by analyzing available common-sense
knowledge databases such as Open Mind [32], ConceptNet [22], OpenCyc [34], or
WordNet [42]. Recently, Internet search engines (e.g. Google Image Search), social
networks (e.g. Facebook) and image repositories (e.g. Flicker) became a valuable
source of common-sense knowledge obtained directly from user generated content.

An important concept employed by humans in indoor spaces is that of a room
which can be loosely defined as a bounded area in the environment. Rooms tend
to share similar functionality as well as many other spatial properties. In most
cases, rooms are naturally categorized based on their functionality and can be
described in terms of discrete concepts such as “a kitchen” or “an office”. Rooms
can also be associated with other concepts describing their spatial properties. The
experiments presented in this thesis employ such properties as the shape of a room
(e.g. square or elongated), the size of a room (e.g. small or large, compared to
other typical rooms) or the general appearance of a room (e.g. corridor-like or
office-like appearance). However, more fine grained semantic descriptions are often
desired. Those can be associated with objects or landmarks in the environment.
One important landmark which facilitates segmentation of continuous space is a

9
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Figure 1: An example of a map augmented with semantic information.

door. Indeed, in the case of indoor environments, rooms are usually separated by
doors or other narrow openings.

Semantic Mapping

Given the view on semantics presented above, semantic mapping can be defined as
a process of building a representation of the environment which associates spatial
concepts with spatial entities. The outcome of semantic mapping should ideally be
a complete and efficient representation of the environment visited by the agent. The
efficiency in this case is defined by the performance of the agent on certain typical
tasks and the representation should not be decoupled from the tasks and treated
in isolation. Such representation should not only contain the semantic information,
but should explicitly represent the spatial entities to which the semantics is tied.
Additionally, it is assumed that the robot starts without any prior knowledge that
comes from actual observations of the environment in which it is to be operating.
Instead, it is equipped with a set of categorical and conceptual models acquired
either in other environments or from databases. An example of a map augmented
with semantic information is shown in Figure 1. In this work, the problem is
expanded by stating that knowledge should not only be derived directly from the
immediate sensory information but should also be inferred based on the whole
body of knowledge available. A typical example would be prediction of categories
of objects that might be present in yet unexplored rooms connected topologically
to a room for which evidence is available.

There are multiple sources of semantic information that the agent can exploit.
Semantic spatial knowledge can be provided directly by the user, for instance
through a situated dialogue. The topology of the environment itself can be a
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valuable cue for discovering semantic categories of rooms. A good example is a
corridor which is likely to be connecting many other rooms. We also mentioned
objects, landmarks and spatial properties of areas such as shape, size, or general
appearance. Perception of these requires robust models of sensory information such
as the visual models of object categories or models describing various shapes and
appearances of spatial regions. The object detection, recognition and categoriza-
tion problem is vastly researched in the computer vision community [101, 58, 66]
and multiple approaches to modeling object categories, each having different limi-
tations, are available both theoretically and as software implementations [33, 88].
This thesis is not concerned about building object or landmark models. Instead,
attention is given to the problem of designing models of geometry and appearance
of spatial regions for the purpose of place classification.

Place Classification

Place classification, can be characterized as a pattern recognition problem of assign-
ing a region in an environment to one of predefined classes based on multi-modal
sensory input and a set of models. In order to support the scenarios considered
in this thesis, we assume a supervised case (either by a human or an independent
sub-system). First, the models are built from a collection of labeled data samples
acquired in places belonging to the modeled classes. The models store intrinsic
visual and geometric properties of the classes. Then, the algorithm is presented
with data samples acquired in one of the same places or in a novel place belonging
to one of the modeled classes, possibly under different conditions. The goal is to
classify correctly as much of the sensory data samples as possible.

Place classification can further be subdivided into place recognition and place
categorization depending on the scenario. We talk about place recognition if the
models are tested on the sensory data collected in the same environment in which
the models were trained. Place recognition is mostly used as a solution for topo-
logical localization [122, 109, 52, 56] or together with traditional localization and
mapping algorithms for initialization (e.g. in case of the kidnapped robot prob-
lem) [108] and loop closing [93, 82]. This is different from the problem of place
categorization where the task is to classify test data captured in a novel, previ-
ously unseen place. In this case, the algorithms have to tackle additional challenges
resulting from the within-category variability. Place categorization models will
be employed as sub-components providing shape, size and appearance information
about places to the semantic mapping system. However, this thesis proposes and
evaluates a model which can be applied in a much broader context and to both
place categorization and recognition.

2 Scenario

This section gives an overview of the general scenario for which the proposed algo-
rithms were designed and in which they were evaluated. The primary assumption
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(a) Office environment (b) Home environment

Figure 2: Illustration of a typical scenario: a mobile robot platform performing
semantic mapping in office and home environments.

is that the environment in which the robot operates is unstructured and does not
contain any artificial markers or beacons. As the primary interest is the human
semantics, the environments were constrained to indoor spaces, such as offices or
homes, which are typical for the interaction between humans and robots [135].
In order to provide natural, real-world conditions, humans could be present and
performing typical actions during the experiments.

The considered scenario assumes a mobile robot platform performing typical
human assistance tasks. The platform is assumed to be equipped with a standard
set of robotic sensors, in particular a monocular camera and optimally a laser range
scanner. The fetch-and-carry task is used as a concrete application example. In this
case, the robot is sent to find objects in a large-scale indoor space, often without any
previous knowledge about that concrete part of the environment. Imagine the case
where a mobile courier robot is tasked with finding and fetching an object on a 15-
room office floor. It is unreasonable to assume that such a robot will receive timely
updates on the exact locations of every relevant object. At the same time, it would
be very inefficient to require the robot to scan the entire environment in search
for the object. In such case, semantic information indicating the functionality of
spatial regions and typical locations of objects belonging to certain categories (e.g.
plates are often found in kitchens) could be very valuable and could greatly improve
the performance of the robot.

From the point of view of the semantic mapping system, there is one more im-
portant element of the scenario. In the application mentioned above, the semantic
mapping or place classification sub-subsystem is integrated into a larger robotic ar-
chitecture. Therefore, the requirements and properties of other sub-systems should
influence the design of the spatial understanding component.
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3 Challenges

The considered scenario results in several challenges that semantic mapping and
place classification systems have to tackle. First, the proposed solutions must co-
exist with other components in an integrated system on a robot platform and work
in real-time. This is a strong constraint on the computational complexity of the
algorithms and their memory consumption. Additionally, the algorithms must deal
with uncertain perceptions and this uncertainty must be modeled and presented
to other components of an integrated robotic system such as a decision theoretic
planner.

Other challenges stem from the characteristics of the environment. Real-world
indoor environments are usually dynamic and their appearance changes over time.
For example, the appearance is affected by illumination changes. For a visual sen-
sor, the same room might look different during the day, during sunny weather, under
direct natural illumination, and at night with only artificial light turned on. The
perception of the environment is also influenced by short term (presence of people)
and long term (furniture moved around, objects being relocated etc.) human ac-
tivities. The models of sensory information must be robust to those variations and,
in case of categorization, must be able to generalize across multiple instances of
places belonging to the same category. Additionally, many indoor places cannot be
uniquely characterized by their geometry, or even general appearance, and integra-
tion of multiple types of information is required. As a result, most approaches that
work well for outdoor environments will perform poorly when applied indoors [103].

Another set of challenges arises due to the properties of the sensors employed.
The fact that the sensors have a limited field of view requires the algorithms to inter-
nally integrate information and deal with frequent occlusions. Moreover, viewpoint
variations cause the sensors to capture different aspects of the same place. Many
viewpoints in separation do not contain discriminative information (e.g. when the
robot is looking towards the wall) and the information that the robot gathers is
not evenly spread across the viewpoints.

The fact that so many different parameters influence the performance of a se-
mantic mapping or place classification system is another challenge itself, especially
burdensome at the design stage. As the results depend on the choice of training
and test input data, which in real environments would change over time, it is hard
to measure the influence of the different parameters on the overall performance of
the system. There is a need for realistic benchmarks and databases which would
allow for precise analysis and simplification of the experimental process.

4 Flexible and Extensible Multi-modal Place Classification

This thesis contributes a method for multi-modal place classification. The method
effectively utilizes information from different robotic sensors by fusing multiple vi-
sual cues and laser range data in order to combine the stability of geometrical
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solutions with the versatility and richness of vision. The method relies on discrimi-
native Support Vector Machine (SVM) [55] models of place classes known for their
superior generalization abilities. The models are built from different types of both
global and local visual features as well as a set of geometrical cues extracted from
range data. For the vision channel, either the Scale-invariant Feature Transform
(SIFT, [81]) or the Speeded Up Robust Features (SURF, [47]) local descriptors are
used, combined with the bag-of-words approach [62] for place categorization. The
Composed Receptive Fields Histograms (CRFH, [80]) are used as global visual fea-
tures. For the laser channel the simple geometrical features proposed in [89] are
applied. The resulting algorithm is capable of real-time and robust place recogni-
tion as well as categorization and was evaluated for both problems. It is robust
to different types of natural variations that occur for indoor environments due to
changing illumination and configuration of furniture and small objects.

Several extensions of the models are proposed that increase the robustness in
different situations. First, a confidence estimation algorithm is contributed which
provides a practical measure of confidence of the decision of the place classifica-
tion algorithm. The method is based on the distance of the test sample from the
SVM hyperplane and the average distance of each training class. Through experi-
ments, it is shown to increase robustness and reliability as well as efficiency in case
of multi-cue classification. Second, an algorithm that integrates various cues and
modalities is proposed which is based on the principle of high-level discriminative
accumulation. For each cue, a discriminative SVM classifier is trained which out-
puts a set of scores encoding confidence of the decision. Integration is then achieved
by either accumulating the scores linearly or feeding them to a Support Vector Ma-
chine (SVM, [55]). Such an approach allows to optimally combine cues, even
obtained using different types of models, with a complex, possibly non-linear func-
tion. Finally, in order to tackle the challenges arising on a mobile platform which
might observe the environment from many, often non-informative viewpoints, an
algorithm is provided performing spatio-temporal integration of evidence.

The thesis presents extensions of the models allowing for incremental learning
and adaptation. A SVM-based incremental method is designed which performs
like the batch algorithm while maintaining bounded complexity of the models, the
last one being an important feature for real-time robotic systems. The approach
is based on a combination of an approximate technique for incremental SVM [114]
with an exact method that reduces the number of support vectors needed to build
the decision function without any loss in performance [61]. The algorithm is ap-
plied in two scenarios: adaptation in presence of dynamic changes and transfer of
knowledge between autonomous agents. In the first scenario, the resulting system
is able to maintain performance of the models despite dynamic changes. In the
second scenario, we consider the case when a robot, proficient in solving the place
recognition task within a known environment, transfers its visual knowledge to an-
other robotic platform with different characteristics. In this case, the incremental
algorithm allows the receiver of the information to gradually adapt the transferred
representation to its own sensing.
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5 A Systems and Representational Approach to Semantic

Mapping

Aiming toward the goal of building a complete semantic mapping system, this work
first analyzes the problem of representing the whole body of spatial knowledge.
As a result, a structure of a layered spatial knowledge representation is proposed
which takes into account assumptions and requirements imposed by the considered
scenario and possible interactions between the representation and other components
of a robotic system.

The structure of the representation is shown in Figure 3. It consists of four
layers corresponding to different levels of abstraction, from low-level sensory input
to high-level conceptual symbols. The lowest level of the representation is the
sensory layer which maintains an accurate representation of the robot’s immediate
environment. Above this are the place and categorical layers. The place layer
discretizes continuous space into a finite number of places, plus paths between
them. As a result, the place layer represents the topology of the environment. The
categorical layer contains categorical models of the robot’s sensory information
such as object models or place classification models. On top of this, the conceptual
layer creates a unified representation relating sensed instance knowledge to general
conceptual knowledge.

The conceptual knowledge constitutes a crucial part of the representation. It
includes taxonomy of human-compatible spatial concepts which are linked to the
sensed instances of these concepts drawn from lower layers. It is the conceptual
layer which contains the information that kitchens commonly contain cereal boxes
and have certain general appearance and allows the robot to infer that the cornflakes
box in front of the robot makes it more likely that the current room is a kitchen. The
conceptual layer is described in terms of a probabilistic ontology defining spatial
concepts and linking those concepts to instances of spatial entities (see Figure 3).
Based on this design, a probabilistic graphical chain graph model is proposed as
a representation for performing inferences on the knowledge represented in the
conceptual layer. This results in an efficient approach to probabilistic modeling
and reasoning about conceptual knowledge.

Based on the principles included into the design of the representation, a com-
plete semantic mapping system is built which maintains it. An overview of the
components of the system is presented in Figure 4. The system incorporates the
conceptual reasoner and the place categorization sub-system as well as components
building representations of other aspects of spatial knowledge such as a SLAM al-
gorithm and object/landmark recognizers. It performs segmentation of space into
rooms based on detected doorways and narrow openings. Moreover, the system
implements a hierarchical structure decoupling the categorical models of sensory
information from the conceptual reasoning by introducing an intermediate level
of the so called properties of space. Those properties can represent the general
appearance of a room, its geometrical attributes such as shape or size or object
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Figure 3: The layered structure of the spatial knowledge representation. The posi-
tion of each layer within the representation corresponds to the level of abstraction
of the spatial knowledge. The conceptual layer illustrates part of the ontology
representing both instance and predefined world knowledge.
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Figure 4: A coarse overview of the elements and the data flow inside the semantic
mapping system.

presence. The universal character of the properties permits integration of semantic
information obtained from multiple sources such as topology, general appearance
and geometry, object information, human input, and potentially, human actions.

6 Implementation and Integration with a Robotic System

The semantic mapping system was implemented in a cognitive robotic software
architecture (CAST [70]). This facilitates integration with other components of a
robotic system and permits analysis of performance and usefulness of the semantic
mapping system on real tasks. This thesis presents a system in which the semantic
mapping is used together with active exploration and view planning components
as well as a switching planner. The planner automatically switches between using
decision-theoretic and classical AI planning procedures in order to create a system
capable of autonomous active visual search for objects in a large-scale environment.
In order to show the importance of semantic information for solving complex tasks,
the performance of the system employing the semantic mapping component is com-
pared to a simplified version which does not have access to semantic information.

7 Evaluation Data, Procedures and Results

In order to evaluate and analyze various properties of the proposed solutions thor-
oughly and in realistic settings, several datasets were collected. The datasets were
designed to capture the input that semantic mapping and place classification sys-
tems would receive when running on a mobile robot platform. The datasets were
collected in multiple office and home environments. Based on the datasets, several
benchmarks were proposed and released to the robotics and computer vision com-
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munities. Those benchmarks served as a basis for evaluation of performance and
analysis of properties of the proposed methods.

The first benchmark was proposed based on two different databases: the IN-
DECS (INDoor Environment under Changing conditionS) database and the IDOL
(Image Database for rObot Localization) database. In case of INDECS, images of
an office environment were captured from a fixed set of points using a standard
camera mounted on a tripod. The resolution of the images is high; this makes
this database suitable for context-based object recognition. The IDOL database,
instead, consists of image sequences recorded using two mobile robot platforms
equipped with perspective cameras, and thus is well suited for experiments with
robot localization. The databases represent a different approach to the problem
and can be used to analyze different properties of a place recognition system. The
acquisition was performed under several different illumination settings and over a
significant span of time. Six months after the acquisition of the IDOL database, an
extension referred to as IDOL2 was acquired. Together, IDOL and IDOL2 capture
significant long-term variations that occur in indoor environments and were used
for evaluating the adaptive place classification models.

In order to evaluate the systems in larger environments and permit experiments
with categorization, another database, COsy Localization Database (COLD), was
acquired in three different office environments across Europe. In each environment,
the acquisition was performed in several rooms of different functionality and short-
term dynamic changes caused by illumination were captured. Unfortunately, the
images were taken with low quality cameras. In order to increase the number of
categories and the image quality, the database was extended with a large dataset
COLD-Stockholm. The new dataset captures appearance and geometry of almost
50 rooms belonging to different semantic categories. This dataset was used during
the offline categorization experiments and to train the appearance and geometry
models of the semantic mapping system. Besides those databases, smaller datasets
were created for the purpose of specific experiments in both home and office envi-
ronments.



Chapter 3

Related Work

This sections provides an overview of the related work in the area of place classi-
fication and semantic mapping. Place classification is a vastly researched topic in
the computer vision and robotics community, usually considered as an independent
problem and employed in a variety of applications. In computer vision the problem
is often referred to as scene classification. Despite the fact that, in this work, place
classification is ultimately used as an intermediate step towards semantic mapping,
the proposed models also have much wider potential applications, often experimen-
tally demonstrated. Therefore, the work on place classification will first be analyzed
followed by the more general area of semantic mapping.

1 Place Classification

As previously mentioned, place classification can be divided into place recognition
and place categorization and several of the proposed approaches were used for both
problems. However, many of them, particularly in robotics, were focused on place
recognition and its typical application - topological localization. Table 1 compares
some of the approaches discussed below and maps them to keywords representing
properties of place classification algorithms.

Place Recognition

Even in the early days, due to its richness, vision was considered a solution for the
problem of place recognition. Already back in 1994, Kortenkamp & Weymouth [72]
proposed an approach to topological localization using vision as one of the sensors
and the concept of vision-based maps has been explored much earlier [49, 50]. Still,
some of the later approaches relied only on geometrical cues and laser range data.
Brunskill et al. [52] used a method based on simple geometrical features previously
proposed for place categorization [89] in the context of topological localization.
In this work, place recognition models were used to select one of the submaps
which were earlier identified by decomposing a map into separate segments using
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[52] X X X

[122] X X X X

[46] X X X X

[92] X X X

[123], [124] X X X X X

[74] X X X X X

[73] X X X X X X

[98] X X X X X

[56], [57] X X X X X X X

[86] X X X X X X

[116] X X X X X X X X

[109] X X X X X

[63] X X X X X X

[125] X X X X X X X

[106] X X X X X

[121] X X X X X X X

[130] X X X X

[62] X X X X

[104] X X X X

[79] X X X X

[133] X X X X X

[103] X X X X X X

[53] X X X X X

[89] X X X

[90] X X X X X X

[132] X X X X X X

[129] X X X X X

[105] X X X X X X X X X

This work X X X X X X X ⋆ X X X

Table 1: Properties of the discussed place classification approaches. The first part
of the table lists place recognition methods. The second part focuses on approaches
applied to place categorization. Finally, the properties of the proposed approach
are listed for comparison. (⋆) Objects are introduced to the semantic mapping
system and integrated with place categorization models on the conceptual level.
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spectral clustering. The model proposed in this thesis, was also evaluated for place
recognition based on similar features.

The early adopters of vision for topological localization in robotics relied mainly
on omnidirectional sensors. Ulrich & Nourbakhsh [122] proposed an appearance-
based method which relied on color histograms extracted from omnidirectional im-
ages and a nearest neighbor image retrieval system. In constrast, in [46], Artač et al.
implemented an incremental eigenspace model for representing the panoramic im-
ages captured at different locations in order to allow for incremental learning and
adaptation without the need to store all the input data. Later approaches employ-
ing omni-directional sensing focused on scalability and large-scale environments;
however, also preferring outdoor settings. Murillo & Košecká [92] presented an al-
gorithm using a global descriptor computed for portions of panoramic images and a
similarity measure for image matching. The method was tested on a large scale out-
door Street View dataset. Finally, in [123, 124] an incremental spectral clustering
algorithm was applied to segment continuous space into topological nodes and local
feature matching was used for localization. These clusters are defined by appear-
ance and the aim is to support localization rather than human robot interaction.
The clusters therefore have no obvious semantic meaning. The work focused on
robustness to seasonal changes in mixed large-scale indoor/outdoor environment.

Many solutions relied on perspective vision being a popular and easily avail-
able sensor. Košecká et al. [74] proposed models of places built by segmenting
temporally adjacent views based on a global appearance-based similarity measure
and using the resulting segments for qualitative topological localization. In later
work [73], local scale-invariant keypoints were used instead and spatial relationships
between locations were modeled using Hidden Markov Models (HMM). In [98], the
experimental setup presented in this thesis was used to evaluate place recognition
models built using online learning extension of Support Vector Machines (SVM) in
order to adapt to long-term appearance variations. As in case of the methods using
omnidirectional vision, several recent works focused on scalability in large outdoor
environments. Cummins & Newman [56, 57] proposed a probabilistic appearance-
based framework for SLAM evaluated on paths up to 1000km length. At the same
time, Milford & Wyeth [86] mapped a suburb with a SLAM system inspired by
computational models of the rodent hippocampus.

Most of the above mentioned approaches only one modality was used for the
recognition of places. However, several authors observed that robustness and effi-
ciency of the recognition system can be improved by combining information pro-
vided by vision and geometrical sensors. Kortenkamp & Weymouth [72] combined
vision with sonar sensing for topological localization. Also, Tapus & Siegwart [116]
combined omnidirectional vision with features extracted from laser range data to
build rotationally invariant descriptors, called fingerprints of places, identifying the
topological locations. Those were then used for incremental topological mapping.
In a similar spirit, several authors integrated multiple types of visual features in or-
der to increase performance. In [109], the use of global and local visual features was
motivated by the studies of human visual capabilities and a biologically-inspired
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vision system was built for computing the gist of a scene and salient local regions.
Those, in turn, were integrated into a Monte-Carlo localization system evaluated
in an outdoor environment. At the same time, Filliat [63] proposed an algorithm
for global localization in an indoor environment based on bag-of-words represen-
tation of scale-invariant local key-points and texture and color information which
is able to incrementally learn the appearance of the environment based on interac-
tion with a human.

A different take to the place recognition problem was offered by Vasudevan
et al. [125] and Ranganathan & Dellaert [106]. In both cases objects detected in
the environment were used as cues for place recognition. In [106], a constellation
object model is extended to 3D and built in a coordinate frame local to the place.
The observed constellation was then matched to the place models for place recogni-
tion. In [125], hierarchical probabilistic representation of space is proposed that is
composed of places which are connected to each other through doors and are rep-
resented by local probabilistic object graphs. In contrast to [106], each object was
first independently detected and used to update the hypothesis about the current
location. In both cases, the object models were learned in a supervised manner.

Place Categorization

The problem of place categorization based on visual information was first addressed
in the computer vision community. In this case, the research focused mainly on the
problem of classifying single images captured in indoor or outdoor environments
(scene classification). At the same time, robotics researchers initially employed
the 2D laser range sensor being much more robust to variations occurring in the
environment and much easier to handle computationally in real time.

In computer vision one of the first works to address the problem of place catego-
rization was by Torralba et al. [121, 120] which employed an image representation
called the gist of the scene [97], which is a vector of principal components of out-
puts of a bank of spatially organized filters applied to the image. The approach
was tested in the context of both recognition and categorization, both indoors and
outdoors, and used a HMM to fuse information over time and space. One of the
key insights in that work is that the context is very important for recognition and
categorization of both places and objects and that these processes are intimately
connected. In [130], the problem of grouping images into semantic categories is
addressed. It is pointed out that many natural scenes are ambiguous and the per-
formance of the system is often quite subjective. They argue that typicality is a key
measure to use in achieving meaningful categorizations. Each cue used in the cate-
gorization should be assigned a typicality measure to express the uncertainty in the
categorization. The system is evaluated in natural outdoor scenes. In [62] another
method is presented for categorization of outdoors scenes based on the distribution
of codewords in each scene category obtained by clustering local interest point de-
scriptors. A similar approach was used by Quelhas et al. [104] which also relies on
the bag-of-words representation and studies analogies between scene classification
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based on visual words and text documents classification. In [62] a Bayesian hier-
archical model was employed, while [104] used SVM for performing classification.
Lazebnik et al. [79] extends the bag-of-words paradigm by introducing a spatial
pyramid encoding approximate global geometric correspondence between local fea-
tures. The approach is evaluated on the Caltech-101 database and the work reports
increased performance compared to the orderless approach. In [133] a a new global
image descriptor, PACT, is presented and shown to give superior results on the
datasets used in [121, 62] when combined with an SVM classifier. Finally, Quattoni
& Torralba [103], extend the previous work in [121] by combining the global gist
descriptor with local features. The method is evaluated on a large database of 67
indoor scene categories.

In robotics, the early systems for place categorization relied on omnidirectional
laser range data for extracting simple semantic descriptions. In their work, Buschka
& Saffiotti [53] partitioned grid maps of indoor environments into two different
classes of open spaces, i.e. rooms and corridors. The division of the open spaces
was done incrementally on local submaps. Mozos et al. [89] applied boosting to cre-
ate a classifier based on a set of geometrical features extracted from range data to
classify different places in indoor environments into rooms, corridors and doorways.
A similar idea was used in [119] to describe regions from laser readings. In [90],
the work by Mozos et al. was extended to also incorporate visual information in
the form of object detections. Furthermore, this work also added a HMM on top
of the point-wise classifications to incorporate information about the connectivity
of space and make use of information such as offices are typically connected to
corridors. Viswanathan et al. [129] adopted a purely object-based approach and
performed automated learning of object-place relations and visual object models
from the online LabelMe database. In [132] the work from [133] is extended with
a new image descriptor, CENTRIS, and a focus on visual place categorization in
indoor environment for robotics. A Bayesian filtering scheme is added on top of the
frame based categorization to increase robustness and give a more smooth category
estimate. Recently, Ranganathan [105] addressed the problem of place categoriza-
tion in a different and novel way. The problem was cast in a fully probabilistic
framework which operates on sequences of images rather than individual images.
The method uses change point detection to detect abrupt changes in the statistical
properties of the data. A Rao-Blackwellized particle filter implementation is pre-
sented for the Bayesian change point detection. All information deemed to belong
to the same segment can then be used to estimate the category for that segment
using a bag-of-words technique.

Properties

Table 1 compares the place classification approaches in terms of their key properties.
The first important difference is the problem to which the approach was applied i.e.
recognition or categorization. Despite that several of the methods are capable of
performing both, many of the place recognition approaches are specifically designed
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for topological localization and utilize a set of techniques and heuristics useful
only in this scenario. In particular, methods focusing on large-scale datasets such
as [86, 56] specialize towards localization in order to achieve high efficiency and
scalability. Compared to those, the model presented in this work is much less
scalable when applied to the topological mapping problem; however, it can be
directly applied to place categorization and learn human spatial concepts. Another
important scenario-related distinction results from the type of the environment for
which the problem is designed. It is not obvious that a method performing well
in an outdoor environment will perform equally well indoors [103]. The model
presented here was evaluated indoors according to the primary scenario outlined in
the previous chapter.

The approaches differ mostly with respect to the way the environment is per-
ceived, and thus the sensory modalities employed and the method used to extract
characteristic features of the scene. Purely geometric solutions based mostly on
laser range data have proven to be successful for certain tasks [53, 52, 89]. Yet,
the inability to capture many aspects of complex realistic environments leads to
the problem of perceptual aliasing [77] and greatly limits the usefulness of purely
geometrical methods. This inspired many researchers to turn towards vision which
nowadays is tractable in real-time applications. The available methods employed
either perspective or omnidirectional cameras. One of the requirements in this work
was to use non-omnidirectional sensors which are commonly used on service robots
and require being robust to partial observations and occlusions which will occur if
the robot is deployed among humans.

Different types of cues were used to represent visual information. Landmark-
based techniques make use of either artificial or natural landmarks in order to
extract information about a place. In [83, 113] information signs are used as a
source of spatial information. [125, 106, 90, 129] rely on objects detected in the
environment. In those cases object models are trained beforehand in a supervised
fashion. Visually distinctive image regions were also used as landmarks [109]. Other
solutions employed mainly local image features such as SIFT [81, 45, 73, 62, 98,
104, 105], SURF [47, 91, 63, 123, 124, 56, 57], also using the bag-of-words approach
[62, 63, 64, 104, 56, 57, 105], or other representation based on information extracted
from local patches [115, 62, 79, 63]. Global features are also commonly used for
place recognition. Torralba et al. [121, 120, 103] used the gist of the scene. Sim-
ilar approach has been adopted by others [109, 92]. Other approaches use color
histograms [122], gradient orientation histograms [74], eigenspace representation of
images [46], Composed Receptive Field Histograms (CRFH) [80, 98], representa-
tions obtained using the Census Transform (CT) [133, 132] or a scanline intensity
profile [86].

Several works combined vision with geometrical sensors [116, 90]. Others, used a
combination of global and local visual features to increase performance and robust-
ness [109, 63, 103]. The place classification approach presented in this thesis seems
to be unique in that it integrates multiple visual cues with geometrical information
extracted from laser range data, only when it is likely to increase performance,
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which thus also improves efficiency. The cue integration technique fuses cues on a
high-level after discriminative classification which has been shown to achieve bet-
ter performances than probabilistic approaches [95]. Moreover, object information
is also used in the final semantic mapping system and is integrated with place
categorization models on the conceptual level.

An important property of a place classification system is the ability to estimate
the confidence of its own decision. Therefore, many systems provide some practical
measure of confidence. In most cases, this is based on the similarity of a query
image to the training images and implemented in terms of nearest neighbor models
or other non-parametric approaches [122, 92, 74, 73, 63, 123] while other methods
use probabilistic models [56, 57, 105]. The advantage of generative probabilistic
models is that it is possible to estimate how novel the observation is i.e. how likely
it is that the observation does not belong to any of the place classes available during
training. In the context of place categorization, the only work that implements
that functionality is [105]. In order to provide good generalization, especially in
presence of the large within-category variability, in this thesis a discriminative SVM
classifier is used. SVMs do not provide an out-of-the-box solution for the confidence
estimation problem. Therefore, a practical method based on the distance to the
SVM hyperplane is designed and when applied yielding good results.

In many of the works, especially when non-omnidirectional sensors are used, the
authors observed that the ability to fuse observations over time and space is crucial
for robust operation. Several works applied techniques known from the metric
localization domain e.g. particle filters [109, 105] or other Bayesian filters [132].
Others employed graphical models such as HMM [121, 73, 90]. In this work, we
use a two step approach. First a technique performing evidence accumulation over
time and space is used for evidence gathering inside places. Then, in the semantic
mapping system, information is fused across places and combined with typical room
connectivity information by a chain graph [78], i.e. a probabilistic graphical model.

Finally, several methods applied to place recognition and topological mapping
build their representations in an incremental fashion and allow updating and adap-
tation of the place models [46, 123, 124, 98, 56, 57, 86, 116, 63, 125]. In case of
place categorization, this feature is not common and only [105] provides a way to
build the representation online. This work shows how the presented discrimina-
tive model can be extended to allow for incremental learning and adaptation to
long-term environment variations.

2 Semantic Mapping

The semantic mapping problem has only recently received significant attention and
several systems were proposed within the last 5 years. As shown above, there ex-
ists a broad literature on mobile robot localization, mapping, navigation and place
classification. Every such algorithm maintains a representation of spatial knowl-
edge. However, this representation is usually specific to the particular problem
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Figure 1: The spatial and semantic information hierarchies. On the left, spatial
information gathered by the robot sensors. On the right, semantic information that
models concepts and relations between them. Anchoring is used to establish the
links between the two hierarchies (solid lines). Additional links can then be inferred
by symbolic reasoning (dotted line). Reproduced from [65].

and designed to be efficient within the single mapping system detached from any
other interacting components. Other, more general concepts, such as the Spatial
Semantic Hierarchy [76] concentrate on lower levels of spatial knowledge abstraction
and do not support higher-level conceptualization or representation of categorical
information.

One of the first systems that was able to build a representation from both spatial
and semantic perspective was proposed by Galindo et al. [65]. In their system, two
hierarchies are maintained, spatial and semantic which are interrelated through the
concept of anchoring (see Figure 1). The spatial hierarchy contains simple sensory
data like camera images or local grid maps as well as the topology of the environ-
ment. The conceptual hierarchy represents concepts and their relations modeled by
employing standard AI languages. This permits the robot to do inferences about
symbols e.g. infer the room category based on detected objects as well as the pres-
ence of typical objects based on room category. However, the representation does
not contain the uncertainties about the instances. Objects are the only source of
semantic information in the system and the semantic hierarchy is built manually.
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Figure 2: Overview of the components of the system presented in [135] as well as
the four layers of the conceptual spatial representation divided into two groups:
mapping (metric, navigation, topological) and reasoning (conceptual). Reproduced
from [135].

In order to identify discrete spatial entities, a grid map segmentation algorithm
is used to detect open spaces. Finally, an AI planner is used together with the
representation to actively resolve ambiguities in the room categorization.

Zender et al. [135] proposed a system that is similar in spirit but with some
extensions. The authors design a representation composed of layers representing
maps at different levels of abstraction: metric, navigation, topological, and concep-
tual divided into two groups: mapping (first 3 layers) and reasoning (last layer). In
that sense, their approach is similar to [65] and the spatial and semantic hierarchies.
The conceptual layer contains an innate conceptual ontology that defines categories
for rooms and objects and how they are related. Also, the information extracted
from sensors and given through situated dialogue is represented as instances of
concepts. The conceptual knowledge is encoded in an OWL-DL ontology and a
description-logic reasoner is used to infer new knowledge about the world that is
neither given verbally nor actively perceived. As in case of [65], uncertainty is not
represented at the conceptual level and the ontology is provided manually. What is
new in this work is the inclusion of place classification models by Mozos et al. [89]
for the purpose of distinguishing rooms from corridors. Additionally, door detection
is used in order to segment space into rooms. The system is integrated in a mobile
robot endowed with laser and vision sensors for place and object recognition. The
system also incorporates a linguistic framework that supports the map acquisition
process. Overview of the system presented in Figure 2.
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Vasudevan & Siegwart [126] focus again on purely object-based semantic map-
ping, but make their representation of the world fully probabilistic. The approach
is based on a generative model of place categories based on a Naive Bayesian Clas-
sifier. These objects detected in the environment are grouped into spatial and
semantic abstractions. The robot then uses the semantic groups as concepts and
assigns them to places identified by spatial object groups. The concepts arise during
the training process and are extracted from input training data. During testing,
the detected objects are used to segment space. The approach is feed-forward i.e.
the object information is used to classify places; however, knowledge about place
categories is not used to infer presence of objects.

In [84], Meger et al. focus on the autonomous detection and perception of objects
and augmenting spatial metric maps with object information. Their system is
much more advanced, compared to the previously described, in terms of the vision
subsystem. The system uses a peripheral-foveal vision and an attention system
combining bottom-up visual saliency with structure from stereo. This is integrated
with FastSLAM for localization and mapping. The object models are trained on
image data collected by submitting text-based queries to internet image search
engines. The system is capable of autonomous exploration and object search and
was demonstrated during the Semantic Robot Vision Challenge [39]. The work by
Viswanathan et al. [128] can be seen as an attempt to provide similar functionality
as in [84] in an more robust and autonomous way. The paper presents a semantic
mapping system able to annotate places with semantic labels based on the object
information. For this purpose, a Bayesian model of place categories is built based on
object occurrence frequencies for various semantic place categories learned from an
online annotated database. Then, these models together with spatial information
are used to cluster the space into discrete places. The resulting representation is
used in to infer typical object locations and perform an informed search for objects.

Another approach for augmenting spatial maps with object-based semantic in-
formation was proposed by Nüchter & Hertzberg [96]. In contrast to all the previ-
ously described approaches, the objects were detected from a 3D representation of
the world built using a 6D SLAM algorithm from laser range data. The system first
analyzes the obtained point-cloud map and identifies coarse scene features such as
walls or floors. Then objects are detected by a trained classifier and projected back
on to the map. The resulting representation is meant to be visualized for human
inspection.

A completely different approach was taken by Nieto-Granda et al. [94]. The
aim of this work is to assign semantic labels obtained from human augmented
mapping directly to the metric space. This is a different approach than that of
Topp & Christensen [119] in case of which the space is segmented into regions. The
semantic layer is a multivariate probability distribution on the coordinates of our
metric map. This multivariate distribution is modeled as a Gaussian model and
each of the Gaussians is based on the robot’s sensor data when it was provided a
label by a human guide. The semantic information can then be expanded to cover
the entire metric map.
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Finally, there is a number of works devoted to semantic mapping of outdoor
environments. Since, many of the approaches can also be relevant in case of indoor
spaces, they are reviewed below for completeness. Posner et al. [102] presents a
system for augmenting the representation of outdoor space with semantic labels.
A supervised learning scheme is employed to train a set of classifiers to respond to
common scene attributes given a mixture of geometric and visual scene information
obtained using a 3D laser scanner and a camera. A set of SVM classifiers is used,
each specialized to detect a certain type of semantic attribute like pavement, tar-
mac, bush. The SVM models are trained on hand-labeled data. A similar problem
was approached by Douillard et al. [60] with a focus on objects. The authors tried
to classify objects in urban environments based on laser and vision data and used
the classification results to augment metric maps. The novelty in this case results
from the applied technique. The system extracts visual features from color images
and shape features from 2D laser scans. From those, a probabilistic model exploit-
ing spatial and temporal dependencies is created based on Conditional Random
Fields (CRF) which can be trained from partially labeled data. Finally, Persson
et al. [100] describe a method for automatic classification of outdoor scenes captured
with omnidirectional vision into two classes: nature or buildings. The classification
is performed using AdaBoost and the results are used to annotate a grid map of
the environment with the semantic information.

Table 2 compares the properties of the discussed semantic mapping approaches.
Out of the above mentioned methods designed for semantic mapping of indoor
environments, none uses topology of the environment as a source of semantic in-
formation. Furthermore, those only two that use general appearance of places as
semantic information, only do so for outdoor settings. This is surprising given the
large body of work on appearance-based place categorization. Two methods, [135]
and [96] make use of geometric place information extracted from laser range sen-
sors, and only [135] applies a previously developed place classification technique
for this purpose. In [135], semantic cues can be obtained by a situated dialogue
with a user and [94] build maps augmented with semantic symbols purely from
human input. Almost every method is focused primarily on using objects for ex-
tracting spatial semantics [65, 135, 126, 84, 128, 96]. Objects clearly carry a lot
of semantic information; however, they are also sparse and reliable object catego-
rization in real-world environments is still a major open challenge. At the same
time, valuable semantic cues are also encoded in geometry, general appearance and
topology and robust methods for extracting that information have been proposed,
including the approach presented in this thesis. The inability to fuse together all
the sources of information is likely a result of the different character of the different
inputs. In this work, we present a system able to combine all the aforementioned
sources of semantic information: general appearance and geometry of places, ob-
ject information, topological structure and human input. This is made possible by
creating a hierarchical, property-based system in which all sources of information
contribute to various properties of space which are then fused seamlessly on the
conceptual level.
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[65] X X X X X X

[135] X X X X X X X

[126] X X X X X

[84] X X X

[128] X X X X X X X

[96] X X X

[94] X X X

[102] X X

[60] X

[100] X

This work X X X X X X X X X X X X

Table 2: Properties of the discussed semantic mapping systems compared to the
proposed approach.

The conceptual map in our system is also a unique feature. The most com-
prehensive relevant representations has been proposed in [65] and [135]. Both ap-
proaches encode an ontology of an indoor environment. However, those ontologies
are built manually and use traditional AI reasoning techniques which are unable
to incorporate uncertainty that is inherently connected with semantic information
obtained through robot sensors in realistic environments. In contrast, we imple-
ment a probabilistic ontology and a probabilistic inference engine incorporating
uncertainty in definitions of concepts and their links to instances of spatial entities.
Moreover, the values of all properties for which direct evidence is not available can
be inferred based on all the available semantic information. Additionally, as in
case of [126] and [128] the concept definitions are built automatically from online
databases and floor plans obtained from robotics datasets. Finally, the semantic
mapping is combined with AI planning components resulting in a system able to
actively search for objects in a similar fashion to [128].



Chapter 4

Summary of the Papers

In this section the included papers are summarized and briefly discussed. First, an
outline of each paper is presented followed by an overview of the contributions of
the author of the thesis. Additionally, Table 1 groups the included papers as well
as the other papers co-authored by the author according to keywords relevant to
the problem considered in this work. The relation of each paper to other works,
including works by the author of the thesis, as well as the impact on the respective
fields are discussed inside the papers.

1 Paper A: Single-cue Place Recognition

1.1 Outline of the Paper

This paper presents two carefully designed and annotated image databases aug-
mented with an experimental procedure and extensive baseline evaluation. The
databases were gathered in an uncontrolled indoor office environment using two
mobile robots and a standard camera. The acquisition spanned across a time range
of several months and different illumination and weather conditions. Thus, the
databases are very well suited for evaluating the robustness of algorithms with re-
spect to a broad range of variations, often occurring in real-world settings. We
thoroughly assessed the databases with a purely appearance-based place recogni-
tion method based on Support Vector Machines and two types of rich visual features
(global and local).

1.2 Contribution by the Author

Acquired the databases used for evaluating the visual place recognition algorithms
in the paper. Designed a benchmark for visual place recognition. Built a visual
place recognition system based on global and local visual features. Performed the
evaluation of the system on two different databases.

31
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[A] X X

[B] X X X

[C] X X X

[D] X X X X X

[E] X

[F] X X X X X X X

[G] X X X X

[1] X X

[2] X X

[3] X X X

[4] X X X X

[5] X X X

[6]
[7] X

[8] X

[9] X

[10] X

[11] X

[12] X

[13] X X X

[14] X X X X X X X

[15] X

[16] X X X

[17] X

[18] X X

Table 1: The papers co-authored by the author of the thesis grouped according to
keywords relevant to the problem considered in this work.
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2 Paper B: Incremental Learning and Knowledge Transfer

2.1 Outline of the Paper

This paper presents an SVM-based algorithm, capable of learning representations
incrementally while maintaining memory requirements. We combine an incremental
extension of SVMs with a method reducing the number of support vectors needed to
build the decision function without any loss in performance introducing a parameter
which permits a user-set trade-off between performance and memory. The resulting
algorithm is able to achieve the same recognition results as the original incremental
method while reducing the memory growth. Our method is especially suited for
autonomous systems in realistic settings. We present experiments on two common
scenarios in this domain: adaptation in presence of dynamic changes and transfer of
knowledge between two different autonomous agents, focusing in both cases on the
problem of visual place recognition applied to mobile robot topological localization.

2.2 Contribution by the Author

Acquired the database used for experiments in the paper. Designed and imple-
mented the memory-controlled incremental SVM algorithm. Performed a part of
the evaluation of the algorithm on the place classification databases. Helped with
the design and implementation of the knowledge transfer algorithm.

3 Paper C: Confidence Estimation and Cue Integration

3.1 Outline of the Paper

This paper presents a recognition algorithm able to measure its own level of con-
fidence and, in case of uncertainty, to seek for extra information so to increase its
own knowledge and ultimately achieve better performance. We focus on the vi-
sual place recognition problem for topological localization, and we take an SVM
approach. We propose a new method for measuring the confidence level of the
classification output, based on the distance of a test image to the average distance
of training vectors. This method is combined with a discriminative accumulation
scheme for cue integration. We show with extensive experiments that the resulting
algorithm achieves better performances for two visual cues than the classic single
cue SVM on the same task, while minimising the computational load. More im-
portant, our method provides a reliable measure of the level of confidence of the
decision.

3.2 Contribution by the Author

Researched several approaches to confidence information extraction for Support
Vector Machines. Combined the confidence estimation approaches with discrimi-
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native cue integration and performed an evaluation of the resulting algorithm in
the context of visual place recognition.

4 Paper D: Multi-modal Place Classification for Semantic

Mapping

4.1 Outline of the Paper

In this paper we present a multi-modal place classification system that allows a
mobile robot to identify places and recognize semantic categories in an indoor envi-
ronment. The system effectively utilizes information from different robotic sensors
by fusing multiple visual cues with laser range data. This is achieved using a high-
level cue integration scheme based on a Support Vector Machine that learns how
to optimally combine and weight each cue. Our multi-modal place classification
approach can be used to obtain a real-time semantic space labeling system which
integrates information over time and space. We perform an extensive experimen-
tal evaluation of the method for two different platforms and environments, on a
realistic off-line database and in a live experiment on an autonomous robot.

4.2 Contribution by the Author

Designed and implemented the multi-modal place classification system. Researched
various cue integration techniques and proposed a modified discriminative cue ac-
cumulation scheme. Performed an extensive experimental evaluation of the place
classification system. Built a semantic mapping system based on the place clas-
sification models. Finally, evaluated the system in real-time on a mobile robot
platform.

5 Paper E: Spatial Knowledge Representation

5.1 Outline of the Paper

In this paper, we carefully analyze the problem and design a spatial knowledge
representation for a cognitive mobile system. Our representation is layered and
represents knowledge at different levels of abstraction. It deals with complex, cross-
modal, spatial knowledge that is inherently uncertain and dynamic. Furthermore,
it incorporates discrete symbols that facilitate communication with the user and
components of a cognitive system. We present the structure of the representation
and propose concrete instantiations.

5.2 Contribution by the Author

Specified the principles behind the spatial knowledge representation. Designed the
general theoretical structure of the representation.
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6 Paper F: Combining Conceptual Knowledge, Objects,

Appearance, Geometry and Topology for Semantic

Mapping

6.1 Outline of the Paper

In this paper, we present a multi-layered semantic mapping algorithm able to com-
bine information about the existence of objects in the environment with knowledge
about the topology and semantic properties of space such as room size, shape and
general appearance. We use it to infer semantic categories of rooms and predict
existence of objects and values of other spatial properties. We perform extensive
experiments offline and online on a mobile robot demonstrating the efficiency and
usefulness of our system.

6.2 Contribution by the Author

Acquired the COLD-Stockholm database being used for the experimental evalua-
tion of the approach. Implemented and tested the categorical models of sensory
information providing basis for the spatial properties. Designed the spatial knowl-
edge representation, the ontology behind the conceptual map and its chain-graph
inference model. Designed and implemented the property-based semantic map-
ping system. Finally, performed online experimental evaluation of the system on a
mobile robot.

7 Paper G: Semantic Mapping for Efficient Behaviour of

Integrated Robotic Systems

7.1 Outline of the Paper

In this work we present a robot system that combines common-sense knowledge
about the structure of the world with probabilistic modeling of the uncertainty
and demonstrate improvements in efficiency and reliability. Our first contribution
is a probabilistic relational model integrating common-sense knowledge about the
world in general, with observations of a particular environment. Our second contri-
bution is a switching planning system which is able to plan on the large problems
posed by that model, by automatically switching between decision-theoretic and
classical procedures. We evaluate our system on object search tasks in two dif-
ferent real-world indoor environments. By reasoning about the trade-offs between
possible courses of action with different informational effects, and exploiting the
cues and general structures of those environments, our robot is able to consistently
demonstrate efficient and reliable goal-directed behavior.
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7.2 Contribution by the Author

Designed and implemented the conceptual map and the semantic mapping algo-
rithm. Integrated the semantic mapping algorithm with other components of the
cognitive system. Finally, performed online experiments in the office environment
evaluating properties of the integrated system.



Chapter 5

Discussion and Conclusions

This thesis explored the problem of enabling mobile robots with the ability to un-
derstand human environments. Several methods have been proposed for extraction
of semantic information from robotic sensors, modeling spatial concepts and finally
building semantic maps. The methods were experimentally evaluated on realistic
offline datasets as well as in real-time on mobile robot platforms. Those evalua-
tions showed that semantic spatial understanding is within our grasp and is getting
ready to be deployed outside research environments. Moreover, several important
scientific questions have been posed and addressed in the course of this work.

Firstly, it was shown that useful models of place instances and place categories
can be constructed from the general appearance of the environment as well as its
geometry measured through laser range sensors. Those models can be made robust
to most typical variations that occur in indoor environments such as illumination
changes and variations caused by human intervention. In case of place recognition,
the models were shown to perform topological localization with high precision, al-
though in relatively small environments compared to the more recent techniques
developed for large-scale outdoor spaces [56, 57, 86]. In the context of place cate-
gorization, it was shown that assuming a certain level of within-category variability
that occurs within a single multi-storey building, the methods can be robust and
provide important spatial semantic concepts.

Secondly, confidence measures for the place classification models have been pro-
posed and thoroughly evaluated. It was shown that confidence measures have
important practical value for increasing robustness of the system as well as its ef-
ficiency in case of multi-cue models. Indeed, in many real-world applications it is
more desirable to refrain from action because of a self-recognized lack of confidence,
rather than take a hard decision which might result in a costly error. When com-
bined with a cue integration scheme, confidence estimation can be used to decide
about acquisition and processing of additional cues only if it is required to im-
prove the confidence of the system. This results in an improved efficiency without
compromising the overall performance.

Furthermore, this thesis studied the problem of cue integration and sensor fusion

37



38 CHAPTER 5. DISCUSSION AND CONCLUSIONS

and proposed a method for cue accumulation from multiple sensors applicable to
the place classification model. Through extensive experiments, it was shown that
robustness of the system can be increased if multiple cues extracted from the same
modality (in this case global and local visual features) are integrated. Also, larger
performance gain can be obtained if the cues come from different sensors having
different characteristics. In this work, the most robust solution was obtained when
rich visual cues were combined with illumination invariant geometrical features
extracted from laser range data.

As another way of solving the long-term dynamic variations problem, this thesis
advocated the use of incremental and adaptive systems. An incremental extension
to the SVM discriminative classifier was proposed and applied to the place recog-
nition problem. The method was shown to achieve recognition performances sta-
tistically equivalent to those of the batch algorithm, while obtaining a substantial
memory reduction. Moreover, in case a limit is set on the size of the model, the
method tends to forget the oldest information making it suitable for adaptation to
changing conditions. It was experimentally validated that an adaptive place recog-
nition model can greatly improve its performance by tracking the dynamic changes.
The algorithm was also applied to the problem of knowledge transfer between two
robotic platforms. In this case, the incremental learning algorithm allowed the
receiver of the information to gradually adapt the model to its own sensing.

In order to perform experimental evaluations of the proposed solutions in con-
trolled, yet realistic, settings, several databases were collected including: INDECS,
IDOL, IDOL2, COLD and its recent extension COLD-Stockholm. The offline eval-
uations were then compared to online experiments. The robot achieved comparable
performance to that obtained offline. This suggests that the proposed databases and
benchmarks based on them are indeed realistic. At the same time, using databases
permitted thorough analysis of properties of the methods and their fair comparison.

This thesis expressed a belief that objects play an important role in under-
standing of space, as does spatial topology. However, as shown by the review of
related works, no principled method previously existed for fusing different sources
of semantic information such as objects, general appearance and geometry into one
comprehensive representation. The property-based paradigm proposed in this work
provided a seamless way of integrating objects with place categorization. Moreover,
it was shown that the topology itself can be a strong cue for room categorization,
especially in case of such rooms as a corridor which is likely to be connecting other
rooms. Combination of all sources of knowledge inside the conceptual inference
framework resulted in a reliable place categorization technique.

Another advantage with the property based system is that it permitted training
of the concept definitions independently from the models of sensory information.
As a result, it became possible to train the system with data from common sense
knowledge databases or crawling the internet for information about typical topolo-
gies and objects-room relations. The experiments showed that those can be valuable
source of conceptual information, and through the abstraction provided by place
classification and object models, useful in practice in realistic environments.
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One of the important characteristics of the presented method is the ability to
represent the conceptual knowledge in a probabilistic framework. This turned out
to be particularly important in integrated systems. When the semantic mapping
system was integrated with a planning and execution monitoring component, the
uncertainty presented to the planner allowed for much more efficient behavior. For
example, the planning component could trade the room exploration cost with the
likelihood of finding a particular object in a specific room. Finally, the importance
of semantic knowledge for behavior planning was shown by the experiments with
the active visual object search system. The system was run with and without the
possibility to use the results of semantic mapping and the time required for finding
the object was measured. It became clear that the search behavior becomes much
more efficient if the objects are searched in their canonical positions inferred by the
semantic mapping system.

As final words, it is important to say that despite this thesis being concerned
with the use of semantic mapping system on mobile robot platforms, there are
multiple other applications which could benefit from the availability of semantic
information. Those include wearable devices in contexts such as assistance of elderly
and disabled people. Such devices could provide information about the presence
of objects, the typical actions that should be performed and could monitor the
behavior of a person by comparing it to the typical behavior. Moreover, in the era
of ubiquitous mobile devices equipped with substantial computational units and
multiple sensors, we can think about the presented system running in our pockets
and extending our experience of localization services or social networks. Surely,
the future will bring many new exciting scenarios and applications for artificial
intelligent systems understanding and exploiting spatial semantics.

Future Work

The presented work can be extended in many directions and several possible direc-
tions for future research are outlined briefly below.

3D sensing Recently, cheap RGB-D sensors became broadly available providing
depth information fused with the visual input. This inspired many researchers to
introduce 3D information into their approaches. The place classification technique
presented in this work could benefit from introducing depth information and in-
tegrating it with the appearance models. Moreover, the geometrical information,
so far provided by expensive laser range sensors could instead be computed from
RGB-D sensing.

Online learning of place models An incremental adaptive model of places was
presented in this work. However, optimally, the models should be updated not in
batches, but online and in real time. At the same time, the complexity of the
models must be controlled. The future work will address this issue.
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Novelty detection and learning of novel concepts The probabilistic gen-
erative model of the conceptual information opens new possibilities in terms of
automatic detection and learning of novel concepts. In future, the approach should
be extended with the ability to identify gaps in spatial and semantic knowledge and
perform learning of new concepts.

Using properties for space segmentation Currently, the doors and narrow
openings detected in the environment are used as the only cue for segmentation of
space into rooms. However, the conceptual map already assigns spatial properties
to distinct places in the environment identified in an unsupervised fashion. This
semantic information associated with places should be used for more informative
and robust room segmentation and detected doorways should be fused with other
spatial properties.

Life-long learning and autonomy Finally, the future work will investigate the
use of the system on a mobile platform operating uninterruptedly over long periods
of time. This will create opportunities for the system to update its representation
gradually to changing conditions in an unsupervised or semi-supervised fashion.
This should provide a setting to study many problems currently addressed by ex-
tensive offline training or generalization abilities of the learning algorithms. More-
over, the concept definitions currently generated based on common sense knowledge
databases could be used only for bootstrapping and the robot could update or ex-
tend those definitions based on its own experience. Lastly, many properties of space
related to its functionality only become apparent after long-term observations. A
robot operating with humans in an indoor environment could learn to link actions
to room categories and objects. Life-long learning is a complex problem which to-
gether with opportunities brings many challenges. Identifying and tackling those
challenges is one of the most exciting directions for the future work.
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Abstract

An important competence for a mobile robot system is the ability to localize and
perform context interpretation. This is required to perform basic navigation and to
facilitate local specific services. Recent advances in vision have made this modality
a viable alternative to the traditional range sensors and visual place recognition
algorithms emerged as a useful and widely applied tool for obtaining information
about robot’s position. Several place recognition methods have been proposed using
vision alone or combined with sonar and/or laser. This research calls for standard
benchmark datasets for development, evaluation and comparison of solutions. To
this end, this paper presents two carefully designed and annotated image databases
augmented with an experimental procedure and extensive baseline evaluation. The
databases were gathered in an uncontrolled indoor office environment using two
mobile robots and a standard camera. The acquisition spanned across a time range
of several months and different illumination and weather conditions. Thus, the
databases are very well suited for evaluating the robustness of algorithms with respect
to a broad range of variations, often occurring in real-world settings. We thoroughly
assessed the databases with a purely appearance-based place recognition method based
on Support Vector Machines and two types of rich visual features (global and local).

1 Introduction

A fundamental competence for an autonomous agent is to know its position in the
world. Providing mobile robots with abilities to build an internal representation of
space and obtain robust information about their location therein can be considered
as one of the most urgent problems. The topic is vastly researched. This resulted,
over the years, in a broad range of approaches spanning from purely metric [27, 18,
62], to topological [58, 57, 17], and hybrid [53, 12]. As robots break down the fences
and start to interact with people [63] and operate in large-scale environments [17,
57], topological models are gaining popularity for augmenting or replacing purely



A4 PAPER A. A BENCHMARK FOR VISUAL PLACE RECOGNITION

metric space representations. In particular, the research on topological mapping has
pushed methods for place recognition. Scalability, loop closing, and the kidnapped
robot problem have been at the forefront of the issues to be addressed.

Traditionally, sonar and/or laser have been the sensory modalities of choice
for place recognition and topological localization [42, 38]. The assumption that
the world can be represented in terms of two dimensional geometrical information
allowed for many practical implementations. Yet, the inability to capture many
aspects of complex realistic environments leads to the problem of perceptual alias-
ing [29], and greatly limits the usefulness of purely geometrical methods. Recent
advances in vision have made this modality emerge as a natural and viable solution.
Vision provides richer sensory input allowing for better discrimination. It opens
new possibilities for building cognitive systems, actively relying on semantic con-
text. Not unimportant is the cost effectiveness, portability and popularity of visual
sensors. As a result, this research line is attracting more and more attention, and
several methods have been proposed using vision alone [55, 48, 50, 17], or combined
with more traditional range sensors [28, 52, 49].

In spite of large progress, vision-based localization still represents a major chal-
lenge. First of all, visual information tends to be noisy and difficult to interpret.
The visual appearance of places varies in time because of illumination changes (day
and night, artificial light on and off) and because of human activities (furniture
moved around, objects being taken out of drawers, and so on). Thus, the solu-
tions must be highly robust, provide good generalization abilities and in general
be adaptive. Additionally, the application puts strong constraints on the compu-
tational complexity, and the increased resolution and dimensionality of the visual
data still constitutes a problem.

The fact that so many different parameters influence the accuracy of a vision-
based localization system is another challenge itself, especially burdensome at the
design stage. As the results depend greatly on the choice of training and test input
data, which are unstable over time, it is hard to measure the influence of the different
parameters on the overall performance of the system. For the same reason, it
becomes nearly impossible to compare fairly solutions which are usually evaluated in
different environments, under different conditions, and with different assumptions.
This is a major obstacle slowing down progress in the field. There is a need for
standardized benchmarks and databases which would allow for fair comparisons,
simplify the experimental process and boost development of new solutions.

Databases are heavily exploited in the computer vision community, especially for
object recognition and categorization [25, 4, 3]. As the community acknowledges
the need for benchmarking, a lot of attention is directed towards designing new
datasets, reflecting the increasing capabilities of visual algorithms [45]. Also in
robotics, research on Simultaneous Localization and Mapping (SLAM) makes use
of several publicly available datasets [26, 40]. Still, no database emerged as a
standard benchmark for visual place recognition applied to robot localization.

This paper aims at filling this gap, and presents a benchmark consisting of two
different image databases gathered in the same indoor environment. The databases
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are augmented with an experimental procedure as well as extensive baseline eval-
uation. The datasets were carefully designed and later annotated. Three different
imaging devices were used for acquisition (two mobile robot platforms and a stan-
dard camera), resulting in data of different characteristics and quality. In order
to create a realistic and challenging test bed, the acquisition process was per-
formed in an uncontrolled typical office environment, under various illumination
and weather conditions (sunny, cloudy, night), and over a significant span of time.
All of this makes the databases very well suited for evaluating robustness of visual
place recognition algorithms, applied to the problem of robot topological localiza-
tion, in presence of different types of variations often occurring in real-world indoor
settings.

An important component when providing the community with a new collection
of data is to provide a baseline evaluation that illustrates the nature of the dataset
(see Section 5.1 for explanation). We thoroughly assessed the databases with a
purely appearance-based place recognition method. The method uses two types
of image descriptors, local and global, in order to extract rich visual information.
Both descriptors have shown remarkable performances, coupled with computational
efficiency on challenging object recognition scenarios [31, 30]. The classification step
is performed using Support Vector Machines [16] and specialized kernels are used
for each descriptor. Results show that the method is able to recognize places with
high precision and robustness under varying illumination conditions, even when
training on images from one camera device and testing on another.

The rest of the paper is organized as follows: after a review of related liter-
ature (Section 2), we discuss the problem and challenges we addressed with the
benchmark (Section 3). Then, Section 4 gives a detailed description of the data
acquisition process and scenario and presents the acquisition results. Finally, the
algorithm used for the baseline evaluation as well as the experimental procedure
are described in Section 5, and the experimental results are given in Section 6. The
paper concludes with a summary (Section 7).

2 Related work

Place recognition and topological localization are vastly researched topics in the
robotic community, where vision and laser range sensors are usually the priv-
ileged modalities. Although laser-based solutions have proven to be successful
for certain tasks [38], their limitations inspired many researchers to turn towards
vision which nowadays becomes tractable in real-time applications. The avail-
able methods employ either perspective [55, 51, 20] or omnidirectional cameras
[23, 9, 58, 35, 6, 39, 59]. The main differences between the approaches relate to
the way the scene is perceived, and thus the method used to extract characteristic
features from the scene. Landmark-based techniques make use of either artificial
or natural landmarks in order to extract information about a place. Mata et al.
[34] proposed a system able to interpret information signs through its ability to
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read text and recognize icons. Visually distinctive regions were also used as land-
marks [50]. Other solutions employed mainly local image features such as SIFT
[31, 6, 48], SURF [8, 39, 59], also using the bag-of-words approach [20, 22, 17], or
representation based on information extracted from local patches using Kernel PCA
[51]. Global features are also commonly used for place recognition. Torralba et al.
[56, 55, 54] suggested to use a representation called the “gist” of the scene, which
is a vector of principal components of outputs of a bank of spatially organized fil-
ters applied to the image. Other approaches use color histograms [58, 9], gradient
orientation histograms [11], eigenspace representation of images [23], or Fourier co-
efficients of low frequency image components [35]. Several authors observed that
robustness and efficiency of the recognition system can be improved by combining
information provided by both types of visual cues (global and local) [48, 50, 61].
Although vision-based localization methods are now commonly applied, it remains
difficult to compare the different approaches, as the evaluations presented by the
authors usually follow different procedures and are performed on different data sets.

There are a number of heavily used standard databases in robotics and computer
vision. In robotics, these databases are used mainly for testing algorithms for simul-
taneous localization and mapping (SLAM) [26, 40] and mostly contain odometry
and range sensor data. In case of the computer vision community, the effort con-
centrated on creating standard benchmarks for such problems as object [25, 4, 45],
action [33], scene [3], or texture recognition and categorization [2]. The MIT-CSAIL
Database of Objects and Scenes [3] is a notable exception as it provides several im-
age sequences acquired in both indoor and outdoor environments and was used to
evaluate performance of a visual place recognition system.

This paper makes an important contribution by providing annotated data from
visual and laser range sensors together with an experimental procedure that can
be followed in order to evaluate place recognition and localization systems. In
contrast to the previously available benchmarking solutions, the databases contain
several sets of images and image sequences acquired in the same environment under
various conditions and over a significant span of time. This makes them perfect for
evaluating robustness of the algorithms under dynamic variations that often occur in
realistic settings. The introduction of standard benchmark databases has made an
impact on the research on such problems as object categorization or simultaneous
localization and mapping (SLAM), allowing different methods to be more fairly
compared in the same scenario. The authors hope that the benchmark proposed
in this paper will similarly influence the research on visual place recognition in the
context of mobile robot localization.

3 Design strategy

This section defines and characterizes the problem that we address with the bench-
mark (Section 3.1) and analyzes the difficulties and open challenges in visual place
recognition that have to be considered in a realistic scenario (Section 3.2).
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3.1 Problem Statement

Let us begin with a brief definition of a place and the place recognition problem that
we will use throughout this paper. A place can be regarded as a usually nameable
segment of a real-world environment distinguished due to different functionality,
appearance or artificial boundary. In view of this definition, the place recognition
or identification problem can be characterized as follows. Given a set of training
sensory data, captured in each of the considered places, build models of the places
reflecting their inherent properties. Next, when presented with new test data,
unavailable during training, acquired in one of the same places, identify the place
where the acquisition was performed (e.g. Barbara’s office) based on the knowledge
encoded in the models. This is different from the problem of place categorization
where the task is to classify test data captured in a novel place as belonging to one
of the place categories (e.g. an office). As the partition of space into different places
can be based on several criteria, here we consider a supervised scenario where the
algorithm has to distinguish between five areas of different functionality, selected
by a teacher.

This benchmark is designed to test the performance of a visual place recognition
system on images acquired within an indoor office environment. As the primary
scenario, we consider the case where a place recognition system is used to provide
a mobile robot with information about its location. For this reason, part of the
data presented in this paper was acquired using cameras mounted on mobile robot
platforms. While designing the benchmark, we concentrated on testing the ability
of a visual recognition system to identify a place based on one image only. This
makes the problem harder, but also makes it possible to perform global localiza-
tion where no prior knowledge about the position is available (e.g. in case of the
kidnapped robot problem). Spatial or temporal filtering can be used together with
the presented methods to enhance performance.

We concentrate on indoor environments, since in the considered scenario, they
play a crucial role, being typical spaces for the interaction between humans and ser-
vice robots or robotic assistants [63]. At the same time, office environments, just
like home environments, constitute an important class of indoor spaces for robotic
companions. In this benchmark, our aim is to provide datasets and experimental
procedures that will allow for evaluating robustness of place recognition systems
based on different types of visual cues to typical variations that occur in an in-
door environment for the considered scenario. These include illumination changes,
variations introduced by human activity and viewpoint changes. As a consequence,
instead of providing datasets spanning over a very large portion of space, we provide
image sequences acquired over a time span of several months, under various illumi-
nation conditions and using different devices. The proposed evaluation framework
should allow for concluding that an algorithm robust to the variations captured in
the benchmark data will be robust to similar types of variations within other indoor
office environments.

The benchmark is designed for evaluating vision-based methods. We choose
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vision as sensory modality for several reasons. First, the visual sensor is very rich
and, although also very noisy, provides great descriptive capabilities. This is crucial
in indoor environments where other sensors, such as a laser range finder, suffer from
the problem of perceptual aliasing (different places look the same [29]). Further-
more, the visual appearance of places encodes information about their semantics,
which plays a major role in enabling systems to interact with the environment.
Finally, in the era of cheap portable devices equipped with digital cameras, it is
also one of the most affordable and commonly available solutions.

3.2 Challenges

Recognizing indoor places based on their visual appearance is a particularly chal-
lenging task. First of all, in case of indoor environments, there is no obvious spatial
layout that once observed could be used to distinguish between different places.
Moreover, viewpoint variations cause the visual sensor to capture different aspects
of the same place, which often can only be learned if enough training data are pro-
vided. At the same time, real-world environments are usually dynamic and their
appearance changes over time. The visual recognition system must be robust to
variations introduced by changing illumination as well as human activity. For a
visual sensor, the same room might look different during the day, during sunny
weather, under direct natural illumination, and at night with only artificial light
turned on. Moreover, if the environment is being used, the fact that people appear
in the images, objects are being moved or furniture relocated may greatly influence
the performance of the system. All these issues were taken into consideration while
designing this benchmark in order to create a realistic test bed.

4 Data Acquisition

Based on the analysis of the problem presented in the previous section, we carefully
designed and acquired two databases comprising images captured in the same indoor
environment, but using different devices: the INDECS (INDoor Environment under
Changing conditionS) database [47] and the IDOL (Image Database for rObot
Localization) database [32]. This section describes the resulting data acquisition
procedure. In case of INDECS, we acquired images of the environment from a
fixed set of points using a standard camera mounted on a tripod. The resolution
of the images is high; this makes this database suitable for context-based object
recognition. The IDOL database, instead, consists of image sequences recorded
using two mobile robot platforms equipped with perspective cameras, and thus is
well suited for experiments with robot localization. All three devices are shown in
Fig. 1. The databases represent a different approach to the problem and can be
used to analyze different properties of a place recognition system. The acquisition
was performed under several different illumination settings and over a significant
span of time. Both databases are publicly available and can be downloaded from
http://www.pronobis.pro.

http://www.pronobis.pro
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(a) Minnie (b) Camera (c) Dumbo

Figure 1: Devices employed in the acquisition: the two mobile robot platforms
“Minnie” (a) and “Dumbo” (c) as well as the standard camera on a tripod (b).

The rest of the section is organized as follows: Section 4.1 presents the acqui-
sition scenario, as to say the environment where both databases were acquired.
Then, Section 4.2 provides a description of the INDECS database, and Section 4.3
gives detailed information on the robot platforms and IDOL. Finally, we perform
an analysis of the obtained data in Section 4.4.

4.1 Acquisition Scenario

The acquisition was conducted within a five room subsection of a larger office
environment of the Computer Vision and Active Perception Laboratory at the Royal
Institute of Technology in Stockholm, Sweden. Each of the five rooms represents a
different type of functional area: a one-person office, a two-persons office, a kitchen,
a corridor, and a printer area (in fact a continuation of the corridor). The function
that a room fulfills determines the furniture, objects, and activity that is likely
to be found there. Places like the corridor, the printer area and the kitchen can
be regarded as public which implies that various people may be present. On the
other hand, offices were imaged usually empty or with their owners at work. In
the corridor and the printer area, furniture is mostly fixed and objects are less
moveable. As a result, these areas were less susceptible to variations caused by
human activity in comparison to the kitchen or the offices, where furniture (e.g.
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Figure 2: A general map of the part of the office environment that was imaged
during acquisition of the INDECS and IDOL databases. Boundaries between the
five rooms were marked with dashed lines. Dotted lines were used to draw an
approximate outline of furniture. Moreover, the location of points at which the
tripod was placed while recording the INDECS database were marked. The pictures
are taken from the database and show the interiors of the five rooms. The small
arrows were used to indicate the viewpoints at which the presented pictures were
taken.

chairs) is relocated more often and objects (e.g. cups, laptops etc.) are frequently
moved.

The rooms are physically separated by sliding glass doors. The printer area is an
exception and was treated as a separate place only due to its different functionality
(the border between the corridor and the printer area was arbitrarily defined).
The laboratory contains additional rooms which were not taken into consideration
while creating the database. However, because of the glass door, other parts of the
environment can still be visible in the images. Examples of pictures showing the
interior of each room as well as a general map of the environment are presented in
Fig. 2.

As already mentioned, the visual data were acquired with three different devices.
In each case, the appearance of the rooms was captured under three different illumi-
nation and weather conditions: in cloudy weather (natural and artificial light), in
sunny weather (direct natural light dominates), and at night (only artificial light).
Since all the rooms have windows, the influence of natural illumination was signif-
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icant. The image acquisition was spread over a period of time of three months, for
the INDECS database, and over two weeks for the IDOL database. Additionally,
the INDECS database was acquired ten months before the experiments with the
robots. In this way, we captured the visual variability that occurs in realistic en-
vironments due to varying illumination and natural activities in the rooms. Fig. 3
presents a comparison of images taken under different illumination conditions and
using various devices.

4.2 The INDECS database

The INDECS database consists of pictures of the environment described above,
gathered from different viewpoints using a standard camera mounted on a tripod.
We marked several points in each room (approximately one meter apart) where we
positioned the camera for each acquisition. The rough positions of all points are
shown on the map in Fig. 2. The number of points changed with the dimension of
the room, from a minimum of 9 for the one-person office to a maximum of 32 for
the corridor. At each location we acquired 12 images, one every 30◦, even when
the tripod was located very close to a wall or furniture. Examples of images taken
at the same location and from several angles are presented in Fig. 4. Images were
acquired using an Olympus C-3030ZOOM digital camera and the height of the
tripod was constant and equal to 76 cm. All images in the INDECS database were
acquired with a resolution of 1024x768 pixels, the auto-exposure mode enabled,
flash disabled, the zoom set to wide-angle mode, and the auto-focus enabled. In
this paper, the INDECS images were subsampled to 512x386 before being used in
the experiments. The images were labeled according to the position of the point
where the acquisition happened. As a consequence, images taken, for example,
from the corridor but looking into a room are labeled as the corridor. The images
were acquired across a time span of three months and under varying illumination
conditions (sunny, cloudy and night). For each illumination setting, we captured
one full set of images. In total, there are 3264 images (324 for the one-person office,
492 for the two-persons office, 648 each for the kitchen and the printer area, and
1152 for the corridor) in the INDECS database.

4.3 The IDOL database

The IDOL database was acquired using cameras on two mobile robot platforms.
Both robots, the PeopleBot Minnie and the PowerBot Dumbo, were equipped with a
pan-tilt-zoom Canon VC-C4 camera, a SICK laser range finder, and wheel encoders.
However, as it can be seen from Fig. 1, the cameras were mounted at different
height. On Minnie, the camera was 98cm above the floor, whereas on Dumbo it
was 36cm. Furthermore, the camera on Dumbo was tilted up approximately 13◦,
to reduce the amount of floor captured in the images. The selected positions of the
cameras result in different characteristics of the environment being captured in the
images. Due to the low placement of the camera on Dumbo, the captured images
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Figure 3: Example pictures taken from the INDECS and IDOL databases acquired
with the camera and the two robot platforms under various illumination conditions.
The pictures show the influence of illumination (especially (a) and (c)) and illustrate
the differences between images acquired in a cluttered environment using different
devices (b). Additional variability caused by natural activities in the rooms is also
apparent (presence of people, relocated objects and furniture).
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−90◦ −60◦ −30◦ 0◦ 30◦ 60◦

Figure 4: Pictures from the INDECS database taken from several angles at the
same location in the two-persons office.

are less susceptible to variations introduced by human activity in the environment
and direct sunlight coming through the windows. At the same time, the camera
on Minnie was able to capture the appearance of objects located on the desks and
provide more information about the semantics of a place. All images were acquired
with a resolution of 320x240 pixels, with the zoom fixed to wide-angle (roughly
45◦ horizontal and 35◦ vertical field of view), the auto-exposure and the auto-focus
modes enabled.

We followed the same procedure during image acquisition with both robot
platforms. Each robot was manually driven (average speed around 0.3-0.35m/s)
through each of the five rooms while continuously acquiring images at the rate of
five frames per second. The path was roughly planned so that the robots could cap-
ture the visual appearance of all the rooms. For the different illumination conditions
(sunny, cloudy, night), the acquisition procedure was performed twice, resulting in
two image sequences acquired one after another giving a total of six sequences for
each robot platform across a span of over two weeks. Each of the image sequences in
the database is accompanied by laser scans and odometry data. Due to the manual
control, the path of the robot was slightly different for every sequence. Examples of
paths are presented in Fig. 7, 8, and 9. Each image sequence consists of 1000-1300
frames. To automate the process of labeling the images for the supervision, the
robot pose was estimated during the acquisition process using a laser based local-
ization method [21]. Again, each image was labeled as belonging to one of the five
rooms based on the position from where it was taken.

4.4 Acquisition Results

Examples illustrating the properties of images that can be found in both databases
are given in Fig. 3. First of all, we can observe a significant influence of illumination.
The appearance of the rooms is affected by highlights, shadows and reflections, es-
pecially in case of strong direct sunlight. Moreover, the fact that the auto-exposure
mode was on, resulted in a lower contrast in the informative parts of images, when
the camera was directed towards a bright window in sunny weather. At the same
time, the conditions observed during cloudy weather were much more stable and
could be seen as intermediate between those during sunny weather and at night.
A second important type of variability was introduced by human presence and ac-
tivities. In some cases, people partially occluded the view. Furthermore, the fact
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that the environment was observed for some time, allowed to capture different con-
figurations of furniture or objects placed on the desks or kitchen tables. The fact
that objects could be observed in the images makes it possible to use the database
in more complex scenarios where place recognition and object recognition comple-
ment each other e.g. by contextual priming [55, 54] (especially in case of the high
resolution images in the INDECS database). Finally, we can compare the images
acquired using the three different devices. We see that each device captures different
aspects of the same environment, mainly due to the variations in viewpoint caused
by the different heights of the cameras. The influence of viewpoint is substantial,
especially for cluttered scenes, when the camera was close to the furniture.

For both databases, the environment was observed from multiple viewpoints.
For INDECS, the viewpoints are stable over different weather conditions, but the
appearance of the rooms is almost fully captured as the images were taken in 12
directions. In case of IDOL, we observe changes in viewpoint due to manual control
of the robot, but since the robot was driven in a particular direction, parts of the
environment might not be observed. As previously mentioned, labelling was based
on the position of the camera rather than contents of the images, and acquisition
was performed even close to walls or furniture. As a result, both databases contain
difficult cases, where the contents of the image is either non-informative or is weakly
associated with the label.

To summarize, despite the fact that the acquisition was performed in a rela-
tively small environment (consisting of 5 different rooms), there are several types
of variability captured which pose a challenge to a recognition system. These range
from different acquisition conditions to large viewpoint variations across the de-
vices. Moreover, the acquisition procedure was carefully designed, and each single
dataset offers different, but usually well specified, type of variability. As a result,
the influence of different factors on the accuracy of the system can be isolated and
precisely measured. The relatively small environment does not allow for conclud-
ing that a system evaluated on the data will offer similar absolute performance in
a different environment. However, since the data capture the influence of a large
amount of variations on the appearance of a standard office environment, we can
expect that an algorithm robust to those variations will be robust to similar types
of variations within other indoor office environments.

5 Baseline Evaluation

This section presents the visual place recognition system with which we assessed the
INDECS and IDOL databases. We applied a fully supervised, appearance-based
method. It assumes that each room is represented, during training, by a collection
of images capturing its visual appearance under different viewpoints, at a given time
and illumination. During testing, the algorithm is shown images of the same rooms,
acquired under roughly similar viewpoints but possibly under different illumination
conditions and after some time (where the time range goes from some minutes to
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several months). The goal is to recognize correctly each single image seen by the
system. The method is based on a large-margin discriminative classifier, namely
the Support Vector Machines (SVMs) [16] and two different image representations.
We use global and local image features, and we combine them with SVMs through
specialized kernels. As a result, the recognition process always consists of two steps:
feature extraction and classification.

In the rest of this section, we first motivate the decision to provide a baseline
evaluation with the presented datasets (Section 5.1). Then, we describe the em-
ployed image representations (Section 5.2) and the classifier (Section 5.3). Finally,
we explain the procedure followed in our experiments (Section 5.4).

5.1 Motivation

An important component when providing the community with a new collection of
data is to give a quantitative measure of how hard the database is. Benchmark
databases have become a very popular tool in several research communities during
the last years [25, 33], because they provide at the same time an instrument to
develop new state of the art algorithms, and a way to call attention on a research
topic. When a database is used for developing a new algorithm, it is extremely
useful to be able to compare the obtained results with those obtained by some other
established technique: this permits to understand what are the advantages of the
new method over existing approaches. At the same time, presenting a new corpus
together with a baseline evaluation helps the community to quickly identify the
open challenges of the problem and therefore concentrate there their research efforts.
While often the baseline evaluation consists of a newly developed method, very often
it is a well known, off the shelf solution: again, the goal of a baseline evaluation is
not that of presenting new theory, but to provide a quantitative evaluation of how
challenging the new dataset is, coupled with a well defined experimental protocol.

The computer vision community has been traditionally very open to the intro-
duction of publicly available databases [25, 33] and associated benchmark challenges
[4]. These two tools, combined together, have heavily contributed to set the research
agenda of the last years. The robotics community has recently started to acknowl-
edge the value and power of such collections, as it is witnessed by several successful
benchmark evaluations [5, 1].

5.2 Feature Extraction

The feature extraction step aims at providing a representation of the input data
that minimizes the within-class variability while at the same time maximizing the
between-class variability. Additionally, this representation is usually more compact
than raw input data and therefore allows to reduce the computational load imposed
by the classification process. Features can be derived from the whole image (global
features) or can be computed locally, based on its salient parts (local features).
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Figure 5: The process of generating multi-dimensional receptive field histograms
shown on the example of the first-order derivatives computed at the same scale
t = 4 from the illumination channel.

As environments can be described differently, depending on the considered scale,
scale-space theory appears as a suitable framework for deriving effective represen-
tations here. Following this intuition, we chose to use two scale-space theory based
features, one global (Composed Receptive Field Histograms, CRFH [30]) and one
local (Scale Invariant Feature Transform, SIFT [31]). The rest of the section de-
scribes briefly the two approaches.

Global Features: Compose Receptive Field Histograms

CRFH is a multi-dimensional statistical representation of the occurrence of re-
sponses of several image descriptors applied to the image. This idea is illustrated
in Fig. 5. Each dimension corresponds to one descriptor and the cells of the his-
togram count the pixels sharing similar responses of all descriptors. This approach
allows to capture various properties of the image as well as relations that occur
between them.

Multi-dimensional histograms can be extremely memory consuming and com-
putationally expensive if the number of dimensions grows. For example, a 9-
dimensional histogram with 16 quantization levels per dimension contains approx-
imately 7 · 1010 cells. In [30], Linde and Lindeberg suggest to exploit the fact that
most of the cells are usually empty, and to store only those that are non-zero. The
histogram can be stored in a sparse form as an array [(c1, v1), (c2, v2), . . . , (cn, vn)],
where ci denotes the index of the cell containing the non-zero value vi. This rep-
resentation allows not only to reduce the amount of memory required, but also
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to perform operations such as histogram accumulation and comparison efficiently.
For our experiments, we built multi-dimensional histograms using combinations
of several image descriptors, applied to the scale-space representation at various
scales, namely: first- and second-order Gaussian derivatives, gradient magnitude,
Laplacian and Hessian determinant applied to both intensity and color channels.

Local Features: Scale Invariant Feature Transform

The idea behind local features is to represent the appearance of an image only
around a set of characteristic points known as the interest points. The similarity
between two images is then measured by solving the correspondence problem. Local
features are known to be robust to occlusions, as the absence of some interest points
does not affect the features extracted from other local patches.

The process of local feature extraction consists of two stages: interest point de-
tection and description. The interest point detector identifies a set of characteristic
points in the image that could be re-detected even in spite of various transforma-
tions (e.g. rotation and scaling) and variations in illumination conditions. The role
of the descriptor is to extract robust features from the local patches located at the
detected points.

In this paper, we used the scale, rotation, and translation invariant Harris-
Laplace detector [36] and the commonly used SIFT descriptor [31]. Comparisons
of local descriptors and interest point detectors, presented in [37], show that both
algorithms are highly reliable. Moreover, the SIFT descriptor has shown to perform
well for object classification ([19]) and mobile robot localization ([6, 20]).

5.3 Classification: Support Vector Machines

The choice of the classifier is the second key ingredient for an effective visual place
recognition system. In this paper, we chose Support Vector Machines (SVMs)
based on their state-of-the-art performances in several visual recognition domains
[41, 13, 7]. The rest of this section reviews briefly the theory behind the algorithm,
and describes our choices for the kernel function. We refer the readers to [16] for a
thorough introduction to the subject.

Linear SVM

Consider the problem of separating a set of training data (x1, y1), ...(xm, ym) into
two classes, where xi ∈ ℜN is a feature vector and yi ∈ {−1, +1} its class label.
Assuming that the two classes can be separated by a hyperplane w · x + b =
0, then the optimal hyperplane will be the one with maximum distance to the
closest points in the training set. The optimal values for w and b can be found by
solving a constrained minimization problem via Lagrange multipliers, resulting in
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a classification function

f(x) = sgn

(
m∑

i=1

αiyixi · x + b

)
, (1)

where αi and b can be found efficiently using the Sequential Minimal Optimization
(SMO, [43]) algorithm. The xi with αi 6= 0 are called support vectors.

Non-linear SVM and Kernel Functions

To obtain a nonlinear classifier, one maps the data from the input space ℜN to a
higher dimensional feature space H by x → Φ(x) ∈ H, such that the mapped data
points of the two classes are linearly separable in the feature space. Assuming there
exists a kernel function K such that K(x, y) = Φ(x) · Φ(y), a nonlinear SVM can
be constructed by replacing the inner product xi ·x by the kernel function K(xi, x)
in Eqn. (1). This corresponds to constructing an optimal separating hyperplane in
the feature space.

The choice of the kernel function is a key ingredient for the good performance
of SVMs; based on results reported in the literature, we chose in this paper the χ2

kernel [15] for global features and the match kernel [60] for local features.
The χ2 kernel belongs to the family of exponential kernels, and is given by

K(x, y) = exp
{

−γχ2(x, y)
}

, χ2(x, y) =
∑

i

||xi − yi||
2

||xi + yi||
. (2)

The match kernel is given by [60]

K(Lh, Lk) =
1

nh

nh∑

jh=1

max
jk=1,...,nk

{
Kl(L

jh

h , L
jk

k )
}

, (3)

where Lh, Lk are local feature sets and L
jh

h , L
jk

k are two single local features. The
sum is always calculated over the smaller set of local features and only some fixed
amount of best matches is considered in order to exclude outliers. The local feature
similarity kernel Kl can be any Mercer kernel. We used the RBF kernel based on
the Euclidean distance for the SIFT features:

Kl(L
jh

h , L
jk

k ) = exp
{

−γ||Ljh

h − L
jk

k ||2
}

. (4)

The match kernel was introduced in [60], and despite the claim in the paper, it is
not a Mercer kernel [10]. Still, it can be shown that it statistically approximates a
Mercer kernel in a way that makes it a suitable kernel for visual applications [10].
On the basis of this finding, and of its reported effectiveness for object categorization
[41], we will use it here.
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Multi-class SVM

The extension of SVM to multi class problems can be done mainly in two ways:

• One-vs-all strategy. If M is the number of classes, M SVMs are trained,
each separating a single class from all remaining classes. The decision is then
based on the distance of the classified sample to each hyperplane and the final
output is the class corresponding to the hyperplane for which the distance is
largest.

• One-vs-one strategy. In this case, M(M −1)/2 two-class machines are trained
for each pair of classes. The final decision can then be taken in different ways,
based on the M(M − 1)/2 outputs. A popular choice is to consider as output
of each classifier the class label and count votes for each class; the test image
is then assigned to the class that received more votes. Another alternative is
to use signed distance from the hyperplane and sum distances for each class.
Other solutions based on the idea to arrange the pairwise classifiers in trees,
where each tree node represents an SVM, have also been proposed [44, 16].

In this paper, for efficiency reasons, we will use the pairwise approach and the
voting-based method, which we found to constantly outperform the second variant
in preliminary experiments (the complexity of the SVM training algorithm is ap-
proximately O(n2) and smaller training subsets of the binary classifiers make the
training procedure faster).

5.4 Experimental Setup

We conducted four series of experiments in order to assess thoroughly the INDECS
and IDOL databases. For each series of experiments, we evaluated the performance
of both local and global image representations. We divided the databases into
several subsets with respect to the illumination conditions that prevailed during
acquisition and the device employed. For the INDECS database, we considered
three image sets, one for each illumination setting (cloudy, night, sunny). Since
the IDOL database consists of 12 image sequences, we used each full sequence as
a separate set. The system was always trained in a supervised fashion on one, two
or three data sets and tested on a fourth different set. In order to test the limits
of the underlying visual recognition algorithm, we considered each image in the
test set separately, and as a final measure of performance, we used the percentage
of properly recognized images. As the number of acquired images varied across
rooms, the performance obtained for each place was considered separately during
the experiments. The final classification rate was then computed as the average
between all the rooms results. This procedure ensures that performance on each
place contributes equally to the overall result, thus avoiding the biases towards
areas with many acquired images, such as the corridor.

We started with a set of reference experiments, assessing the data acquired
under stable illumination. To achieve this, for training and testing we used data
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sets acquired with the same device and under similar conditions. Next, we in-
creased the difficulty of the problem and tested the robustness of the system to
changing illumination conditions as well as to other variations that may occur in
real-world environments. Training and recognition were in this case performed on
data sets consisting of images captured under different illumination settings and
usually on different days. The third set of experiments aimed to reveal whether a
model trained on an image set acquired with one device can be useful for solving
localization problem with a different device (and usually after some time). Finally,
we checked whether the robustness of the recognition algorithm can be increased
by providing additional training data capturing a wider spectrum of visual vari-
ability. For that, we trained the system on two or three image sets gathered under
different illumination conditions. Additionally, before carrying out the benchmarks
described above, we conducted a set of preliminary experiments in order to select
proper kernel functions and feature extractor parameters. All the results obtained
on these experiments are reported in Section 6.

For all experiments, we used our extended implementation of Support Vector
Machines based on the libsvm software [14]. We set the value of the error penalty
C to be equal to 100 and we determined the kernel parameters via cross-validation.

6 Experimental Results

This section reports the results of the baseline evaluation of the INDECS and
IDOL databases, according to the procedure described in Section 5.4. We present
the results in consecutive subsections, and we give a brief summary in Section 6.5.

As described in Section 5.4, before performing the actual benchmark, we ran a
set of preliminary experiments on the INDECS database, mainly using the global
features (CRFH). We evaluated the performance of the multi-dimensional his-
tograms built from a wide variety of combinations of global image descriptors listed
in Section 5.2 for several scale levels and numbers of histogram bins per dimension.
A comprehensive report on the obtained results can be found in [46]. The ex-
periments revealed that the most valuable global features can be extracted using
non-isotropic, derivative-based descriptors, and that chromatic cues are more sus-
ceptible to illumination variations. As a result, here we used composed receptive
field histograms of six dimensions with 28 bins per dimension, computed from sec-
ond order normalized Gaussian derivative filters, applied to the illumination channel
at two scales. The scale levels were different for the experiments with IDOL (σ = 1
and 4) and with INDECS (σ = 2 and 8). This was motivated by the fact that
the cameras mounted on the robots obtained images of lower quality, and their
movement introduced additional distortions.

6.1 Stable Illumination Conditions

In order to evaluate our method under stable illumination conditions, we trained
and tested the system on pairs of image sequences taken from the IDOL database
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(a) Training on global features (CRFH ) extracted
from images acquired with Minnie.
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(b) Training on local features (SIFT ) extracted
from images acquired with Minnie.
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(c) Training on global features (CRFH ) extracted
from images acquired with Dumbo.
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(d) Training on local features (SIFT ) extracted
from images acquired with Dumbo.
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(e) Training on global features (CRFH ) extracted
from images acquired with the standard camera.
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(f) Training on local features (SIFT ) extracted
from images acquired with the standard camera.

Figure 6: Average results of the first three experiments on the IDOL and INDECS
databases with both image representations. In each figure, the results are grouped
according to the type of illumination conditions under which the training images
were acquired. The bottom axes indicate the platform and illumination conditions
used for testing. The uncertainties are given as one standard deviation.
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acquired one after the other using the same robot. As mentioned previously, we
analyzed performance of both global (CRFH) and local (SIFT) image descriptors.
We did not use the INDECS database for these experiments since only one set of
data for each illumination setting was available. Although the illumination condi-
tions for both training and test images were in this case very similar, the algorithm
had to tackle other kinds of variability such as viewpoint changes (caused mainly
by the manual control of the robot) and presence/absence of people. The results
of the performed experiments are presented in Fig. 6a,c for CRFH and in Fig. 6b,d
for SIFT. For each platform and type of illumination conditions used for training,
the first bar presents an average classification rate over the two possible permuta-
tions of the image sequences in the training and test sets1. On average, the system
classified properly 95.5% of the images acquired with Minnie and 97.3% of images
acquired with Dumbo when global features were used. When local features were
applied, the average recognition rates were slightly lower and equal to 94.4% and
94.9% respectively.

Detailed results for two experiments conducted on data captured with each of
the platforms are shown in Fig. 7. The figure presents maps of the environment
with plotted paths of the robot during acquisition of the training and test sequences
used during each of the experiments. Moreover, the symbols used to draw the test
path indicate the results of recognition performed using image acquired at each
location. Each experiment started at the point marked with the label “Start” and
the arrows show the direction of driving. The position of the furniture (plotted with
gray line) is approximate and sometimes slightly varied between the experiments.
It can be observed that the errors are usually not a result of viewpoint variations
(compare the training and test paths in the kitchen, especially in Fig. 7c,d) and
mostly occur near the borders of the rooms. This can be explained by the relatively
narrow field of view of the cameras as well as the fact that the images were not
labeled according to their content but to the position of the robot at the time of
acquisition. Since these experiments were conducted with the sequences captured
under similar conditions, we treat them as a reference for other results.

6.2 Varying Illumination Conditions

We also conducted a series of experiments aiming to test the robustness of our
method to changing illumination conditions as well as to other variations caused by
normal activities in the rooms. The experiments were conducted on both INDECS
and IDOL databases. As with the previous experiments, the same device was used
for both training and testing. This time, however, the selected training and testing
data sets consisted of images acquired under different illumination conditions and
usually on different days. Fig. 6a-d show average results of the experiments with
the image sequences from the IDOL database acquired with both robots for each
permutation of the illumination conditions used for training and testing and both

1Training on the first sequence, testing on the second sequence, and vice versa.
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Figure 7: Maps of the environment with plotted paths of the robot during acquisi-
tion of the training (black line) and test (points) sequences taken from the IDOL
database and used during the experiments with stable illumination conditions. The
shape of each point on the test path indicates the result of recognition.
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image representations (the two middle bars for each figure and type of training
conditions). The presented classification rates obtained on the IDOL database were
always averaged over two experiments with different image sequences. Fig. 6e,f gives
corresponding results obtained on the INDECS database.

We see that, in general, the system performs best when trained on the images
acquired in cloudy weather. The explanation for this is straightforward: the illu-
mination conditions on a cloudy day can be seen as intermediate between those at
night (only artificial light) and on a sunny day (direct natural light dominates). In
such case, the average classification rate computed over two testing illumination
conditions (sunny and night) for both CRFH and SIFT was equal to 84.6% and
87.3% for Dumbo, 74.5% and 75.1% for Minnie, and 81.3% and 76.4% for the IN-
DECS database. In general, local features performed slightly better than the global
features (in average 71.9% vs. 72.6% for Minnie and 80.5% vs. 83.2% for Dumbo),
although it was usually not the case for the INDECS database (in average 75.9%
vs. 72.5%). Fig. 8 presents detailed results for two example runs and both feature
types. The errors occurred mainly for the same reasons as in the previous experi-
ments and additionally in places heavily affected by the natural light e.g. when the
camera was directed towards a bright window or, in particular, large glass door in
the printer area. In such cases, the automatic exposure system with which all the
cameras were equipped caused the pictures to darken. Minnie was more susceptible
to this phenomenon due to the higher position of its camera.

6.3 Recognition Across Platforms

The third set of experiments was designed to test the portability of the acquired
model across different platforms. For that purpose we trained and tested the system
on image sets acquired under similar illumination conditions using different devices.
We started with the experiments on image sequences from the IDOL database. We
trained the system on the images acquired using either Minnie or Dumbo and tested
with the images captured with the other robot. We conducted the experiments for
all illumination conditions and both image representations. The main difference
between the platforms from the point of view of our experiments lies in the height
at which the cameras are mounted (98cm for Minnie and 36cm for Dumbo). The
results presented in Fig. 6a-d indicate that our method was still able to classify
correctly up to about 70% of images for CRFH and 65% of images for SIFT. There
was no clear advantage of using one particular feature type. The system performed
better when trained on the images captured with Minnie. This can be explained
by the fact that the lower mounted camera on Dumbo provided less diagnostic
information. It can also be observed from Fig. 9 that, in general, the additional
errors occurred when the robot was positioned close to the walls or furniture. In
such cases the height of the camera influenced the content of the images the most.

We followed a similar procedure using the INDECS database as a source of
training data and different image sequences taken from the IDOL database for
testing. It is important to note that the acquisition procedure differed in case of
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Figure 8: Maps of the environment with plotted paths of the robot during acquisi-
tion of the training (black line) and test (points) sequences taken from the IDOL
database and used during the experiments with varying illumination conditions.
The shape of each point on the test path indicates the result of recognition.
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Figure 9: Maps of the environment with plotted paths of the robot during acquisi-
tion of the training (black line) and test (points) sequences taken from the IDOL
database and used during the experiments with recognition across platforms. The
shape of each point on the test path indicates the result of recognition.
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both databases, and the INDECS database was gathered ten months before the
acquisition of IDOL. The points at which the pictures were taken were positioned
approximately 1m from each other and, in case of the kitchen, covered different
area of the room due to reorganization of the furniture. Consequently, the problem
required that the algorithm was invariant not only to various acquisition techniques
but also offered great robustness to large changes in viewpoint and the appearance
of the rooms introduced by long-time human activity. The experimental results are
presented in Fig. 6e,f. We see that the algorithm obtains a recognition performance
of about 50%. While this result is surely disappointing if compared to the 70%
reported above, obtained for the two robot platforms, it is still quite remarkable
considering the very high degree of variability between training and test data, and
that results are significantly above chance (which in this case would be 20% as the
datasets contain images acquired in 5 rooms).

6.4 Training-based Robustness

The final series of experiments aimed at revealing whether the robustness of the
recognition algorithm can be boosted by providing additional training data cap-
turing a wider spectrum of visual variability that might occur in a real-world en-
vironment. In particular, we concentrated on invariance to changing illumination
conditions as this is the kind of variability that a continuously running visual recog-
nition system has to deal with every day. To achieve that, we trained the system
on two or three image sequences from the IDOL database gathered under different
illumination conditions, and we evaluated the recognition performance on another,
fourth, image set. The obtained results for both platforms, all combinations of
image sequences used for training as well as both CRFH and SIFT are presented
in Fig. 10a-d. The darker bars indicate the results of experiments corresponding
to those discussed in Section 6.1, when training was done on an image sequence
acquired under conditions similar to those used for testing. The results shown us-
ing the brighter bars can be compared with those of the experiments under varying
illumination conditions analyzed in Section 6.2.

It is apparent that including images acquired under different conditions into
the training set improves recognition accuracy. Although the algorithm has to
incorporate much more information about each of the places into the model, the
recognition accuracy for test sets acquired under similar conditions as those used
for training is even greater than this obtained when each training sequence was
used separately (as for the experiments discussed in Section 6.1). For example,
the average recognition rate over all test sets and illumination settings for models
trained on three sequences acquired using Dumbo was equal to 98.1% for CRFH
and 97.1% for SIFT. At the same time, for the experiments with stable illumination
conditions reported in Section 6.1 (see Fig. 6), we got only 97.3% and 94.9%. The
same trend can be observed for sequences captured using Minnie. Concluding,
the ability of the algorithm to handle large within-class variability is clearly not
a limiting factor. It is important to note, that the recognition rate for conditions
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(a) Training on global features (CRFH ) extracted
from images acquired with Minnie.
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(b) Training on local features (SIFT ) extracted
from images acquired with Minnie.
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(c) Training on global features (CRFH ) extracted
from images acquired with Dumbo.
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(d) Training on local features (SIFT ) extracted
from images acquired with Dumbo.

Figure 10: Performance of the system trained on two or three image sequences ac-
quired under different illumination conditions for both mobile platforms and image
representations. The classification rates were averaged over all possible combina-
tions of training and test sequences. The uncertainties are given as one standard
deviation.

which were not used during training is also greatly improved when more training
data are provided. For example, if the system was trained using the images captured
during sunny weather and at night using Minnie, the average classification rate
for testing image sequence acquired with cloudy weather was equal to 86.95% for
CRFH and 89.59% for SIFT. Consequently, the classification rate improved by 9.9%
in case of CRFH and 11.2% in case of SIFT for testing conditions not known during
training, at the same time slightly improving the rates for testing conditions used
also for training.

It has to be pointed out that due to the larger number of training images
capturing different types of variability, the number of support vectors stored in the
final model grows as well. In such case, the user pays the price of the recognition
time and the memory requirements, which in case of SVMs grow linearly with the
number of support vectors.
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6.5 Discussion

The results of the extensive experimental evaluation presented in this section in-
dicate that our method is able to perform place recognition using standard visual
sensors with high precision. It offers good robustness to changes in the illumination
conditions as well as to additional variations introduced by the natural variability
that occurs in real-world environments. At the same time, there is a difference
in performance of the system between the experiments under stable and varying
conditions, indicating that there is room for improvement in this matter.

As the system is to be used on a robot platform, it must not only be accurate
but also efficient. For this reason we tried to provide the highest possible robustness
using relatively small amount of training data acquired during only one run. We
managed to achieve a recognition time of less than 200ms per frame on a Pentium IV
2.6 GHz using the global image representation. The results reported in Section 6.4
indicate that it is possible to significantly improve the robustness by incorporating
images acquired during two or three runs under different illumination conditions
into one training set. However, the higher performance does not come without a
price. Since the number of support vectors in such case even doubles, the recognition
time increased by about 50ms.

In all the experiments, we evaluated both global (CRFH) and local (SIFT) image
descriptors. In general, we did not find any clear advantage of using one feature type
over the other, and each representation has its strengths and weaknesses. The global
features, however, clearly outperform SIFT in terms of efficiency, since the matching
process required in order to compare two sets of local patches is computationally
expensive. The efficiency of the solution based on local features could be improved
by applying a more efficient matching algorithm (e.g. by using a pyramid match
SVM kernel [24]) or faster interest point detector and more compact descriptor (e.g.
SURF [8, 39]). Since global and local representations capture different aspects of a
scene, the robustness of the final solution can be further improved by integrating
both cues as proposed in [48, 49].

7 Summary

This paper discussed the need for standard benchmarking solutions for vision-
based topological localization, with particular emphasis on visual place recogni-
tion. We defined and analyzed carefully the problem, and we specified the open
challenges that need to be addressed by a realistic benchmark. We presented two
new databases, acquired on the basis of this analysis. The first, the INDECS
database, contains pictures captured with a standard camera mounted on a tripod.
The second, the IDOL database, contains image sequences acquired using cam-
eras mounted on two mobile robot platforms. The two databases were recorded
within the same indoor office environment. They capture a wide spectrum of natu-
ral variations introduced by both changing illumination and human activity. Each
database can be seen as a different approach to the problem; thus, they can be used
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to analyze different properties of a place recognition system.
We assessed both databases with a large set of baseline experiments, using a

fully supervised visual place recognition system. The method employs a large-
margin discriminative classifier and two different image representations: a local
representation, based on SIFT features, and a global representation, consisting of
multidimensional histograms of receptive fields. We conducted the experiments
according to an experimental procedure designed to contain problems of varying
complexity and exploit most of the variability captured in the datasets. The exper-
imental procedure can be seen as a part of the benchmark proposed in this paper.
We started from experiments performed under stable illumination settings. We
then performed experiments testing the robustness of the algorithms to changing
illumination and human activity. Finally, we conducted experiments with large
viewpoint variations and different acquisition methods.

The reported results show that the method is able to recognize places with high
precision when training and testing is performed within a relatively stable environ-
ment, or when enough training data is provided. At the same time, there is space
for improvement in the robustness to illumination and large viewpoint variations.
The database still poses a challenge to the system which should provide stable
performance in presence of variability usually observed in real-world environments.

Finally, the dependency between the overall performance of the system and the
particular set of data becomes visible as the complexity of the problem grows. More-
over, different methods (in this case different image descriptors) perform differently
for different types of variations. This emphasizes the need for an extensive exper-
imental evaluation, on a common benchmark dataset, for comparison of different
approaches. When realistic datasets are available, more extensive evaluation can be
conducted as the data can be reused, fully exploited, and less effort is required for
acquisition and annotation. The authors believe that benchmarking solutions, such
as the one presented in this paper, will make an impact on the research on visual
place recognition and topological localization as was the case for other localization
and visual recognition problems.
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Abstract

The capability to learn from experience is a key property for autonomous cog-
nitive systems working in realistic settings. To this end, this paper presents an
SVM-based algorithm, capable of learning model representations incrementally while
keeping under control memory requirements. We combine an incremental extension
of SVMs [43] with a method reducing the number of support vectors needed to build
the decision function without any loss in performance [14] introducing a parameter
which permits a user-set trade-off between performance and memory. The resulting
algorithm is able to achieve the same recognition results as the original incremen-
tal method while reducing the memory growth. Our method is especially suited to
work for autonomous systems in realistic settings. We present experiments on two
common scenarios in this domain: adaptation in presence of dynamic changes and
transfer of knowledge between two different autonomous agents, focusing in both
cases on the problem of visual place recognition applied to mobile robot topological
localization. Experiments in both scenarios clearly show the power of our approach.

1 Introduction

Many recent advances in fields such as computer vision and robotics have been
driven by the ultimate goal of creating artificial cognitive systems able to perform
human-like tasks. Several attempts have been made to create integrated cognitive
architectures and implement them, for instance, on mobile robots [3, 22, 1, 2]. The
ability to learn and interpret complex sensory information based on the previous
experience, inherently connected with cognition, has been recognized as crucial
and vastly researched [41, 39, 32]. In most cases, the recognition systems used
are trained offline, i.e. they are based on batch learning algorithms. However, in
the real, dynamic world, learning cannot be a single act. It is simply not possible
to create a static model which could explain all the variability observed over time.
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Continuous information acquisition and exchange, coupled with an ongoing learning
process, is necessary to provide a cognitive system with a valid world representation.

In artificial autonomous agents constrained by limited resources (such as mo-
bile robots), continuous learning must be performed in an incremental fashion. It
is obviously not feasible to rebuild the internal model from scratch every time new
information arrives, neither it is possible to store all the previously acquired data
for that purpose. The model must be updated and the updating process must
have certain properties. First, the knowledge representation must remain compact
and free from redundancy to fit into the limited memory and maintain a fixed
computational complexity. We call this property controlled memory growth. Sec-
ond, in the continuous learning scenario, a model cannot grow forever even though
new information is constantly arriving. Thus, the updating process should be able
to gradually filter out unnecessary information. We call this property forgetting
capability.

Discriminative methods have become widely popular for visual recognition,
achieving impressive results on several applications [47, 18, 13]. Within discrimi-
native classifiers, SVM techniques provide powerful tools for learning models with
good generalization capabilities; in some domains like object and material catego-
rization, SVM-based algorithms are state of the art [7, 16]. This makes it worth it
to investigate whether it is possible to perform continuous learning with this type
of methods. Several incremental extensions of SVMs have been proposed in the
machine learning community [12, 8, 43, 34]. Between these methods, the approxi-
mate techniques [12, 43] seem better suited for visual recognition because, at each
incremental step, they discard non-informative training vectors, thus reducing the
memory requirements. Other methods, such as [8, 34], instead require to store in
memory all the training data, eventually leading to a memory explosion; this makes
them unfit for real-time autonomous systems.

This paper presents an SVM-based incremental method which performs like
the batch algorithm while reducing the memory requirements. We combine an
approximate technique for incremental SVM [43] with an exact method that reduces
the number of support vectors needed to build the decision function without any
loss in performance [14]. This results in an algorithm performing as the original
incremental method with a reduction in the memory requirements. We then present
an extension of the method for the exact simplification of the support vector solution
[14]. We introduce a parameter that links the performance of an SVM to the amount
of vectors that is possible to discard. This allows a user-set trade-off between
performance and memory reduction.

We evaluate the suitability of our method for autonomous cognitive systems in
two challenging scenarios: adaptation in presence of dynamic changes and transfer
of knowledge between autonomous agents. In both cases, we concentrate on the
problem of visual place recognition applied to mobile robot topological localization.
The problem is important from the point of view of engineering cognitive systems,
as it allows to tie semantics with space representations and provides solutions for
typical problems with purely metric localization. However, it is also a challenging
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recognition problem as it requires processing of large amounts of high-dimensional
visual information which is noisy and dynamic in nature. In this context, the
memory and computational efficiency become one of the most important properties
of the learning algorithm determining the design choice.

In our considerations, we first focus on the scenario in which the incremental
learning is used to provide adaptability to different types of variations observed
in real-world environments. In our previous work [38, 36], we presented a purely
appearance-based model able to cope with illumination and pose changes, and
we showed experimentally that it could achieve satisfactory performances when
considering short time intervals between the acquisition of the training and testing
data. Nevertheless, a room’s appearance is doomed to change dramatically over
time because it is used: chairs are pushed around, objects are taken in/out of
drawers, furniture and paintings are added, or changed, or re-arranged; and so forth.
As it is not possible to predict a priori how a room is going to change, the only
possible strategy is to update the representation over time, learning incrementally
from the new data recorded during use.

As a second scenario, we consider the case when a robot, proficient in solv-
ing the place recognition task within a known environment, transfers its visual
knowledge to another robotic platform with different characteristics, which is a
tabula rasa. The ability to transfer knowledge between different domains enables
humans to learn efficiently from small number of examples. This observation in-
spired robotics and machine learning researchers to search for algorithms able to
exploit prior knowledge so to improve performance of artificial learners and speed
up the learning process. To tackle this problem, it is necessary an efficient way of
exploiting the knowledge transferred from a different platform as well as updating
the internal representation when new training data are available. The knowledge
transfer scheme should be adaptive and privilege newest data so to prevent from
accumulating outdated information. Finally, the solution obtained starting from a
transferred model should gradually converge to the one learned from scratch, not
only in terms of performance on a task but also of required resources (e.g. memory).

To achieve these goals, we used our memory-controlled incremental SVM and
we evaluated its performance in terms of accuracy, memory growth, complexity and
forgetting capability. We compare the results obtained by our method with those
achieved by the batch algorithm and by two other incremental extensions of SVMs,
one approximate (the fixed-partition incremental SVM, [43]) and one exact (online
independent SVM, [34]). We evaluated the algorithms on a visual place recognition
database acquired using two mobile robot platforms [38], which we extended with
new data acquired 6 months later using the same hardware. Then, we confirmed the
results on another database acquired in a different environment and using different
hardware [37]. To test the adaptability of the recognition system, we performed
topological localization experiments under realistic long-term variations. To test
the knowledge transfer capabilities, we performed experiments in case of which
visual knowledge captured in the SVM model was gradually exchanged between
the two mobile robot platforms. The experiments clearly show the power of our
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approach in both scenarios, while illustrating the need for incremental solutions in
artificial cognitive systems.

The rest of the paper is organized as follows: after a review of related work
(Section 2), Section 3 gives our working definition of visual place recognition for
robot localization. Section 4 reviews SVMs, it introduces the memory-controlled
incremental SVM algorithm, which will constitute a building block of the adaptive
place recognition system and a base for our knowledge transfer technique, and it
briefly describes two other incremental extensions of SVMs against which we will
benchmark our approach. Section 5 describes our experimental setup; Section 7
concentrates on the adaptation problem and presents experimental evaluation of
the algorithms in this context. Finally, Section 8 gives details of our approach to
the transfer of knowledge and shows its effectiveness with a set of experiments. The
paper concludes with a summary and possible directions for future work.

2 Related Work

In the last years, the need for solutions to such problems as robustness to long-term
dynamic variations or transfer of knowledge is more and more acknowledged. In
[39], the authors tried to deal with long-term visual variations in indoor environ-
ments by combining information acquired using two sensors of different character-
istics. In [49], the problem of invariance to seasonal changes in appearance of an
outdoor environment is addressed. Clearly, adaptability is a desirable property of
a recognition system. At the same time, Thrun and Mitchell [46, 30] studied the
issue of exchanging knowledge related to different tasks in the context of artificial
neural networks and argued for the importance of knowledge-transfer schemes for
lifelong robot learning. Several attempts to solve the problem have also been made
from the perspective of Reinforcement Learning, including the case of transferring
learned skills between different RL agents [28, 20].

The work conducted in the fields of cognitive robotics and vision stimulated the
research in the machine learning community directed towards developing extensions
for algorithms that were commonly used due to their superior performance but were
missing the ability to be trained incrementally. As a result, methods such as In-
cremental PCA have been invented and successfully applied e.g. for mobile robot
localization [4, 42]. As it was already mentioned, several incremental extensions
have been introduced also for Support Vector Machines [12, 8, 43]. Between these
methods, the approximate techniques[12, 43] seem better suited for visual recog-
nition because, at each incremental step, they discard non-informative training
vectors, thus reducing the memory requirements. Other methods, such as [8, 34],
or simple KNN-based solutions, instead require to store in memory all the training
data, eventually leading to a memory explosion. This limits their usefulness for
complex real-world problems involving continuous learning of visual patterns.

Despite the fact that the approximate incremental SVM extensions allow to
reduce the amount of data stored during the learning process, there is no guarantee
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Figure 1: A schematic representation of our visual place recognition system for
robot localization.

that the continuously updated model will not grow forever. Additionally, the results
of experiments that can be found in the literature do not give a clear answer if
it is possible to apply such methods for complex problems such as visual place
recognition or transfer of visual knowledge.

3 Visual Place Recognition for Robot Localization

In this section, we give our working definition of visual place recognition, explaining
how it can be applied to mobile robot topological localization. We define a place
as a nameable segment of a real-world environment, uniquely identifiable because
of its specific functionality and/or appearance. Examples of places, according to
this definition, are a kitchen, an office, a corridor, and so forth. We adopt the
appearance-based paradigm, and we assume that a realistic scene can be represented
by a visual descriptor without any loss of discriminative information. We consider a
fully supervised, incremental learning scenario: we assume that, at each incremental
step, every room is represented by a collection of images which capture its visual
appearance under different viewpoints, at a fixed time and illumination setting.
During testing, the algorithm is presented with images of the same rooms, acquired
under similar viewpoints but possibly under different illumination conditions and
after some time, with a time range going from some minutes to several months.
The goal is to recognize correctly each single image seen by the system. Fig. 1
illustrates the approach.

A typical application for an indoor place recognition system is topological robot
localization. The localization problem is vastly researched. This resulted, over the
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years, in a broad range of approaches spanning from purely metric [19, 11, 52, 15],
to topological [48, 31, 39], and hybrid [45, 6]. Traditionally, sonar and/or laser have
been the sensory modalities of choice [33, 31]. Yet, the inability to capture many
aspects of complex realistic environments leads to the problem of perceptual alias-
ing [23], and greatly limits the usefulness of such methods for semantic mapping.
Recent advances in vision have made this modality emerge as a natural and viable
solution for localization problems. Vision provides richer sensory input allowing
for better discrimination. It opens new possibilities for building cognitive systems,
actively relying on semantic context. Not unimportant is the cost effectiveness,
portability and popularity of visual sensors. As a result, despite the complexity of
the problem, this research line is attracting more and more attention, and several
methods have been proposed using vision alone [40, 48, 47, 36, 41], or combined
with more traditional range sensors [21, 44, 39].

Our visual place recognition system uses SVM-based discriminative place mod-
els trained on global and local image features. These features are described in
details in Section 5. The classification algorithm is introduced in Section 4. In
our experiments, we always used only a single image as input for the recognition
system. This makes the recognition problem harder, but also it makes it possible to
perform global localization where no prior knowledge about the position is available
(e.g. in case of the kidnapped robot problem). Spatial or temporal filtering can be
used together with the presented method to enhance performance.

4 Memory-controlled Incremental SVM

This section describes our algorithmic approach to incremental learning of visual
place models. We propose a fully supervised, SVM-based method with controlled
memory growth that tends to privilege newest information over older data. This
leads to a system able to adapt over time to the natural changes of a real-world
setting, while maintaining a limited memory size and computational complexity.

The rest of this section describes the basic principles of Support Vector Ma-
chines (Section 4.1), a popular incremental extension of the basic algorithm (Sec-
tion 4.2), our memory-controlled version of incremental SVM (Section 4.3) and an
exact method based on a similar intuition (Section 4.4), with which we will compare
our approach.

4.1 SVM: the batch algorithm

Consider the problem of separating the set of training data (x1, y1), . . . (xm, ym)
into two classes, where xi ∈ ℜN is a feature vector and yi ∈ {−1, +1} its class label
(for multi-class extensions, we refer the reader to [10, 50]). If we assume that the two
classes can be linearly separated when mapped to some higher dimensional Hilbert
space H by x → Φ(x) ∈ H (see [10, 50] for solutions to non-separable cases), the
optimal hyperplane is the one which has maximum distance to the closest points
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in the training set, resulting in a classification function:

f(x) = sgn

(
m∑

i=1

αiyiK(xi, x) + b

)
, (1)

where K(x, y) = Φ(x) · Φ(y) is the kernel function. Most of the αi’s take the
value of zero; xi with nonzero αi are the Support Vectors (SV). Different kernel
functions correspond to different similarity measures. Choosing a suitable kernel
can therefore have a strong impact on the performance of the classifier. Based on
results reported in the literature [38], here we used the two following kernels:

• The χ2 kernel [5] for histogram-like global descriptors:

K(x, y) = exp{−γχ2(x, y)}, χ2(x, y) =
N∑

i=1

(xi − yi)2

xi + yi

;

• The matching kernel [51] for local features:

K(Lh, Lk) =
1

nh

nh∑

jh=1

max
jk=1,...,nk

{
Kl(L

jh

h , L
jk

k )
}

,

where Lh, Lk are local feature sets and L
jh

h , L
jk

k are two single local features.
The sum is always calculated over the smaller set of local features and only
some fixed amount of best matches is considered in order to exclude outliers.
The local feature similarity kernel Kl can be any Mercer kernel. We used the
RBF kernel based on the Euclidean distance for the SIFT [26] features:

Kl(L
jh

h , L
jk

k ) = exp
{

−γ||Ljh

h − L
jk

k ||2
}

.

4.2 SVM: an Incremental Extension

Among the incremental SVM extensions proposed so far [43, 12, 8], approximate
methods seem to be the most suitable for visual recognition, because they discard
a significant amount of the training data at each incremental step. Exact methods
instead need to retain all training samples in order to preserve the convexity of the
solution at each incremental step. As a consequence, they require huge amounts of
memory when employed in realistic, continuous learning scenario as the one we con-
sider here. Approximate methods avoid this problem by sacrificing the guaranteed
optimality of the solution. Still, several studies showed that they generally achieve
performances very similar to those obtained by an SVM trained on the complete
data set (see [12] and references therein), because at each incremental step the
algorithm remembers the essential class boundary information regarding the data
seen so far (in form of support vectors). This information contributes properly to
generate the classifier at the next iteration.
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Figure 2: The fixed-partition incremental SVM algorithm.

Once a new batch of data is loaded into memory, there are different possibilities
for performing the update of the current model, which might discard a part of the
new data according to some fixed criteria [12, 43]. For all the techniques, at each
step only the learned model from the data previously seen (preserved in form of
SV) is kept in memory. In this paper we will consider the fixed-partition method
[43]. Here the training data set is partitioned in batches of some size k:

T = {T1, T2, . . . Tn},

with Ti = {(xi
j , yi

j)}k
j=1. At the first step, the model is trained on the first batch

of data T1, obtaining a classification function

f1(x) = sgn

(
m1∑

i=1

α1
i y1

i K(x1
i , x) + b1

)
. (2)

At the second step, a new batch of data is loaded into memory and added to the
current set of support vectors; then, the new training set becomes

T inc
2 = {T2 ∪ SV 1}, SV 1 = {(x1

i , y1
i )}m1

i=1,

where SV 1 are the support vectors learned at the first step. The new classification
function will be:

f2(x) = sgn

(
m2∑

i=1

α2
i y2

i K(x2
i , x) + b2

)
.

Thus, as new batches of data points are loaded into memory, the existing support
vector model is updated, so to generate the classifier at that incremental step. The
method is illustrated in Fig. 2. Note that this incremental method can be seen as
an approximation of the chunking technique used for training SVM [10, 50]. In-
deed, the chunking algorithm is an exact decomposition which iterates through the
training set to select the support vectors. The fixed-partition incremental method
instead scan through the training data just once, and once discarded, does not con-
sider them anymore. The fixed-partition incremental algorithm has been tested on
several benchmark databases commonly used in the machine learning community
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[12], obtaining good performances comparable to the batch algorithm and other
approximate methods. An open issue is that in principle there is no limitation
to the memory growth. Indeed, several experimental evaluations show that, while
approximate methods generally achieve classification performances equivalent to
those of batch SVM, the number of SV tends to grow proportionally to the number
of incremental steps (see [12] and references therein).

4.3 Memory-controlled Incremental SVM

The core idea of the memory-controlled incremental SVM is that the set of support
vectors X = {xi}

m
i=1 in Eq. (1) is not guaranteed to be linearly independent.

Based on this observation, it is possible to reduce the number of support vectors of
a trained classifier, eliminating those which can be expressed as a linear combination
of the others in the feature space, as proposed in [14] for reducing the complexity
of the SVM solution. By updating the weights accordingly, it is ensured that
the decision function is exactly the same as the original one. More specifically,
let us suppose that the first r support vectors are linearly independent, and the
remaining m − r depend linearly on those in the feature space: ∀j = r + 1, . . . m,
xj ∈ span{xi}

r
i=1. Then it holds

K(x, xj) =
r∑

i=1

cijK(x, xi), (3)

and the classification function (1) can be rewritten as

f(x) = sgn




r∑

i=1

αiyiK(x, xi) +
m∑

j=r+1

αjyj

r∑

i=1

cijK(x, xi) + b


 . (4)

If we define the coefficients γij such that αjyjcij = αiyiγij and γi =
∑m

j=r+1 γij ,
then Eq. (4) can be written as

f(x) = sgn




r∑

i=1

αiyiK(x, xi) +
r∑

i=1

αiyi

m∑

j=r+1

γijK(x, xi) + b




= sgn

(
r∑

i=1

αi(1 + γi)yiK(x, xi) + b

)
= sgn

(
r∑

i=1

α̂iyiK(x, xi) + b

)
, (5)

where

α̂i = αi(1 + γi) = αi


1 +

m∑

j=r+1

αjyjcij

αiyi


 .
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The αi coefficients can be pre-multiplied by the class labels α′
i = αiyi which results

in a simple equation that can be used to obtain the weights of the reduced classifier:

α̂′
i =

{
α′

i +
∑m

j=r+1 α′
jcij for i = 1, 2, . . . , r

0 for i = r + 1, r + 2, . . . , m.
(6)

Thus, the resulting classification function (Eq. (5)) requires now m − r less kernel
evaluations than the original one.

The linearly independent subset of the support vectors as well as the coefficients
cij can be found by applying methods from linear algebra to the support vector
matrix given by

K =




K(x1, x1) · · · K(x1, xm)
...

. . .
...

K(xm, x1) · · · K(xm, xm)


 , (7)

We employ the QR factorization with column pivoting [17] for this purpose. The QR
factorization with column pivoting algorithm is a widely used method for selecting
the independent columns of a matrix. The algorithm allows to reveal the numerical
rank of the matrix with respect to a parameter τ , which acts as a threshold in
defining the condition of linear dependence. Additionally, it performs a permutation
of the columns of the matrix so that they are ordered according to the degree of
their relative linear independence. Consequently, if for a given value of τ the rank
of the matrix is r, then the linearly independent columns will occupy the first r
positions.

The QR factorization with column pivoting of the matrix K ∈ ℜm×m is given
by

KΠ = QR, (8)

where Π ∈ ℜm×m is a permutation matrix, Q ∈ ℜm×m is orthogonal, and R ∈
ℜm×m is upper triangular. If we assume that the rank of the matrix K with respect
to the parameter τ equals r, then the matrices can be decomposed as follows:

[
K1 K2

]
=
[

Q1 Q2

] [ R11 R12

0 R22

]
, (9)

where the columns of K1 ∈ ℜm×r create a linearly independent set, the columns
of K2 ∈ ℜm×m−r may be expressed as a linear combination of the columns of K1,
Q1 ∈ ℜm×r, Q2 ∈ ℜm×m−r, R11 ∈ ℜr×r, R12 ∈ ℜr×m−r, R22 ∈ ℜm−r×m−r.

The products of the QR factorization can be used to obtain the coefficients cij

as follows

C =




c1,r+1 . . . c1,m

...
. . .

...
cr,r+1 . . . cr,m


 = R−1

11 QT
1 K2. (10)

The coefficients together with the permutation matrix Π ∈ ℜm×m and the number
of the linearly independent support vectors r are sufficient to obtain the reduced
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solution. Using matrix notation, Eq. (6) can be expressed as follows

{
α̂′

1 = α′
1 + R−1

11 QT
1 K2α′

2

α̂′
2 = 0

(11)

The rank r of the matrix K can be estimated by thresholding ‖R22‖2 with
the value of the parameter τ . This means that, in practice, the choice of the τ
value determines the number of linearly independent support vectors retained by
the algorithm. For instance, by choosing a value of τ of 0.1 one will select a number
of linearly independent support vectors smaller than by choosing a τ value of 0.01.
This has two concrete effects on the algorithm:

1. As the value of τ increases, the number of support vectors decreases. This
means that, by tuning τ , it is possible to reduce the memory requirements
and to increase speed during classification;

2. At the same time, as τ increases, Eq. (5) will become more and more an
approximation of the exact solution, because we are considering as linearly
dependent vectors that are not. Therefore, we are not able to preserve fully
their informative content. Still, we don’t lose all the information carried by
the discarded support vector xj , as its weight αj is used to compute the
updated value of the weights α̂i for the remaining support vectors. This
should result in a graceful decrease of classification performance compared to
the optimal solution.

We propose to combine this model simplification with the fixed-partition incre-
mental algorithm, adding the reduction process at each incremental step. We call
the new algorithm memory-controlled incremental SVM. It can be illustrated as
follows:

1. Train. The algorithm receives the first batch of data T1. It trains an SVM
and obtains a set of support vectors SV 1.

2. Find linearly dependent SVs. The algorithm finds permutation of SV 1

that orders the SVs according to the degree of their linear independence.

3. Find τ . The algorithm searches for the value of τ , τ⋆, that satisfies certain
requirements regarding the number of support vectors or estimated perfor-
mance of the classifier.

4. Reduce. The algorithm computes the reduced solution determined by the
chosen τ⋆. After this step, the reduced model contains a subset of the original
SVs, ŜV 1 = red(SV 1), and can be used to classify test data.

5. Retrain. As the new batch of data T2 arrives, step (1) is repeated using as
training vectors T̂ inc

2 = {T2 ∪ ŜV 1}.
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For applications that require speed and/or have limited memory requirements,
at step (3) of the algorithm, one can tune τ so to obtain at each incremental step
a predefined maximum number of stored SV. For applications where accuracy is
more relevant, one can estimate at each incremental step the τ corresponding to a
pre-defined maximum decrease in performance. This can be done on the batch of
data Ti at each step, dividing Ti in two subsets and training on one and testing on
the other or by applying the leave-one-out strategy. We denote with the symbol Θ
the percentage of the original classification rate that is guaranteed to be preserved
after the reduction in this case.

In order to apply the method to multi-class problems, we used the one-vs-one
multi-class extension. In a set of preliminary experiments comparing the one-vs-one
and one-vs-all algorithms, we did not observe significant differences in the behavior
of both methods (for further details, we refer the reader to [35]). The one-vs-one
algorithm, given M classes, trains M(M −1)/2 two-class SVMs, one for each pair of
classes. In case of the place recognition experiments, this method obtained smaller
training times due to large number of training samples and relatively small number
of classes.

4.4 Online Independent Incremental SVM

The idea to exploit the linear independence in the feature space has also been imple-
mented in an online extension of SVMs, called Online Independent Support Vector
Machine (OISVM, [34]). OISVM selects incrementally basis vectors that are used
to build the solution of the SVM training problem, based upon linear independence
in the feature space. Vectors that are linearly dependent on already stored ones
are rejected. An incremental minimization algorithm is employed to find the new
minimum of the cost function. This approach reduces considerably the complexity
of the solution and therefore the testing time. As OISVM is an exact method, it
requires to store all data acquired by the system during its whole life span for the
update of the cost function. In many cases (e.g. in case of place recognition), the
data samples are multi-dimensional and require a substantial amount of storage.
Additionally, the learning algorithm needs to build a gram matrix the size of which
is quadratic in the number of training samples. This leads inevitably to a memory
explosion when the number of incremental steps grows, as we will show experimen-
tally. Through its heuristics, the memory-controlled algorithm allows to decrease
the number of training data samples at each incremental step and thus reduce the
memory consumption.

5 Experimental Setup

This section describes our experimental setup. We first describe the IDOL2 and
COLD-Freiburg databases, on which we will run all the experiments reported in
this paper (Sections 5.1 and 5.2), then we briefly describe the feature representa-
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Figure 3: Robot platforms employed in the experiments with the IDOL2 database
and images illustrating the appearance of the five rooms from the robots’ the point
of view.

tions used in the experiments (Section 5.3). Finally, we discuss the performance
evaluation measure and parameter selection method (Section 5.4).

5.1 The IDOL2 Database

The IDOL2 (Image Database for rObot Localization 2, [27]) database contains 24
image sequences acquired by a perspective camera, mounted on two mobile robot
platforms. Both mobile robot platforms, the PeopleBot Minnie and the PowerBot
Dumbo, are equipped with cameras. On Minnie the camera is located 98cm above
the floor, whereas on Dumbo its height is 36cm. Fig. 3 shows both robots and some
sample images from the database acquired by the robots from very close viewpoints,
illustrating the difference in visual content. These images were acquired under the
same illumination conditions and within short time spans.

The robots were manually driven through an indoor laboratory environment and
the images were acquired at a rate of 5fps. Each image sequence consists of 800-
1100 frames automatically labeled with one of five different classes (Printer Area
[PA], CoRridor [CR], KiTchen [KT], Two-persons Office [TO], and One-person Of-
fice [OO]). The labeling is based on the camera’s position given by the laser-based
localization system proposed in [15]. The acquisition procedure was repeated sev-
eral times to capture the changes in illumination and varying weather conditions
(sunny, cloudy, and night). Also, special care was taken to capture people’s activ-
ities, change of location for objects and for furniture; for part of the environment
(two-persons office) we were able to record a significant change in decoration which
occurred over a time span of 6 months. Fig. 4 shows some sample images from the
database, illustrating these variations. It is important to note that each single se-
quence captures the appearance of the considered experimental environment under
stable illumination settings and during the short span of time that is required to
drive the robot manually around the environment.

The 24 image sequences are divided as follows: for each robot platform and
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Figure 4: Sample images illustrating the variations captured in the IDOL2 database.
Images in the top row show the variability introduced by changes in illumination for
two rooms. The second and third rows show people appearing in the environment
(first three images, second row) as well as the influence of people’s activity including
some larger variations which happened over a time span of 6 months. Finally, the
bottom row illustrates the changes in viewpoint observed for a series of images
acquired one after another in 1.2 second.

for each type of illumination conditions (cloudy, sunny, night), there are four se-
quences recorded. Of these four sequences, the first two were acquired six months
before the last two. This means that, for every robot we always have subsets of
sequences acquired under similar conditions and close in time, as well as subsets
acquired under different conditions and distant in time. This makes the database
useful for several types of experiments. It is important to note that, even for the
sequences acquired within a short time span, variations still exist from everyday
activities and viewpoint differences during acquisition. For further details, we refer
the reader to [27].

5.2 The COLD-Freiburg Database

The COLD-Freiburg database is a collection of image sequences acquired at the
Autonomous Intelligent System Laboratory at the University of Freiburg and con-
stitutes a part of the COsy Localization Database (COLD, [37]). The acquisi-
tion procedure of the COLD-Freiburg database was similar to that of the IDOL2
database. Image sequences were acquired using a mobile robot platform, under
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Corridor Large office Stairs area Printer area Kitchen (Night)

1-person office 2-persons office 1 2-persons office 2 Bathroom Kitchen (Sunny)

Figure 5: Sample images from the COLD-Freiburg database illustrating the rooms
in which acquisition was performed and different types of captured variability in-
troduced by human activity and changes in illumination.

several illumination conditions (sunny, cloudy, night) and across several days. As
in case of IDOL2, special care was taken to capture people’s activities and change
of location of objects and furniture. However, the acquisition was performed using
both perspective and omnidirectional cameras, in several parts of a different envi-
ronment and using different hardware. For further details, we refer the reader to
[37].

For our experiments, we employed only the perspective images and we selected
6 different extended sequences from the database. The extended sequences were
acquired in a larger section of the environment consisting of 9 rooms of different
functionality: a corridor, a printer area, a kitchen, a large office, 2 two-persons
offices, a one-person office, a bathroom and a stairs area. The sequences contained
on average 2547 frames. The 6 sequences were selected to mimic the organization of
the IDOL2 database. For each illumination setting, we chose 2 sequences acquired
under similar conditions and close in time.

5.3 Image Descriptors

Two visual descriptors, global and local, were employed during our experiments.
We used Composed Receptive Field Histograms (CRFH, [25]) as global features.
CRFHs are a multi-dimensional statistical representation of the occurrence of re-
sponses of several image descriptors applied to the image. This idea is illustrated
in Fig. 6. Each dimension corresponds to one descriptor and the cells of the his-
togram count the pixels sharing similar responses of all descriptors. This approach
allows to capture various properties of the image as well as relations that occur be-
tween them. Multi-dimensional histograms can be extremely memory consuming
and computationally expensive if the number of dimensions grows. In [25], Linde
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Figure 6: The process of generating multi-dimensional receptive field histograms
using the first-order derivatives computed at the scale t = 4 and the number of bins
per dimension set to 16.

Figure 7: Examples of images marked with interest points detected using the Harris-
Laplace detector. The radius of the circles illustrate the scale at which the points
were detected.

and Lindeberg suggest to exploit the fact that most of the cells are usually empty,
and to store only those that are non-zero. This representation allows not only to
reduce the amount of memory required, but also to perform operations such as
histogram accumulation and comparison efficiently.

The idea behind local features is to represent the appearance of an image only
around a set of characteristic points known as the interest points. The similarity
between two images is then measured by solving the correspondence problem. Lo-
cal features are known to be robust to occlusions and viewpoint changes, as the
absence of some interest points does not affect the features extracted from other
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local patches. The process of local feature extraction consists of two stages: inter-
est point detection and description. The interest point detector identifies a set of
characteristic points in the image that could be re-detected even in spite of various
transformations (e.g. rotation and scaling) and variations in illumination condi-
tions. The role of the descriptor is to extract robust features from the local patches
located at the detected points. In this paper, we used the scale, rotation, and trans-
lation invariant Harris-Laplace detector [29] and the SIFT descriptor [26]. Fig. 7
shows two examples of interest point detected on images of indoor environments.

5.4 Parameter Selection and Performance Evaluation

For all experiments, the kernel parameter and the SVM cost parameter C were
determined via cross validation, separately for each database. Then, the obtained
values were used as constants for all the incremental learning experiments. For all
experiments, we used the implementation of SVM provided by the libsvm library [9].

Since the employed datasets are unbalanced (e.g. in case of the IDOL2 database
there are on average 443 samples for CR, 114 for 1pO, 129 for 2pO, 133 for KT
and 135 for PR), as a measure of performance for the reported results and param-
eter selection, we used the average of classification rates obtained separately for
each actual class. For each single experiment, the percentage of properly classified
samples was first calculated separately for each room and then averaged with equal
weights independently of the number of samples acquired in the room. This allowed
to eliminate the influence that large classes could have on the performance score.

In our experiments, we observed a few percent improvement of the final results
when a performance measure that is not invariant to unbalanced classes was used.
This was caused by very good performance of the system for the corridor class.
The was visually distinct from the other classes and was represented by the largest
number of samples. As a result, in our experiments, the measure was used mainly
to compensate for the influence of the corridor class.

6 Experiments on Support Vector Reduction

To begin with, we run some experiments to evaluate the behavior of the support
vector reduction algorithm described in Section 4.3. We used two sequences from
the IDOL2 database [27], one as train set and the other as test set. We chose
CRFH as an image descriptor, and trained SVMs with four different types of kernels:
linear kernel, RBF kernel, χ2 kernel and histogram intersection (Hist.-Inte.) kernel.
First, the SVM classifier was trained using the SMO algorithm. Then, starting
from the obtained discriminative function, the reduction algorithm was tested, for
different values of the reduction threshold τ . After each experiment (for each value
of τ), the original model was reduced and the number of kept support vectors
and the performance of the reduced model were tested on the same test set. If the
classification rate dropped below 80% of the initial classification rate, i.e. Θ < 80%,
the process was stopped. Fig. 8 reports the percentage of the reduced number of
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Figure 8: Percentage of the reduced number of Support Vectors (SV) compared to
the initial model (left), and the percentage of the original classification rate that
is preserved after the reduction (right), both as a function of different value of τ
for various kernel types. The initial number of Support vectors (SV) and initial
classification rate (Acc.) were reported for each kernel.

Support Vectors (SV) compared to the initial model (left), and the percentage of the
initial classification rate that is preserved after the reduction (right), as a function
of different value of τ . We see that, apart for the linear kernel, the algorithm
behaves as expected, obtaining a gentle decrease in performance as the number of
stored support vectors is being reduced. It is worth noting that the linear kernel
is known for being not a good metric for histogram-like features, as instead all the
other three kernels are. This might explain its different behavior.

7 Experiments on Adaptation

As a first application of our method, we present experiments on visual place recog-
nition in highly dynamic indoor environments. We consider a realistic scenario,
where places change their visual appearance because of varying illumination con-
ditions or human activity. Specifically, we focus on the ability of the recognition
algorithm to adapt to these changes over long periods of time. As it is not possi-
ble to predict in advance the type of changes that will occur, adaptation must be
performed incrementally.

We conducted two series of experiments to evaluate the effectiveness of the
memory-controlled incremental SVM for this task. In the first, we considered a
case in which the variability observed by the recognition system was constrained to
changes introduced by long-term human activity under stable illumination condi-
tions. Such experimental procedure allowed us to thoroughly examine the properties
of each of the incremental methods in a more controlled setting. The corresponding
experiments are reported in Section 7.1. In the second, we considered a real-world,
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unconstrained scenario where the algorithms had to incrementally gain robustness
to variations introduced by changing illumination and short-term human activity,
and then, to use their adaptation abilities to handle long-time environment changes.
The corresponding experiments are reported in Section 7.2. In both experiments,
we compared our approach with the fixed-partition incremental SVM, OISVM and
the batch method. This last algorithm is used here purely as a reference, as it is
not incremental. We used CRFH global image features. We tested a wide variety
of combinations of image descriptors, with several scale levels [35]. On the basis of
an evaluation of performance and computational cost, we built the histograms from
normalized Gaussian derivative filters applied to the images at two different scales,
and we used χ2 as a kernel for SVM. We also performed experiments using SIFT
local features combined with the matching kernel for SVM. Both types of features
previously proved effective for the place recognition task [39, 38].

7.1 Experiments with Constrained Variability

In the first series of experiments, we evaluated the properties of the memory-
controlled incremental SVM in a simplified scenario. We therefore trained the
system on three sequences acquired under similar illumination conditions, with
the same robot platform. The fourth sequence was used for testing. Training
on each sequence was performed in 5 steps, using one subsequence at a time, re-
sulting in 15 steps in total. We considered 36 different permutations of training
and test sequences. Here we report average results obtained on both global and
local features by the three incremental algorithms (fixed-partition, OISVM, and
memory-controlled) as well as the batch method. We tested the memory-controlled
algorithm using two different values of the parameter Θ, i.e. Θ = 99%, 95%. This
corresponds to the maximum accepted reduction of the recognition rate of 1% and
5% respectively, as explained in Section 4.3. Similarly for OISVM, we used three
different values of the parameter η that determines how sparse the final solution is
going to be (as in [34]).

Fig. 9, left, shows the recognition rates obtained at each incremental step by all
methods and for both feature types. Fig. 9, right, reports the number of training
samples that had to be stored in the memory at each step of the incremental
procedure. First, we see that OISVM achieves very good performance similar to the
batch method. However, both methods suffer from the same problem: they require
all the training samples to be kept in the memory during the whole learning process.
This makes them unsuitable for realistic scenarios, particularly in cases when the
algorithm should be used on a robotic platform with intrinsically limited resources.
The fixed-partition algorithm achieves identical performance as the batch method,
while greatly reducing the number of training samples that need to be stored in
the memory at each incremental step. However, despite that all the algorithms
show plateaus in the classification rate whenever the model is trained on similar
data (coming from consecutive subsequences), the number of support vectors grows
roughly linearly with the number of training steps.
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(a) Classification rate and number of training samples stored for global features.
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(b) Classification rate and number of training samples stored for local features.

Figure 9: Average results obtained for the experiments with constrained variability
for three incremental methods and the batch algorithm.

We see that for the memory-controlled incremental SVM, both the classification
rate and the number of stored support vectors show plateaus every five incremen-
tal steps (as opposed to the classification rate only in case of the other methods).
The method controls the memory growth much more successfully than the origi-
nal fixed-partition incremental technique. For instance, when we accept only one
percent reduction in classification (i.e. Θ = 99%), the number of support vectors
stored after the 15 steps is 39.6% (CRFH) and 43.7% (SIFT) lower than for the
fixed-partition incremental method. For Θ = 95%, the gain in memory compres-
sion is much greater than the overall decrease in performance. This feature, i.e.
the possibility to trade memory for a controlled reduction in performance, can be
potentially very useful for systems operating in realistic, open-ended learning sce-
narios and with limited memory resources. This approach would be even more
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appealing for systems which can compensate the loss in performance by doing in-
formation fusion over time or from multiple sensors. It is worth underlying that
the growth in the number of support vectors decreases over time (Fig. 9, bottom).
For example, for CRFH and Θ = 99%, the model trained on the second sequence
(step 6 to 10) grows by 115 vectors on average, but trained on the third sequence
(step 11 to 15) grows only by 74 vectors. This may indicate that the number of
SVs eventually tends to reach a plateau.

In order to gain a better understanding of the methods’ behavior, we performed
an additional analysis of the results. Fig. 11b shows, for the two approximate
incremental techniques, the average amounts of vectors (originating from each of
the three training sequences) that remained in the model after the final incremental
step (note that, in our case, this analysis would be pointless for OISVM, as it
requires storing all the training data). The figure illustrates how the methods weigh
instances, learned at different time, when constructing the internal representation.
We see that both fixed-partition and memory-controlled algorithms privilege new
data, as the SVs from the last training sequence are more represented in the model.
This phenomenon is stronger for the memory-controlled algorithm.

To get a feeling for how the forgetting capability works in case of the memory-
controlled method, we plotted the positions where the SVs were acquired, for Θ =
99% and the CRFH features. Fig. 10 reports results obtained for a model built after
the final incremental step. The positions were marked on three maps presented in
Fig. 10a,b,c so that each of the maps shows the SVs originating from only one
training sequence. These SVs could be considered as landmarks selected by the
visual system for the recognition task. As already shown in Fig. 11b, most of the
vectors in the model come from the last training sequence. Moreover, the number
of SVs from the previous training steps decreases monotonically, thus the algorithm
gradually forgets the old knowledge. It is interesting to observe how the vectors
from each sequence are distributed along the path of the robot. On each map, the
places crowded with SVs are mainly transition areas between the rooms, regions
of high variability, as well as places at which the robot rotated (thus providing
a lot of different visual cues without changing position). To illustrate the point,
Fig. 11a shows sample images acquired in the corridor, for which the SVs decay
quickly, and one of the offices, for which they are being preserved much longer. The
results indicate that the forgetting is not performed randomly. On the contrary,
the algorithm tends to preserve those training vectors that are most crucial for
discriminative classification, and first forgets the most redundant ones.

On the basis of these experimental findings, we can conclude that the memory-
controlled incremental SVM is the best method for vision-based robot localization
of those considered here. Therefore, in the rest of the paper we will use only this
algorithm, with Θ = 99%.
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(a) 78 Support Vectors from the 1st sequence.

(b) 111 Support Vectors from the 2nd sequence.

(c) 149 Support Vectors from the 3rd sequence.

Figure 10: Maps of the environment with plotted positions of the support vectors
stored in the model obtained after the final incremental step for one of the experi-
ments conducted using the memory-controlled technique with Θ = 99%. The sup-
port vectors were divided into three maps (a-c) according to the training sequence
they originate from. Additionally, each map shows the path of the robot during
acquisition of the sequence (arrows indicate the direction of driving). We observe
that the Support Vectors from the old training sequences were gradually eliminated
by the algorithm and this effect was stronger in regions with lower variability.
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Figure 11: Sample images captured in regions of different variability (left). Com-
parison of the average amounts of training vectors coming from the three sequences
that were stored in the final incremental model for the two approximate incremental
techniques (right).
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  Testing sequence 1

  Testing sequence 2

  Testing sequence 3

  Testing sequence 4

  Testing sequence 5

  Testing sequence 6

(a) Support vectors (b) Performance of memory-reduced

Figure 12: Average results of the IDOL2 experiments in the real-world scenario.
(a) compares the amounts of SVs stored in the models at each incremental step
for the batch and the memory-controlled method. (b) reports the classification
rate measured every fifth step (every time the system completes learning a whole
sequence) with all the available test sets. The training and test sets marked with
the same indices were acquired under similar conditions.
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Figure 13: Average results of the COLD-Freiburg experiments in the real-world
scenario. (a) compares the amounts of SVs stored in the models at each incremental
step for the batch and the memory-controlled method. (b) reports the classification
rate measured every step with all the available test sets. The consecutive training
and testing sequences were acquired under similar conditions.

7.2 Experiments with Unconstrained Variability

The next step was to test our incremental method in a real-world scenario. To
this purpose, we considered the case where the algorithm needed to incrementally
gain robustness to variations introduced by changing illumination and human ac-
tivities, while at the same time using its adaptation ability to handle long-time
changes in the environment. We performed the experiments first on the IDOL2
database. Then, to confirm the behavior on a different set of data, we used the
COLD-Freiburg database. We first trained the system on three IDOL2 sequences
acquired at roughly similar time but under different illumination conditions. Then,
we repeated the same training procedure on sequences acquired 6 months later. In
order to increase the number of incremental steps and differentiate the amount of
new information introduced by each set of data, each sequence was again divided
into five subsequences. In total, for each experiment we performed 30 incremen-
tal steps. Since the IDOL2 database consists of pairs of sequences acquired under
roughly similar conditions, each training sequence has a corresponding one which
could be used for testing. Feature-wise, here we used only the global features
(CRFH). Indeed, the experiments presented in the previous section showed that
local features achieve an accuracy similar to that of CRFH, but at a much higher
computational cost and memory requirement. Also, preliminary experiments show
that this behavior is confirmed in this scenario, hence the choice to use here only
the global descriptor.
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We used a very similar system and experimental procedure for the experiments
with the COLD-Freiburg dataset. As in case of IDOL2, we divided each sequence
into 5 subsequences and used pairs of sequences acquired under roughly similar
conditions for training and testing. In case of both databases, the experiment was
repeated 12 times for different orderings of training sequences. Fig. 12 and 13
report the average results together with standard deviations. By observing the
classification rates for a classifier trained on the first sequence only, we see that the
system achieves best performance on a test set acquired under similar conditions.
The classification rate is significantly lower for other test sets. In case of IDOL2,
this is especially visible for images acquired 6 months later, even under similar
illumination conditions. At the same time, the performance greatly improves when
incremental learning is performed on new batches of data. The classification rate
decreases for the old test sets; at the same time, the size of the model tends to
stabilize.

7.3 Discussion

The presented results provide a clear evidence of the capability of the discrimina-
tive methods to perform incremental learning for vision-based place recognition,
and their adaptability to variations in the environment. Table 1 summarizes the
performance obtained by each method in terms of accuracy, speed, controlled mem-
ory growth and forgetting capability. For each algorithm (i.e. for each row), we
put a cross corresponding to the property (i.e. the column) that the algorithm
has shown to possess in our experiments. The fixed-partition method performs as
well as batch SVM, but it is unable to control the memory growth and requires
much more memory space. We also found that OISVM could get very good ac-
curacy while achieving a low computational complexity during testing. However,
none of the two methods has shown to possess an effective forgetting capability:
for the fixed-partition method, the old SVs decay slowly, but the decay is neither
predictable nor controllable; for OISVM, every training vector must be stored into
memory. As opposed to this, the memory-controlled algorithm is able to achieve
performances statistically equivalent to those of batch SVM, while at the same time
providing a principled and effective way to control the memory growth. Experi-
ments showed that this has induced a forgetting capability which privileges newly
acquired data to the expenses of old one and the model growth slows down when-
ever new data are similar to those already processed. Furthermore, since a lot of
training images can be discarded during the incremental process, the training time
soon becomes significantly lower than for the batch method. For instance, in case
of the second experiments, training the classifier at the last step took 25.5s for the
batch algorithm and only 5.6s for the memory-controlled method on a 2.6GHZ Pen-
tium IV machine, and recognition time was twice as fast for the memory-controlled
algorithm than for the batch one.
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Accuracy Forgetting Memory Speed
Fixed-partition x x

OISVM x x
Memory-controlled x x x x

Table 1: Comparing incremental learning techniques for place recognition and robot
localization applications.

Knowledge
Transferred

Across Platforms

TrainingTraining TrainingSV
Reduction

TrainingTraining

Traing Set 1 Traing Set 2 Traing Set N

Testing Testing

SVM
Model

SVM
Model

SVsSVsSVs

Figure 14: A diagram illustrating the data flow in the knowledge-transfer system.

8 Experiments on Knowledge Transfer

As a second application of our method, we considered the problem of transfer
of knowledge between robotic platforms with different characteristics, performing
vision-based recognition in the same environment. We used the IDOL2 database
and the robots Minnie and Dumbo for these experiments. The main difference
between the two platforms lies in the height of the cameras (see Fig. 15). They both
use the memory-controlled incremental SVM as a basis for their recognition system,
thus they share the same knowledge representation. The aim is to efficiently exploit
the knowledge acquired e.g. by one robot so to boost the recognition performance of
another robot. We propose to use our method to update the internal representation
when new training data are available. Fig. 14 illustrates how our approach can be
used for transfer of knowledge. We would like the knowledge transfer scheme to be
adaptive, and also to privilege newest data so to avoid accumulation of outdated
information. Finally, the solution obtained starting from a transferred model should
gradually converge to the one learned from scratch, not only in terms of performance
but also of required resources (e.g. memory).

The challenges in the transfer of knowledge will come from:

• (a) Differences in the parameters of the two platforms
The cameras are mounted at two different heights, thus the informative con-
tent of the images acquired by the two platforms is different. Because of this,
the knowledge acquired by one platform might not be helpful for the other
one or, in the worst case, it might constitute an obstacle. Preliminary experi-
ments showed that SIFT is more suitable for the transfer of knowledge in our
scenario than CRFH. For that reason, CRFH will not be used.
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Figure 15: Knowledge transfer across robot platforms which only partially share
visual information.

• (b) Room by room/frames by frames knowledge update
It is desirable to update the model transferred across platforms as soon as new
data are available. We will investigate the behavior of the algorithm when
the update is performed room-by-room, or frames-by-frames. Both scenarios
are at risk of unbalanced data with respect to the class being updated.

• (c) Growing memory requirements
Building on top of an already trained classifier might lead to a solution that
will be much more demanding in terms of memory usage and computational
power than the one learned from scratch. Although our memory-controlled
approach is capable of reducing the number of SVs, its reduction process
does not take the sources of the information into consideration. In order to
favor information coming from the platform currently in use, we imposed to
the algorithm to discard only those SVs that were linearly dependent and
came from the previous platform by adding meta-information on the training
examples. This scheme speeds up the turnover of stored SVs, while preferring
newest data and at the same time preserving relevant information.

In the IDOL2 database, for each robot and for every illumination condition, we
always have two sequences acquired under similar conditions. Here, we always used
such pairs of sequences, one as a training set and the other one as a test set. In all
the experiments, we benchmarked against a system not using any prior knowledge.

8.1 Experiments with room by room updates

In the first series of experiments, the system was updated incrementally in a room
by room (i.e. class by class) scenario. The system was trained incrementally on one
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sequence; the corresponding sequence, acquired under roughly similar conditions,
was used for testing. The prior-knowledge model was built using standard batch
SVM from one image sequence, acquired under the same illumination conditions
and at close time as the training one, but using a different platform. As there
are five classes in total, training was performed in 5 steps (the algorithm learned
incrementally one room at the time). In the no-transfer case, the system needed to
build the model from scratch, and thus needed to acquire data from at least two
classes. In this case, training on each sequence required only 4 steps since in the
first step the algorithm learned to distinguish between the first two classes.

Building on top of knowledge acquired from another platform implies a growth
in the memory requirements. To evaluate this behavior in relationship to its effects
on performance and compare fairly to the system trained without a prior model,
we incrementally updated the model without transferred knowledge on another
sequence acquired under conditions similar to that of the first training sequence.
This experiment makes it possible to evaluate performance and memory growth
when both systems are trained on two sequences. The main difference is that in
one case both sequences were acquired and processed by the same platform; in the
other case, one sequence was acquired and processed by a different platform. We
considered different permutations in the rooms order for the updating; for each
permutation, we considered 6 different orderings of the sequences used as training,
testing, and prior-knowledge sets. Due to space reasons, we report only average
results for one permutation, together with standard deviations in Fig. 16.

We can see that, for both approaches, the system gradually adapts to its own
perception of the environment. It is clear that the knowledge-transfer system has
a great advantage in terms of performance over the no-transfer system at the first
steps. For instance, we see that, after the second update (TO1, Fig 16a), the
knowledge-transfer system achieves a classification rate of 65.3%, while the no-
-transfer knowledge obtains only 37%. The advantage in classification rate for
the knowledge-transfer system remains considerable for the steps OO1 and KT1.
However, it is interesting to note that even when both systems have been updated
on a full sequence (CR1, Fig 16a), the knowledge-transfer system still maintains an
advantage in performance. Considering the differences between the two platforms,
and that the transferred knowledge model was built on a single sequence, this is
a remarkable result. It can also be observed from Fig. 16d that the memory-
controlled algorithm facilitated the decay of knowledge from the other platform (in
the first incremental step, we did not perform the reduction), while the knowledge
acquired by its own sensor gradually becomes the main source for the model. As
the no-transfer system continued to learn one additional sequence incrementally,
its memory growth eventually exceeded the knowledge-transfer case (see Fig 16b).
Although the model was built on two sequences acquired by the same platform, the
knowledge-transfer system still obtains a comparable performance. We conclude
that the transfer of knowledge, in a room by room updating scenario, acts as an
effective boosting of performance, without any long-term growth of the memory
requirements.
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(c) Comparison of the performance
at each training step.

(d) Comparison of the number of
support vectors at each step.

Figure 16: Average results obtained for the system incrementally trained with and
without transfer of knowledge in the room by room fashion. Fig. 16a,b compare
the final recognition rates and the total number of support vectors for both cases.
Fig. 16c,d present a detailed analysis: classification rates obtained for each of the
rooms and the amount of support vectors in the final model that originate from
the transferred knowledge. In all the plots, the first step “KN.” corresponds to the
results obtained for the transferred knowledge before any update was performed.
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(c) Detailed comparison of the performance of the system with and without
knowledge-transfer.
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(d) Number of stored support vectors of incremental experiment with and without
knowledge-transfer at each step.

Figure 17: Average results obtained for the system incrementally trained with and
without transfer of knowledge in the frames by frames fashion. The labels below
each bar indicate the batch of data used for the incremental update. Again, the
first step labeled as “KN.” corresponds to the results obtained for the transferred
knowledge before any update was performed.
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8.2 Experiments with frame by frame updates

The second series of experiments explored the behavior of the system in a frames
by frames updating scenario. Here, for each incremental update, we used a certain
number of consecutive frames taken from the training image sequence. Again, the
system was trained incrementally on one sequence, and a corresponding sequence
was used as a test set. We examined the performance of the system for the case
when updating was performed using 30 frames per step1. Thus, for each experiment,
it took more than 30 incremental steps in total to complete a sequence. The prior-
knowledge model was built using two complete sequences acquired by the other
platform, under the same illumination conditions and very close in time. This
provided a better start-up performance than in case of the previous experiments.
Again, we benchmarked against the system not using any prior knowledge. In this
case, in order to fulfill the requirement of training using at least 2 classes, the
first training set consisted of all the images captured in the first room plus the
first 30 frames captured in the second room. As a consequence, the full training
process required five to six less steps than in case of equivalent experiments using
the knowledge-transfer scheme. The experiment was repeated 6 times for different
orderings of training sequences. Since the number of training steps varied (due to
a different number of images in each sequence), we report all the results separately.
Fig. 17a,b report the amount of stored SVs and classification rates at each step,
for all the experiments. This shows the general behavior for both approaches.
Fig. 17c,d present results for one of the 6 experiments, so to allow a detailed analysis.

By observing the classification rates obtained at each step in both cases, we see
that the advantage of the knowledge-transfer scheme is even more visible here than
for the room by room updating scenario. This might be due to the fact that some of
the training sets used for the no-transfer case are highly unbalanced. We can observe
from Fig. 17c that the performance of the system for previously learned rooms can
drop considerably when a new batch of frames is loaded; this is not the case for the
knowledge-transfer system. The twelfth step, when the system was updated with
frames from the two-persons office (TO3, Fig. 17c), is a typical example. Note
that this is a general phenomenon present, although less pronounced, also in the
room by room updating scenario. Our interpretation is that the model of the prior-
-knowledge contains information about the overall distribution of the data. This
helps to find a balanced solution when dealing with non-separable instances using
soft-margin SVM [10]. As a last remark the knowledge from the transferred model
is gradually removed over time (see Fig. 17d).

1Experiments conducted for 10 and 50 frames per training step gave analogous results, and
for space reasons are not reported here.
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9 Summary and Conclusions

In this paper we presented a novel extension of SVM to incremental learning that
achieves the same recognition performance of the standard, batch method while
limiting the memory growth over time. This is achieved by discarding, at each
incremental step, all the support vectors that are not linearly independent. The
information they carry is not lost, as it is retained into the algorithm’s decision
function in the form of weighting coefficients of the remaining support vectors. We
call this method memory-controlled incremental SVM. We applied it to the prob-
lem of place recognition for robot topological localization, focusing on two distinct
scenarios: adaptation in presence of dynamic changes and transfer of knowledge
between two robot platforms engaged in the same task. Experiments show clearly
the effectiveness of our approach in terms of accuracy, speed, reduced memory and
capability to forget redundant, outdated information.

We plan to extend this work in several ways. First, we want to use the memory-
controlled algorithm in multi-modal learning scenarios, for instance using laser-
based features combined with visual ones, as done in [39], in an incremental set-
ting. Here we should be able to exploit fully the properties of the method, and
aggressively trade memory for accuracy on single modalities, while retaining an
high overall performance. Second, we would like to investigate further the knowl-
edge transfer scenario, and incorporate in our framework ways to select the data to
be transferred, as proposed in [24]. Future work will concentrate in these directions.
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Abstract

A distinctive feature of intelligent systems is their capability to analyze their
level of expertise for a given task; in other words, they know what they know. As
a way towards this ambitious goal, this paper presents a recognition algorithm able
to measure its own level of confidence and, in case of uncertainty, to seek for extra
information so to increase its own knowledge and ultimately achieve better perfor-
mance. We focus on the visual place recognition problem for topological localization,
and we take an SVM approach. We propose a new method for measuring the confi-
dence level of the classification output, based on the distance of a test image and the
average distance of training vectors. This method is combined with a discriminative
accumulation scheme for cue integration. We show with extensive experiments that
the resulting algorithm achieves better performances for two visual cues than the
classic single cue SVM on the same task, while minimising the computational load.
More important, our method provides a reliable measure of the level of confidence
of the decision.

1 Introduction

A key competence for an autonomous agent is the ability to localize itself in the
world. Vision-based localization represents a challenge for the research community,
because the visual information tends to be noisy and difficult to analyze. Still,
this research line is attracting more and more attention, and several methods have
been proposed using vision alone [16, 18, 15], or combined with more traditional
range sensors [6, 17]. The increasing activity in this research area comes firstly from
the portability and cost-effectiveness of visual sensors; secondly, from the specific
type of information that only these sensors can bring. This is the case for instance
in place categorization or understanding, where the semantic information plays a
crucial role. Furthermore, visual place recognition can be applied as a method for
loop closing, scalability issues, or recovery from the kidnapped robot problem.
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A vast majority of algorithms proposed so far were designed to provide as output
a hard decision: the system is trained to recognize a fixed and pre-defined set of
environments (e.g. kitchen, corridor, office etc.) and then, when presented with
a test image, it classifies it as one of the possible places, but little or nothing is
generally said regarding the confidence of this decision or other possible hypotheses.
Measuring confidence, or knowing what is known, is a fundamental concept for
autonomous robots. Indeed, in many real-world applications it is more desirable to
abstain from action because of a self-recognized lack of confidence, rather than take
a hard decision which might result in a costly error. Thus, introducing a confidence
measure in a recognition algorithm allows to provide reliability despite constrained
performance of the algorithm or lack of updated information, and makes it possible
to evaluate when it is necessary to seek for extra information (e.g. from multiple
cues or modalities) in order to achieve a confident decision.

It is possible to define a confidence measure for any pattern recognition algo-
rithm: for probabilistic methods, it will be related to the posterior probability of the
image at hand; for discriminative classifiers, it will be related to the distance from
the separating hyperplane. In this paper, we will focus on large margin classifiers,
specifically on Support Vector Machines (SVMs), even if most of the concepts and
ideas we will propose can be easily extended to any margin-based discriminative
method. We build on our previous work on place recognition, where we presented
an SVM-based method able to recognize indoor environments under severe illumi-
nation changes and across a time span of several weeks [15]. Our first contribution
is the introduction of a method for ranking the hypotheses generated by the classi-
fier and measuring their confidence. The method is based on the distance from the
hyperplane and the average distance of each training class. We present experiments
showing that our confidence measure gives a better performance compared with the
classic hard decision SVM and, more important, a decision that is more informative
of the level of knowledge of the robot.

Once a system is able to output not only its guess, but also the level of con-
fidence of the guess, action should be taken. Indeed, we can expect that when
an image is classified with a low level of confidence, it is because the algorithm
doesn’t have enough information. A possible way to increase the knowledge, and
thus the confidence, is to use additional information such as both global and local
visual descriptors, or laser-based geometrical data, and combine them through an
integration scheme. An effective method for visual cue integration using SVMs has
been proposed in [11], called Discriminative Accumulation Scheme (DAS). A sec-
ond contribution of this paper is to apply that algorithm to the domain of vision
for robotics. We also propose its generalized version (Generalized DAS), that can
be built on top of our confidence estimation method. Experiments confirm the
effectiveness of the approach and show that G-DAS consistently outperforms the
original DAS.

While using multiple visual cues improves both classification accuracy and rel-
ative confidence, it is computationally expensive (more features to compute and
classify), which is undesirable for an autonomous agent. Ideally, a system should
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use additional information only when necessary, i.e. only when the level of confi-
dence of a single cue is not such to obtain a reliable decision. The final contribution
of this paper is to combine the G-DAS framework with the confidence estimation
approach, so that multiple cues are used only when they are necessary to disam-
biguate low-confidence cases. Our experiments on local and global visual cues show
that the proposed approach reduces the computational load of about 55% in aver-
age, achieving the same performance obtained by using G-DAS on all the images.

The rest of the paper is organized as follows: after an overview of previous
work on confidence measures and cue integration (Section 2), Section 3 gives a
brief description of the methodology used further. Section 4 describes our confi-
dence estimation method and evaluates its effectiveness for visual place recognition.
Section 5 reviews DAS, presents our generalized version of the algorithm and as-
sesses its performance; Section 6 shows how by combining the two techniques we
achieve a better overall performace while reducing the computational load. The
paper concludes with a summary and possible avenues for future research.

2 Related Work

We are not aware of confidence estimation and/or cue integration methods within
the robotics literature for visual place recognition. However, computing confidence
estimates for discriminative classifiers is an open problem in machine learning. Al-
though classifiers like K-NN, ANN, or SVM output numeric scores for class member-
ship, some experiments show that, when used directly, they are not well correlated
with classification confidence [4]. Several authors attacked this problem by develop-
ing more sophisticated measures such as probability estimates obtained by trained
sigmoid function [12] with extensions for multi-class problems [20], or relative dis-
tance from the separating hyperplane, normalized with the average class distance
from the plane [5]. More comments on their performance can be found in Section 4.

Visual cue integration via accumulation was first proposed in a probabilistic
framework by Poggio et al.[14], and then further explored by Aloimonos and Shul-
man [1]. The idea was then extended to SVMs by Nilsback and Caputo [11] (DAS).
The resulting method showed remarkable performances on object recognition ap-
plications and together with its generalized version (G-DAS) is used here as a cue
integration scheme for disambiguating classes with low confidence estimate.

3 A Few Landmarks

This section serves as a base for the results and theory presented further. We
describe the common scenario and methodology used during all experimental eval-
uations (Sections 3.1 and 3.2), we briefly review SVMs (Section 3.4) and the visual
descriptors used throughout the paper (Section 3.3).
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3.1 Experimental Scenario

The algorithms presented in this paper have been tested in the domain of mobile
robot topological localization. As benchmarking data we used the IDOL (Image
Database for rObot Localization [9]) database which was introduced in [15] in order
to test robustness of our discriminative approach to visual place recognition in real-
world scenario and under varying illumination conditions. The database comprises
sequences of images of places acquired using cameras of resolution 320x240 pixels
mounted at different heights (98cm and 36cm) on two mobile robot platforms, the
PeopleBot Minnie and the PowerBot Dumbo. The acquisition was performed in
a five room subsection of a larger office environment, selected in such way that
each of the five rooms represented a different functional area: a one-person office,
a two-persons office, a kitchen, a corridor, and a printer area (part of the corridor).
Example pictures showing interiors of the rooms are presented in Fig. 1.

The appearance of the rooms was captured under three different illumination
conditions: in cloudy weather, in sunny weather, and at night. The robots were
manually driven through each of the five rooms while continuously acquiring images
at the rate of 5 frames per second. Each image was then labelled as belonging to one
of the rooms according to the position of the robot estimated using a laser-based
localization method. The acquisition was performed twice for each robot and illu-
mination condition, resulting in 12 image sequences in total over a span of time of
more than two weeks. Thus, the sequences captured variability introduced not only
by illumination but also natural activities in the environment (presence/absence of
people, furniture relocated etc.). Example images illustrating the captured vari-
ability for both robot platforms are shown in Fig. 1.

3.2 Experimental Procedure

As a basis for the experiments, we used the place recognition system presented in
[15], which is built around Support Vector Machines [3], and a rich global descrip-
tor [7]. While designing the system, we followed the assumption that the global
configuration of a scene is informative enough for recognition and obtained good
performance despite variations captured in the IDOL database. In this work, in
order to increase robustness, we additionally used the SIFT descriptor [8] that has
already been proved successful in the domain of vision-based localization [16].

Following [15], we took a fully supervised approach and assumed that during
training each room is represented by a collection of images capturing its visual
appearance under various viewpoints, at fixed time and illumination setting. During
testing, the algorithm is presented with images of the same rooms, acquired under
roughly similar viewpoints but possibly under different illumination conditions, and
after some time. The goal is to recognize each single image seen by the system.
As in [15], we considered three sets of experiments for three types of problems
of different complexity. In case of each single experiment, training was always
performed on one image sequence subsampled to 1 fps (every fifth image), and
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Figure 1: Example pictures taken from the IDOL database showing the interi-
ors of the rooms, variations occurring across platforms, as well as introduced by
illumination changes and natural activity in the environment.
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testing was done using a full sequence. The first set consisted of 12 experiments
performed on different combinations of training and test data, acquired using the
same robot platform and under similar illumination conditions. For the second set
of experiments, we used 24 pairs of sequences captured under different illumination
conditions. Finally, the third set was performed on 24 pairs of training and test
sequences acquired under similar illumination settings but using a different robot.
As a measure of performance we used the percentage of properly classified images
calculated separately for each of the rooms and then averaged with equal weights
independently of the number of images acquired in each room.

3.3 Image Representations

In this work, we employed two types of visual cues, global and local, extracted from
the same image frame. As global representation we used the Composed Receptive
Field Histograms (CRFH) [7], a multi-dimensional statistical representation of re-
sponses of several image filters. Computational costs were reduced by using a sparse
and ordered histogram representation, as proposed in [7]. Following [15], we used
histograms of 6 dimensions, with 28 bins per dimension, computed from second
order normalized Gaussian derivative filters applied to the illumination channel at
two scales.

We used the SIFT descriptor [8] in order to obtain the local image representa-
tion. SIFT represents the local image patches around interest points characterized
by coordinates in the scalespace in the form of histograms of gradient directions.
In order to find the coordinates of the interest points, we used the Harris-Laplacian
detector [10], a scale invariant extension of the Harris corner detector.

3.4 Support Vector Machines

Consider the problem of separating the set of training data (x1, y1), . . . , (xn, yn)
into two classes, where xi ∈ ℜN is a feature vector and yi ∈ {−1, +1} its class label.
If we assume that the two classes can be separated by a hyperplane in some Hilbert
space H, then the optimal separating hyperplane is the one which has maximum
distance to the closest points in the training set resulting in a discriminant function

f(x) =
n∑

i=1

αiyiK(xi, x) + b. (1)

The classification result is then given by the sign of f(x). The values of αi and
b are found by solving a constrained minimization problem, which can be done
efficiently using the SMO algorithm [3]. Most of the αi’s take the value of zero;
those xi with nonzero αi are the “support vectors”. In case where the two classes
are non-separable, the optimization is formulated in such way that the classification
error is minimized and the final solution remains identical.

The mapping between the input space and the usually high dimensional feature
space H is done using the kernel function K(xi, x). Several kernel functions have
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been proposed for visual applications; in this paper we will use the χ2 kernel [2] for
the global CRFH descriptors, and the match kernel proposed in [19] for the local
SIFT descriptors. Both have been used in our previous work on SVM-based place
recognition, obtaining good performances.

The extension of SVM to multi class problems can be done mainly in two ways:

1. One-against-All (OaA) strategy. If M is the number of classes, M SVMs are
trained, each separating a single class from all remaining classes. The decision
is then based on the distance of the classified sample to each hyperplane.
Typically algebraic distance (f(x)) is used and the final output is the class
corresponding to the hyperplane for which the distance is largest.

2. One-against-One (OaO) strategy. In this case, M(M − 1)/2 two-class ma-
chines are trained for each pair of classes. The final decision can then be
taken in different ways, based on the M(M − 1)/2 outputs. A popular choice
is to consider as output of each classifier the class label and count votes for
each class; the test image is then assigned to the class that received more
votes. Another alternative is to use signed distance from the hyperplane and
sum distances for each class. Other solutions based on the idea to arrange
the pairwise classifiers in trees, where each tree node represents an SVM,
have also been proposed [13, 3]. In this paper, we will use the voting-based
method, which we found to constantly outperform the second alternative in
our preliminary experiments.

4 Confidence Estimation

This section presents our approach to the problem of ranking hypotheses generated
by the classifier and measuring their confidence. We first describe two methods
based on the standard OaO and OaA multi-class extensions and our modified ver-
sion of the OaA principle. Then, we show benchmark experiments evaluating the
performance of the methods on visual data. The algorithms presented here will be
one of the building block of the confidence-based cue integration scheme we will
introduce in Section 6.

4.1 The algorithms

As already mentioned, discriminative classifiers do not provide any out-of-the-box
solution for estimating confidence of the decision; however, it is possible to derive
confidence information and hypotheses ranking from the distances between the
samples and the hyperplanes. In case of SVMs, this can be done very efficiently
thanks to the use of kernel functions and does not require additional processing
in the training phase (as opposed to probability estimation methods like [12]). As
it will be shown by experiments, despite its simplicity, such approach can yield
good results when applied to complex problems such as visual place recognition.
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We stress that, since it is based on the generated hyperplanes, performance will
depend on how well the model reflects the statistics of the test data. In other words,
the approach will work best for cases where the difficulty comes from the inability
to perfectly separate the training samples and still provide good generalization
capabilities.

It is straightforward to extend the standard OaO and OaA multi-class methods
so that additional information about the decision becomes available. Let us present
the methods using a more general notation and introduce a variable Vh(x), which
will be a distance-based score assigned by the hyperplane h to the sample x. In
case of the two standard algorithms, the score will just be equal to the distance
of the test sample to the hyperplane: Vh(x) = Dh(x). Typically, the value of the
discriminant function is used as a distance measure (Dh(x) = fh(x)). In order to
find the best hypothesis j∗, we follow the rules described in Section 3.4:

• for the OaO strategy:

j∗ = argmax
j=1...M

|{i : i ∈ {1 . . . M}, i 6= j, Vi,j(x) > 0}| ,

where the indices i, j are used to denote the hyperplane separating class i
from class j.

• for the OaA strategy:
j∗ = argmax

j=1...M

{Vj(x)} ,

where Vj is the score assigned by the hyperplane separating class j from the
other classes.

If now we think of the confidence as a measure of unambiguity of the decision, we
can define it as:

• for OaO, the minimal score (distance) to the hyperplanes separating the first
hypothesis and the other classes:

C(x) = min j = 1 . . . M, j 6= j∗ {Vj∗,j(x)}

• for OaA, the difference between the maximal and the next largest score:

C(x) = Vj∗(x) − max j = 1 . . . M, j 6= j∗ {Vj(x)}

The value C(x) can be thresholded for obtaining a binary confidence information.
Confidence is then assumed if C(x) > τ for threshold τ . The values Vj∗,j(x) (for
OaO) and Vj(x) (for OaA) can also be used to rank the hypotheses and find between
which of them the classifier is uncertain.

The output of the algorithms described above depends only on the distances of
the test sample to the hyperplanes, that for SVMs is determined by the vectors lying
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Figure 2: Artificial classification problem illustrating the way the scores Vj(x) are
calculated for classified samples in case of the modified OaA approach. We can
observe that although the points x2 and x3 are located approximately in the same
distance from two hyperplanes, they are classified as belonging to class B and C
respectively with high confidence.

close to the class boundaries (the support vectors). To make it more dependent on
the distribution of all available training data, we suggest to use the OaA principle
and redefine the score Vj(x) to be equal to the distance from the average distance
of the training samples to the hyperplane (see Fig. 2 for an illustration):

Vj(x) =
∣∣∣D̂j − Dj(x)

∣∣∣ .

Thus, we do not measure how far the test sample is from the hyperplane, but how
close it is to the training data belonging to one of the classes. The best hypothesis
can be determined by the following rule:

j∗ = argmin
j=1...M

{Vj(x)} . (2)

Using the same definition of confidence as above, we get:

C(x) = min j = 1 . . . M, j 6= j∗ {Vj(x)} − Vj∗(x). (3)

As in case of the previous algorithms, we can order the hypotheses using the values
of Vj(x) and obtain hard confidence information by thresholding. An explanation
on a real example from one of our experiments is shown in Fig. 3.

4.2 Experimental Evaluation

We preformed a benchmark evaluation of the three confidence estimation methods
(the two methods based on the standard OaO and OaA multi-class extensions and
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Figure 3: Real confidence estimates obtained using the modified OaA algorithm
for four images acquired by the robot Minnie turning from the corridor towards
the kitchen. According to the laser-based localization system used as ground truth,
the first three images were acquired in the corridor, while the fourth image was
already captured in the kitchen. The bar charts show the ranking of hypotheses
(top axis), the estimated confidence of the decision (shaded bar), and the difference
between the score for the best hypothesis and the others (remaining bars). For
the confidence threshold set as shown in the figure, we obtain two soft decisions
(suggesting the correct hypothesis) for the cases of lowest confidence.

the method based on the new modified version of OaA) on the IDOL database.
As described in Section 3.2, we performed three sets of experiments: training and
testing under stable illumination conditions, varying illumination conditions, and
recognition across different robotic platforms. For all experiments we measured the
performance of the algorithms for a range of values of the confidence threshold.
We used two measures of performance in order to analyse different properties of
the methods. First, for each value of the confidence threshold, we calculated the
classification rate (percentage of properly classified test images) only for those test
samples for which the decision was regarded as confident. As a second measure
we used the classification rate calculated for all samples and including additional
hypotheses between which the algorithm was unsure when the confidence was below
the threshold. For example, if for a given threshold, the decision was “kitchen or
corridor” and the test image was acquired in one of these rooms, the decision was
counted as correct.

The average results obtained for the global features (CRFH) are presented in
Fig. 4. The experiments were repeated also for local features (SIFT); however, the
results showed the same trends and thus are omitted for space reasons (classification
rates for local features and hard-decision SVMs can be found in Section 5). To
obtain these results, we used the value of the discriminant function as a distance
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(a) Classification rates for confident samples only
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(b) Classification rates including all hypotheses below confidence threshold

Figure 4: Results of evaluation of the three confidence estimation algorithms on
three types of problems.

measure (Dh(x) = fh(x)). We performed identical experiments for two other
distance measures: the distance of a sample to its normal projection onto the
hyperplane and relative distance normalized by the average class distance to the
plane [5]; however, the results clearly showed the advantage of the solutions based
on the value of f(x).

The plots presented in Fig. 4 show the dependency between the classification
rates and the percentage of images of the test sequence for which the classifier
was not confident, given some value of threshold. The classification rates for hard-
decision SVM are marked on the vertical axis (initial values, all decisions treated as
confident). It can be observed that the classification rate calculated for the confident
decisions only (Fig. 4a) is increasing for all methods as the percentage of unsure
decisions grows. This means that the algorithms tend to eliminate the misclassified
samples. It is clear that the modified OaA approach performs best with respect
to this measure. Moreover, we can see that the method consistently delivers best
classification rates when hard decisions are considered. The advantage in terms of
classification rate varyes from +0.4% to +3.5% with respect to standard OaA and
+1.5% to +5.7% with respect to standard OaO and grows with the complexity of
the problem.

Additional conclusions can be drawn from the analysis of the second perfor-
mance measure (Fig. 4b). First, we see that if we tolerate soft decisions in e.g.
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30% of cases, the resulting classification rate increases from +5.2% (Fig. 4b, left)
to +12% (Fig. 4b, right) and can even reach 99% in case of experiments performed
for similar illumination conditions. Second, it is still visible that both OaA-based
methods consistently outperform the OaO-based algorithm, and the modified ver-
sion of the OaA strategy in general achieves the best performance. This time,
however, the advantage of the modified OaA with respect to the algorithm based
on the standard approach is smaller and decreases as the number of unsure deci-
sions grows. This makes us conclude that the modified OaA method is better when
it comes to finding and estimating confidence of the best hypothesis. However, the
standard OaA-based algorithm is similarly or even more (Fig. 4b, right) efficient
for ranking hypotheses. This property of the modified algorithm may become im-
portant if additional information could be used to improve classification results for
the decisions in cases when the classifier is not confident enough.

5 Cue Integration

Last section showed the importance of defining an effective confidence measure
for SVM, and its impact on classification accuracy. Still, once the algorithm is
able to measure an unsatisfactory level of confidence, it should react accordingly.
The most desirable action should of course lead to higher confidence and accurate
classification; one of the possible way to achieve this result is to use effectively mul-
tiple cues. In this section, we introduce a generalization of the integration scheme
proposed in [11] to a wider class of multi-class extensions, and we present exper-
imental evidence of its efficiency. How to combine these cue integration schemes
with confidence-based classification approach will be the subject of Section 6.

5.1 Generalized Discriminative Accumulation Scheme

Suppose we are given M visual classes and, for each class, a set of nj training
images {I

j
i }

nj

i=1, j = 1, . . . , M . Suppose also that, from each image, we extract a
set of P different cues {Tp(Ij

i )}P
p=1 (the cues could also be different modalities).

The goal is to perform recognition using all the cues. The original DAS algorithm
consists of two steps:

1. Single-cue SVMs. From the original training set {{I
j
i }

nj

i=1}M
j=1, containing im-

ages belonging to all M classes, define P new training sets {{Tp(Ij
i )}nj

i=1}M
j=1,

p = 1, . . . , P , each relative to a single cue. For each new training set train
a multi-class SVM. In general, kernel functions may differ from cue to cue.
Model parameters can be estimated during the training step via cross vali-
dation. In case of the original DAS algorithm, the standard OaA multi-class
extension was used. Then, given a test image I, for each single-cue SVM the
algebraic distance to each hyperplane fp

j (Tp(I)), j = 1, . . . , M was computed
according to Eq. 1.
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(a) Stable illumination (b) Varying illumination (c) Recognition across platforms

Figure 5: Average results for G-DAS based on different multi-class extensions, for
three different series of experiments.

2. Discriminative Accumulation. After all the distances were collected {fp
j }P

p=1,
for all the M hyperplanes and the P cues, the image I was classified using
their linear combination:

j∗ =
M

argmax
j=1

{
P∑

p=1

apfp
j (Tp(I))

}
, ap ∈ ℜ+.

The coefficients {ap}P
p=1 can also be evaluated via cross validation during

training.

The original algorithm performed accumulation at the level of algebraic dis-
tances from the hyperplanes fp

j , obtained from a standard OaA multi-class SVM.
As shown in Section 4, there are other methods available, and it is possible to in-
troduce more effective multi-class algorithms based on the OaA principle. We thus
propose to extend the DAS framework to be applicable also for the other meth-
ods; we call this extension the Generalized Discriminative Accumulation Scheme
(G-DAS). The discriminative accumulation is here performed at the level of the
scores Vh (see Section 4):

V ΣP
h (I) =

P∑

p=1

apV p
h (Tp(I)), ap ∈ ℜ+. (4)

As a result, any multi-class extension can be used within the G-DAS framework
(both OaA and OaO based).

5.2 Experimental Evaluation

We evaluated the effectiveness of G-DAS for the visual place recognition problem by
running the three series of experiments described in Section 3.2. SIFT and CRFH
were used as features, χ2 and match kernel as similarity measures for the nonlinear
SVMs, and kernel parameters as well as weighting coefficients for the accumulation
schemes were determined via cross validation.
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Figure 6: An example of test image misclassified by using a single cue, but classified
correctly by using G-DAS with modified OaA multi-class extension (see Fig. 3 for
an explanation of the bar charts).

Fig. 5 shows the recognition results obtained using a single cue SVM, with global
or local descriptors, and those obtained using the G-DAS algorithm. For all those
three different approaches, we used three different multi-class extensions: standard
OaO, standard OaA and our new modified OaA. Note that, when using standard
OaA, G-DAS corresponds to the original DAS algorithm.

A first comment is that for all three different multi-class extensions, for all the
three series of experiments, the accumulation scheme clearly achieves consistently
better results than the single cues approaches. The gain in performance goes from
a minimum of +1.9% in accuracy, obtained for the stable illumination condition
experiments (Fig. 5a) to a maximum of +7.8%, obtained for the varying illumina-
tion (Fig. 5b), with respect to the CRFH only, using the modified OaA approach.
The increase in performance grows with the difficulty of the task and is on av-
erage a +2% for stable illumination, +5% for varying illumination and +6% for
recognition across platforms. A second comment is that G-DAS with our modified
OaA consistently performs better than the original DAS, for all the three scenarios;
this confirms the effectiveness of this confidence measure for visual recognition. An
important property of the DAS algorithm, which is also preserved by G-DAS, is
the ability to classify correctly images even when each of the single cues used gives
misleading information. Fig. 6 shows an example of this behavior: the test image
is misclassified as ’one-person office’ by using CRFH, and as ’corridor’ by using
SIFT; by combining these two cues in G-DAS, the image is correctly classified as
’two-persons office’. We can then conclude that G-DAS is an effective method for
cue integration for visual place recognition in realistic settings.
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Figure 7: Dependencies between the average classification rates obtained for the
confidence-based cue integration strategy with CRFH used as a primary cue and
the percentage of test samples for which both cues were used. The horizontal lines
indicate the performance of CRFH only and G-DAS.

6 Confidence-based Cue Integration

As motivated in Section 5, a desirable behaviour of a system aware of its own igno-
rance would be to search for additional sources of information in order to achieve
higher confidence. We showed that G-DAS can be effectively used for visual cue in-
tegration; however, it requires that both cues are available and used for classification
even in cases when one cue is sufficient to obtain correct result, and the additional
computational effort could be avoided. In this section, we present and experimen-
tally evaluate a strategy allowing to greatly decrease this computational load and
still maintain the high level of accuracy provided by multiple cues. We propose to
employ G-DAS for cue accumulation and extract the additional information only
in cases when the confidence of a decision based on the cues available is not satis-
factory.

6.1 The method

It is reasonable to assume that the confidence estimation methods presented in
Section 4 can be used as efficient filters, filtering out the images for which G-DAS
would be either not required or not effective. First, the experiments reported in
Section 4 proved that the confidence estimation methods are able to eliminate
the incorrect decisions. Second, both methods and the G-DAS framework operate
on the distances calculated in the high dimensional feature space, and G-DAS is
expected to be most effective in cases of low confidence (see the example in Fig. 6).

Suppose again that we are able to extract P different cues {Tp(I)}P
p=1 from the

input image I. Let us assume that the cues are ordered. The order of the cues
can be motivated by the computational cost associated with feature extraction and
classification. To obtain the final decision we use the following algorithm:
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1. Set k = 1.

2. Extract features for the kth cue (Tk(I)).

3. Perform classification for the kth cue and obtain the scores V k
h (Tk(I)) for all

hyperplanes.

4. Perform cue integration for the cues 1 . . . k according to Eq. 4 and obtain the
accumulative scores V Σk

h (I).

5. Find the best hypothesis j∗
k and confidence estimates Ck(I) based on the

scores V Σk
h (I).

6. If the confidence is below the threshold (Ck(I) < τ) and k < P , increment
k and go to step 2. Otherwise, use the obtained hypothesis as final decision
(j∗ = j∗

k).

The threshold τ is a parameter of the algorithm and allows to trade the accuracy
for computational cost.

6.2 Experimental Evaluation

We performed an experimental evaluation of the confidence-based cue integration
strategy for the global (CRFH) and local (SIFT) visual cues. We tested solutions
based on both CRFH and SIFT used as a primary cue. The experiments showed
the advantage of the CRFH-based solution in terms of the number of images for
which both cues had to be used to obtain accuracy identical with the one offered
by G-DAS. Moreover, the local features are much more computationally expensive
mainly due to matching process performed during classification.

In this paper, we report results for CRFH used as a primary cue. The plots
presented in Fig. 7 clearly show that in order to obtain accuracy comparable with
the one delivered by G-DAS used for all test images, it is necessary to use the second
cue only in approximately 40% of cases. This is for the modified OaA multi-class
extension, which once more outperformed the other confidence estimation methods.
As already mentioned, in our case, feature extraction and classification was more
costly for the local cue. As a result, the strategy presented here allowed to reduce
the amount of computations by about 55% in average compared to G-DAS. Since
the dependency between the number of images for which the second cue is used
and the classification rate is highly non-linear, it can be advantageous to trade the
accuracy for computational cost; e.g. to achieve gain of 70% of the one provided
by G-DAS, the second cue should be used in 7% (stable illumination conditions,
Fig. 7a) to 22% (varying illumination conditions, Fig. 7b) of cases only. Concluding,
the power of multiple cues can be achieved for much lower computational cost, if
information about the classifier’s confidence is exploited.



7. SUMMARY AND CONCLUSION C19

7 Summary and Conclusion

This paper presented an effective approach to the problems of confidence estima-
tion and cue integration for large-margin discriminative classifiers. We showed by
extensive experiments, on problems of different complexity from the domain of vi-
sual place recognition, that exploiting available confidence information encoded in
the classifier’s outputs can greatly increase reliability of a system. When combined
with a cue integration scheme, this results in a significantly increased performance
for a relatively low computational cost. We used SVMs and combined local and
global cues extracted from the same visual stimuli; all the presented methods could
easily be extended to other large margin classifiers and to multiple modalities.

The potential of this approach can be used in many ways. First, we plan to
incorporate confidence information to an incremental learning framework and use it
to trigger the learning procedure. Second, we want to create an active system able to
autonomously search for cues in order to obtain confident result. Finally, we will test
our method in a multi-modal system and for integration of a larger number of cues.
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Abstract

The ability to represent knowledge about space and its position therein is
crucial for a mobile robot. To this end, topological and semantic descriptions
are gaining popularity for augmenting purely metric space representations.
In this paper we present a multi-modal place classification system that allows
a mobile robot to identify places and recognize semantic categories in an
indoor environment. The system effectively utilizes information from different
robotic sensors by fusing multiple visual cues and laser range data. This is
achieved using a high-level cue integration scheme based on a Support Vector
Machine that learns how to optimally combine and weight each cue. Our
multi-modal place classification approach can be used to obtain a real-time
semantic space labeling system which integrates information over time and
space. We perform an extensive experimental evaluation of the method for
two different platforms and environments, on a realistic off-line database and
in a live experiment on an autonomous robot. The results clearly demonstrate
the effectiveness of our cue integration scheme and its value for robust place
classification under varying conditions.

1 Introduction

The most fundamental competence for an autonomous mobile agent is to know its
position in the world. This can be represented in terms of raw metric coordinates,
topological location, or even semantic description. Recently, there has been a grow-
ing interest in augmenting (or even replacing) purely metric space representations
with topological and semantic place information. Several attempts have been made
to build autonomous cognitive agents able to perform human-like tasks [2, 1]. En-
hancing the space representation to be more meaningful from the point of view of
spatial reasoning and human-robot interaction have been at the forefront of the
issues being addressed [64, 25, 53]. Indeed, in the concrete case of indoor envi-
ronments, the ability to understand the existing topological relations and associate
semantic terms like “corridor” or “office” with places, gives a much more intuitive
idea of the position of the robot than global metric coordinates. Additionally, the
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semantic information about places can extend the capabilities of a robot in other
tasks such as localization [45], exploration [49], or navigation [21].

Nowadays, robots are usually equipped with several sensors providing both ge-
ometrical and visual information about the environment. Previous work on place
classification relied on sonars and/or laser range data as robust sensory modali-
ties [33]. However, the advantages of geometric solutions, such as invariance to vi-
sual variations and low dimensionality of the processed information, quickly became
their weaknesses. The inability to capture many aspects of complex environments
leads to the problem of perceptual aliasing [26] and can limit the usefulness of such
methods for topological and semantic mapping. Recent advances in vision have
made this modality emerge as a natural and viable alternative. Vision provides
richer sensory input allowing for better discrimination. Moreover, a large share of
the semantic description of a place is encoded in its visual appearance. However,
visual information tends to be noisy and difficult to interpret as the appearance of
places varies over time due to changing illumination and human activity. At the
same time, the visual variability within place classes is huge, making the semantic
place classification a challenging problem. Clearly, each modality has its own char-
acteristics. Interestingly, the weaknesses of one often correspond to the strengths
of the other.

In this paper, we propose an approach to semantic place classification which
combines the stability of geometrical solutions with the versatility of vision. First,
we present a recognition system implemented on a mobile robot platform inte-
grating multiple cues and modalities. The system is able to perform robust place
classification under different types of variations that occur in indoor environments
over a span of time of several months. This comprises variations in illumination
conditions and in configuration of furniture and small objects. The system relies
on different types of visual information provided by global and local descriptors
and on geometric cues derived from laser range scans. For the vision channel we
apply the Scale-invariant Feature Transform (SIFT, [28]) and Composed Receptive
Fields Histograms (CRFH, [27]). For the laser channel we use the features proposed
in [33, 34].

We combine the cues using a new high-level accumulation scheme, which builds
on our previous work [42, 36]. We train for each cue a large margin classifier which
outputs a set of scores encoding confidence of the decision. Integration is then
achieved by feeding the scores to a Support Vector Machine (SVM, [14]). Such an
approach allows to optimally combine cues, even obtained using different types of
models, with a complex, possibly non-linear function. We call this algorithm the
SVM-based Discriminative Accumulation Scheme (SVM-DAS).

Finally, we show how to build a self-contained semantic space labeling system,
which relies on multi-modal place classification as one of its components. The sys-
tem is implemented as a part of an integrated cognitive robotic architecture [2, 23]
and runs on-line on a mobile robot platform. While the robot explores the envi-
ronment, the system acquires evidences about the semantic category of the current
area produced by the place classification component and accumulates them both
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over time and space. As soon as the system is confident about its decision, the area
is assigned a semantic label. We integrate the system with a Simultaneous Local-
ization and Mapping (SLAM) algorithm and show how a metric and topological
space representation can be augmented with a semantic description.

We evaluated the robustness of the presented methods in several sets of extensive
experiments. We conducted experiments on two different robot platforms, in two
different environments and for two different scenarios. First, we run a series of
off-line experiments of increasing difficulty on the IDOL2 database [29] to precisely
measure the performance of the place classification algorithm in presence of different
types of variations. These ranged from short-term visual variations caused by
changing illumination to long-term changes which occurred in the office environment
over several months. Second, we run a live experiment where a robot performs
SLAM and semantic labeling in a new environment using prebuilt models of place
categories. Results show that integrating different visual cues, as well as different
modalities, allows to greatly increase the robustness of the recognition system,
achieving high accuracy under severe dynamic variations. Moreover, the place
classification system, when used in the framework of semantic space labeling, can
yield a fully correct semantic representation even for a new, unknown environment.

The rest of the paper is organized as follows: after a review of the related litera-
ture (Section 2), Section 3 presents the main principle behind our multi-modal place
classification algorithm and describes the methods used to extract each cue. Then,
Section 4 gives details about the new cue integration scheme and Section 5 de-
scribes the architecture of the semantic labeling system. Finally, Section 6 presents
detailed experimental evaluation of the place classification system and Section 7
reports results of the live experiment with semantic labeling of space. The paper
concludes with a summary and possible avenues for future research.

2 Related Work

Place classification is a vastly researched topic in the robotic community. Purely
geometric solutions based on laser range data have proven to be successful for
certain tasks and several approaches were proposed using laser scanners as the
only sensors. [24] used a pre-programmed routine to detect doorways from range
data. Additionally, [4] used line features to detect corridors and doorways. In their
work, [10] partitioned grid maps of indoor environments into two different classes
of open spaces, i.e. rooms and corridors. The division of the open spaces was done
incrementally on local submaps. Finally, [33] applied boosting to create a classifier
based on a set of geometrical features extracted from range data to classify different
places in indoor environments. A similar idea was used by [53] to describe regions
from laser readings.

The limitations of geometric solutions inspired many researchers to turn towards
vision which nowadays becomes tractable in real-time applications. The proposed
methods employed either perspective [55, 50, 18] or omnidirectional cameras [22,
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8, 58, 32, 5, 35, 59]. The main differences between the approaches relate to the
way the scene is perceived, and thus the method used to extract characteristic
features from the scene. Landmark-based techniques make use of either artificial
or natural landmarks in order to extract information about a place. [47] relied on
visually distinctive image regions as landmarks. Many other solutions employed
local image features, with SIFT being the most frequently applied [28, 46, 5, 42].
[65] used the SIFT descriptor to build a topological representation by clustering a
graph representing relations between images. Other approaches used the bag-of-
words technique [18, 19], the SURF features [7, 35, 59], or representation based on
information extracted from local patches using Kernel PCA [50]. Global features
are also commonly used for place recognition. Torralba et al. [56, 55, 54] suggested
to use a representation called the “gist” of a scene, which is a vector of principal
components of outputs of a bank of spatially organized filters applied to the image.
Other approaches use color histograms [58, 8], gradient orientation histograms [9],
eigenspace representation of images [22], or Fourier coefficients of low frequency
image components [32].

In all the previous approaches only one modality is used for the recognition
of places. Recently, several authors observed that robustness and efficiency of
the recognition system can be improved by combining information provided by
different visual cues. [47, 61] used a global representation of the images together
with local visual landmarks to localize a robot in outdoor environments. [42] used
two cues composed of global and local image features to recognize places in indoor
environments. The cues were combined using discriminative accumulation. Here,
we extend this approach by integrating information provided by a laser range sensor
using a more sophisticated algorithm.

Other approaches also employed a combination of different sensors, mainly laser
and vision. [51] used and omnidirectional camera and two lasers covering 360 de-
grees field of view to extract fingerprints of places for topological mapping. This
approach was not used for extracting semantic information about the environment.
[41] and [16] relied on range data and vision for recognition of objects in outdoor
environments (e.g. grass, walls or cars). Finally, [45] used a combination of both
modalities to categorize places in indoor environments. Each observation was com-
posed of a set of geometrical features and a set of objects found in the scene. The
geometrical features were calculated from laser scans and the objects were detected
using Haar-like features from images. The extracted information was integrated
at the feature level. In contrast, the method presented in this work learns how to
combine and weight outputs of several classifiers, keeping features and therefore
the information from different modalities separated.

Various cue integration methods have been proposed in the robotics and ma-
chine learning community [51, 36, 42, 39, 57, 31]. These approaches can be described
according to various criteria. For instance, [13] suggest to classify them into two
main groups, weak coupling and strong coupling. Assuming that each cue is used
as input of a different classifier, weak coupling is when the output of two or more
independent classifiers are combined. Strong coupling is instead when the output of
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one classifier is affected by the output of another classifier, so that their outputs are
not anymore independent. Another possible classification is into low level and high
level integration methods, where the emphasis is on the level at which integration
happens. We call low level integration methods those algorithms where cues are
combined together at the feature level, and then used as input to a single classi-
fier. This approach has been used successfully for object recognition using multiple
visual cues [31], and for topological mapping using multiple sensor modalities [51].
In spite of remarkable performances for specific tasks, there are several drawbacks
of the low level methods. First, if one of the cues gives misleading information, it is
quite probable that the new feature vector will be adversely affected influencing the
whole performance. Second, we can expect the dimension of such a feature vector
to increase as the number of cues grows, and each of the cues needs to be used
even if one would allow for correct classification. This implies longer learning and
recognition times, greater memory requirements and possibly curse of dimension-
ality effects. Another strategy is to keep the cues separated and to integrate the
outputs of individual classifiers, each trained on a different cue [39, 36, 42]. We call
such algorithms high level integration methods, of which voting is the most popular
[17]. These techniques are more robust with respect to noisy cues or sensory chan-
nels, allow to use different classifiers adapted to the characteristics of each single
cue and decide on the number of cues that should be extracted and used for each
particular classification task [42]. In this paper, we focus on a weak coupling, high
level integration method called accumulation. The underlying idea is that informa-
tion from different cues can be summed together, thus accumulated. The idea was
first proposed in probabilistic framework by [39] and further explored by [3]. The
method was then extended to discriminative methods in [36, 42].

3 Multi-modal Place Classification

The ability to integrate multiple cues, possibly extracted from different sensors, is
an important skill for a mobile robot. Different sensors usually capture different
aspects of the environment. Therefore using multiple cues leads to obtaining a more
descriptive representation. The visual sensor is an irreplaceable source of distinc-
tive information about a place. However, this information tends to be noisy and
difficult to analyze due to the susceptibility to variations introduced by changing
illumination and everyday activities in the environment. At the same time, most
recent robotic platforms are equipped with a laser range scanner which provides
much more stable and robust geometric cues. These cues, however, are unable
to uniquely represent the properties of different places (perceptual aliasing, [26]).
Clearly performance could increase if different cues were combined effectively. Note
that even alternative interpretations of the information obtained by the same sensor
can be valuable, as we will show experimentally in Section 6.

This section describes our approach to multi-modal place classification. Our
method is fully supervised and assumes that during training, each place (room) is
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Figure 1: Architecture of the multi-modal place classification system.

represented by a collection of labeled data which captures its intrinsic visual and
geometric properties under various viewpoints, at a fixed time and illumination
setting. During testing, the algorithm is presented with data samples acquired
in the same places, under roughly similar viewpoints but possibly under different
conditions (e.g. illumination), and after some time (where the time range goes from
some minutes to several months). The goal is to recognize correctly each single data
sample provided to the system.

The architecture of the system is illustrated in Figure 1. We see that there is a
separate path for each cue. We use two different visual cues corresponding to two
types of image features (local and global) as well as simple geometrical features
extracted from laser range scans. Each path consists of two main building blocks:
a feature extractor and a classifier. Thus, separate decisions can be obtained for
each of the cues in case only one cue is available. Alternatively, our method could
decide when to acquire additional information (e.g. only in difficult cases, [42]). In
cases when several cues are available, the outputs encoding the confidence of the
single-cue classifiers are combined using an efficient discriminative accumulation
scheme.

The rest of this section gives details about the algorithms used to extract and
classify each of the cues for the vision-based paths (Section 3.1) and laser-based
path (Section 3.2). A comprehensive description of the algorithms used for cue
integration is given in Section 4.

3.1 Vision-based Place Classification

As a basis for the vision-based channel, we used the place recognition system pre-
sented in [43, 42], which is built around a Support Vector Machine (SVM) classifier
[14] and two types of visual features, global and local, extracted from the same im-
age frame. We used Composed Receptive Field Histograms (CRFH) [27] as global
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features, and SIFT [28] as local features. Both have already been proved success-
ful in the domain of vision-based place recognition [43, 42] and localization and
mapping [46, 5].

CRFHs are a sparse multi-dimensional statistical representation of responses of
several image filters applied to the input image. Following [43], we used histograms
of 6 dimensions, with 28 bins per dimension, computed from second order normal-
ized Gaussian derivative filters applied to the illumination channel at two scales.
The SIFT descriptor instead represents local image patches around interest points
characterized by coordinates in the scalespace in the form of histograms of gradient
directions. To find the coordinates of the interest points, we used a scale and affine
invariant region detector based on the difference-of-Gaussians (DoG) operator [44].

We used SVMs for creating models from both visual cues. A review of the
theory behind SVMs can be found in Section 4.1. In case of SVMs, special care
must be taken in choosing an appropriate kernel function. Here we used the χ2

kernel [12] for CRFH, and the match kernel proposed by [60] for SIFT. Both have
been used in our previous work on SVM-based place recognition, obtaining good
performances.

3.2 Laser-based Place Classification

In addition to the visual channel, we used a laser range sensor. A single 2D laser
scan covered a field of view of 180o in front of the robot. A laser observation
z = {b0, ..., bM−1} contains a set of beams bi, in which each beam bi consists of a
tuple (αi, di), where αi is the angle of the beam relative to the robot and di is the
length of the beam.

For each laser observation, we calculated a set of simple geometric features rep-
resented by single real values. The features were introduced for place classification
by [33] where laser observations covering a 360o field of view were used. The com-
plete set of features consists of two subsets. The first subset contains geometrical
features calculated directly from the laser beams. The second subset comprises ge-
ometrical features extracted from a polygon approximation of the laser observation.
This polygon is created by connecting the end points of the beams. The selection
of features is based on the results presented in [33, 34].

As classifiers for the laser-based channel, we tried both AdaBoost [20], following
the work in [34], and SVMs. In the rest of the paper, we will refer to the two laser-
based models as L-AB and L-SVM, respectively. For the geometric features, we
used a Radial Basis Function (RBF) kernel [14] with SVMs, chosen through a
set of reference experiments. In case of AdaBoost, we constructed a multi-class
classifier by arranging several binary classifiers into a decision list in which each
element corresponded to one specific class. Both classifiers were benchmarked on
the laser-based place classification task. Results presented in Section 6.2 show an
advantage of the more complex SVM classifier.
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4 Discriminative Cue Integration

This section describes our approach to cue integration from one or multiple modali-
ties. We propose an SVM-based Discriminative Accumulation Scheme (SVM-DAS),
a technique performing non-linear cue integration by discriminative accumulation.
For each cue, we train a separate large margin classifier which outputs a set of
scores (outputs), encoding the confidence of the decision. We achieve integration
by feeding the scores to an SVM. Compared to previous accumulation methods
[39, 11, 36, 42], SVM-DAS gives several advantages: (a) discriminative accumu-
lation schemes achieve consistently better performances than probabilistic ones
[39, 11], as shown in [36]; (b) compared to previous discriminative accumulation
schemes [36, 42], our approach accumulates cues with a more complex, possibly
non-linear function, by using the SVM framework and kernels [14]. Such an ap-
proach makes it possible to integrate outputs of different classifiers such as SVM
and AdaBoost. At the same time, it learns the weights for each cue very effi-
ciently, therefore making it possible to accumulate large numbers of cues without
computational problems.

In the rest of the section we first sketch the theory behind SVMs (Section 4.1),
a crucial component in our approach. We then describe the Generalized Discrimi-
native Accumulation Scheme (G-DAS, [42], Section 4.2) on which to a large extent
we build. Finally, we introduce the new algorithm and discuss its advantages in
Section 4.3.

4.1 Support Vector Machines

Consider the problem of separating the set of labeled training data
(x1, y1), . . . , (xn, yn), . . . , (xN , yN ) into two classes, where xn ∈ ℜL is a feature
vector and yn ∈ {−1, +1} its class label. Assuming that the two classes can be
separated by a hyperplane in some Hilbert space H, then the optimal separating
hyperplane is the one which has maximum distance to the closest points in the
training set resulting in a discriminant function

f(x) =
N∑

n=1

αnynK(xn, x) + β.

The classification result is then given by the sign of f(x). The values of αn and
β are found by solving a constrained minimization problem, which can be done
efficiently using the SMO algorithm [38]. Most of the αn’s take the value of zero;
those xn with nonzero αn are the “support vectors”. In case where the two classes
are non-separable, the optimization is formulated in such way that the classification
error is minimized and the final solution remains identical. The mapping between
the input space and the usually high dimensional feature space H is done using
kernels K(xn, x).

The extension of SVM to multi class problems can be done in several ways.
Here we will mention three approaches used throughout the paper:
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1. Standard one-against-all (OaA) strategy. If M is the number of classes, M
SVMs are trained, each separating a single class from all other classes. The
decision is then based on the distance of the classified sample to each hyper-
plane, and the sample is assigned to the class corresponding to the hyperplane
for which the distance is largest.

2. Modified one-against-all strategy. In [42], a modified version of the OaA prin-
ciple was proposed. The authors suggested to use distances to precomputed
average distances of training samples to the hyperplanes (separately for each
of the classes), instead of the distances to the hyperplanes directly. In this
case, the sample is assigned to the class corresponding to the hyperplane for
which the distance is smallest. Experiments presented in this paper and in [42]
show that in many applications this approach outperforms the standard OaA
technique.

3. One-against-one (OaO) strategy. In this case, M(M − 1)/2 two-class SVMs
are trained for each pair of classes. The final decision can then be taken in
different ways, based on the M(M − 1)/2 outputs. A popular choice is to
consider as output of each classifier the class label and count votes for each
class; the test image is then assigned to the class that received more votes.

Support Vector Machines do not provide any out-of-the-box solution for es-
timating confidence of the decision; however, it is possible to derive confidence
information and hypotheses ranking from the distances between the samples and
the hyperplanes. In the work presented in this paper, we applied the distance-based
methods proposed in [42], which define confidence as a measure of unambiguity of
the final decision related to the differences between the distances calculated for each
of the binary classifiers.

4.2 Generalized Discriminative Accumulation Scheme

The Generalized Discriminative Accumulation Scheme (G-DAS) was proposed first
in [42], as a more effective generalization of the algorithm presented in [36]. It
accumulates multiple cues, possibly from different modalities, by turning classifiers
into experts. The basic idea is to consider real-valued outputs of a multi-class
discriminative classifier (e.g. SVM) as an indication of a soft decision for each
class. Then, all the outputs obtained from the various cues are summed together,
therefore linearly accumulated. Specifically, suppose we are given M classes and,
for each class, a set of Nm training samples {{sm,n}Nm

n=1}M
m=1. Suppose also that,

from each sample, we extract a set of T different cues {Tt(sm,n)}T
t=1. The goal is to

perform recognition using all of them. The G-DAS algorithm consists of two steps:

1. Single-cue Models. From the original training set {{sm,n}Nm

n=1}M
m=1, contain-

ing samples belonging to all M classes, define T new training sets
{{Tt(sm,n)}Nm

n=1}M
m=1, t = 1, . . . , T , each relative to a single cue. For each
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Figure 2: A real example of test image misclassified by each of the single cues, but
classified correctly using G-DAS.

new training set train a multi-class classifier. Then, given a test sample s, for
each of the T single-cue classifiers estimate a set of outputs {Vt,v(Tt(s))}V

v=1

reflecting the relation of the sample to the model. In case of the SVMs with
standard OaO and OaA multi-class extensions, the outputs would be values
of the discriminant functions learned by the SVM algorithm during training,
i.e. Vt,v(Tt(s)) = ft,v(Tt(s)), v = 1, . . . , V , and V = M(M − 1)/2 for OaO or
V = M for OaA.

2. Discriminative Accumulation. After all the outputs are computed for all the
cues, combine them with different weights by a linear function:

Vv(s) =
T∑

t=1

σtVt,v(Tt(s)), σt ∈ ℜ+, v = 1, . . . , V.

The final decision can be estimated with any method commonly used for
multi-class, single-cue SVM.

An important property of accumulation is the ability to perform correct clas-
sification even when each of the single cues gives misleading information. This
behavior is illustrated on a real example in Figure 2. Despite these advantages,
G-DAS presents some potential limitations: first, it uses only one weight for all
outputs of each cue. This simplifies the parameter estimation process (usually, an
extensive search is performed to find the coefficients {σt}

T
t=1), but also constraints

the ability of the algorithm to adapt to the properties of each single cue. Second,
accumulation is obtained via a linear function, which might not be sufficient in case
of complex problems. The next section shows how our new accumulation scheme,
SVM-DAS, addresses these issues.

4.3 SVM-based Discriminative Accumulation Scheme

The Support Vector Machines-based Discriminative Accumulation Scheme (SVM-
DAS) accumulates the outputs generated by single-cue classifiers by using a more
complex, possibly non-linear function. The outputs are used as an input to an SVM,
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and the parameters of the integration function are learned during the optimization
process, for instance using the SMO algorithm [38]. These characteristics address
the potential drawbacks of G-DAS discussed in the previous section.

More specifically, the new SVM-DAS accumulation function is given by:

Vu(s) =
N∑

n=1

αu,nynK(vn, v) + βu, u = 1, . . . , U,

where v is a vector containing all the outputs for all T cues:

v =
[
{V1,v(T1(s))}V1

v=1, . . . , {VT,v(TT (s))}VT

v=1

]
.

The parameters αu,n, yn, βu, and the support vectors vn are inferred from the train-
ing data either directly or efficiently during the optimization process. The number
of the final outputs U and the way of obtaining the final decision depends on the
multi-class extension used with SVM-DAS. We use the one-against-one extension
throughout the paper for which U = M(M − 1)/2.

The nonlinearity is given by the choice of the kernel function K, thus in the
case of the linear kernel the method is still linear. In this sense, SVM-DAS is more
general than G-DAS, while it preserves all its important properties (e.g. the ability
to give correct results for two misleading cues, see Figure 2). Also, for SVM-DAS
each of the integrated outputs depends on all the outputs from single-cue classifiers,
and the coefficients are learned optimally. Note that the outputs Vt,v(Tt(s)) can be
derived from a combination of different large margin classifiers, and not only from
SVM.

SVM-DAS can be seen as a variation of ensemble learning methods that em-
ploy multiple models to improve the recognition performance. The key reason why
ensemble algorithms obtain better results is because the individual classifiers make
errors on different data points. Typically, different training data is used for each
classifier [40]. In our experiments, we use data representing different types of in-
formation e.g. obtained using different sensors.

5 Place Classification for Semantic Space Labeling

One of the applications of a place classification system is semantic labeling of space.
This section provides a brief overview of the problem and describes how we employed
our multi-modal place classification method to build a semantic labeling system.
We evaluated the system in a live experiment described in Section 7.

5.1 Semantic Labeling of Space

The problem of semantic labeling can be described as assigning meaningful semantic
descriptions (e.g. “corridor” or “kitchen”) to areas in the environment. Typically,
semantic labeling is used as a way of augmenting the internal space representation
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Figure 3: Architecture of the semantic space labeling system based on place classi-
fication (LTM: Long-Term Memory, STM: Short-Term Memory).

with additional information. This can be used by the agent to reason about space
and to enhance communication with a human user. In case of most typical environ-
ments, it is sufficient to distinguish between semantic categories which are usually
associated with rooms [63], such as “office”, “meeting room” or “corridor”. It is
labeling at this level that we will discuss in this paper.

As will be shown through experiments in Sections 6 and 7, the place classification
system described in this paper can yield a place class with high accuracy given a
single sample of multi-modal data (e.g. one image and a laser scan). However,
when used for semantic labeling, the algorithm is requested to provide a label
for the whole area under exploration. At the same time, the system must be
resilient and able to deal with such problems as temporary lack of informative cues,
continuous stream of similar information or long-term occlusions. Given that the
system is operating on a mobile robot, crude information about its movement is
available from wheel encoders. This information can be used to ensure robustness
to the typical variations that occur in the environment but also to the problems
mentioned above. Finally, the system should be able to measure its own confidence
and restrain from making a decision until some confidence level is reached. All these
assumptions and requirements have been taken into consideration while designing
the system described in the following section.

5.2 Architecture of the System

The architecture of our system is presented in Figure 3. The system relies on three
sensor modalities typically found on a mobile robot platform: a monocular cam-
era, a single 2D laser scanner, and wheel encoders. The images from the camera,
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Figure 4: Illustration of the spatio-temporal accumulation process. As the robot
explores the environment, the beliefs collected on the way accumulate over time
within the bin corresponding to the current pose (x, y, θ) and over space in different
bins.

together with the laser scans are used as an input for the multi-modal place clas-
sification component. For each pair of data samples, place classification provides
its beliefs about the semantic category to which the samples belong. These be-
liefs are encoded in the integrated outputs as discussed in Section 4. Moreover,
the confidence of the decision is also measured and provided by the classification
component.

A labeling system should provide a robust and stable output over the whole
area. Since the sensors employed are not omni-directional, it is necessary to accu-
mulate and fuse information over time. Moreover, the data that the robot gathers
are not evenly spread over different viewpoints. As a possible solution, we propose
to use a confidence-based spatio-temporal accumulation method. The principle be-
hind the method is illustrated in Figure 4. As the robot explores the environment,
it moves with a varying speed. The robot has information about its own movement
(odometry) provided by the wheel encoders. As errors accumulate over time, this
information can only be used to estimate relative movement rather than absolute
position. This is sufficient for our application. The spatio-temporal accumulation
process creates a sparse histogram along the robot pose trajectory given by the
odometry and described by the metric position (x, y) and heading (θ) as shown
in Figure 4. The size of the histogram bins are adjusted so that each bin roughly
corresponds to a single viewpoint. Then, as the robot moves, the beliefs about
the current semantic category accumulate within the bins as in case of G-DAS
(with equal weights). This is what we call the temporal accumulation. It prevents
a single viewpoint from becoming dominant due to long-term observation. Since
each viewpoint observed by the robot will correspond to a different bin, performing
accumulation across the bins (this time spatially) allows to generate the final out-
puts to which each viewpoint contributes equally. In order to exclude most of the
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misclassifications before they get accumulated, we filter the decisions based on the
confidence value provided by the place classification component. Moreover, as the
odometry information is unreliable in the long term, the contents of bins visited a
certain amount of viewpoints ago are invalidated. Note that semantic labeling is
an application of the method presented in this paper and not the main focus of the
paper. The accumulation scheme we present here builds on the ideas of discrimina-
tive accumulation and confidence estimation to further illustrate their usefulness.
If the emphasis was on labeling, more advanced methods based on Hidden Markov
Models [45], probabilistic relaxation [48] or Conditional Random Fields [16] should
be taken into consideration. The advantages of our method are seamless integration
with other components of the system and simplicity (the method does not require
training or making assumptions on the transition probabilities between locations
or areas).

The accumulation process ensures robustness and stability of the generated la-
bel for a single area. However, another mechanism is required to provide the system
with information about area boundaries. This is required for the accumulation pro-
cess not to fuse the beliefs across different areas. Here, we propose two solutions to
that problem. As described in the previous sections, we can assume that each room
of the environment should be assigned one semantic label. In case of indoor environ-
ments, rooms are usually separated by a door or other narrow openings. Thus, as
one solution, we propose to use a simple laser-based door detector which generates
hypotheses about doors based on the width of the opening which the robot passes.
Such a simple algorithm will surely generate a lot of false positives. However, this
does not cause problems in the presented architecture as false positives only lead
to oversegmentation. This is a problem mainly for other components relying on
precise segmentation rather than for the labeling process itself. In fact, the label-
ing system could be used to identify false doors and improve the segmentation by
looking for directly connected areas classified as being of the same category.

As a second solution, we propose to use another localization and mapping sys-
tem in order to generate the space representation which will then be augmented
with semantic labels. Here we take the multi-layered approach proposed in [64].
The method presented by [64] builds a global metric map as the first layer and a
navigation graph as the second. As the robot navigates through the environment,
a marker or navigation node is dropped whenever the robot has traveled a certain
distance from the closest existing node. Nodes are connected following the order in
which they were generated. If information about the current node is provided to
the spatio-temporal accumulation process, labels can be generated for each of the
nodes separately. Moreover, as it is possible to detect whether the robot revisited
an existing node, the accumulated information can be saved and used as a prior
the next time the node is visited. For the live experiment described in this paper,
we used the detected doors to bound the areas and navigation graph nodes to keep
the priors. We then propagated the current area label to all the nodes in the area.
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(a) (b)

Figure 5: 5(a) The mobile robot platform used in the experiments; 5(b) Map of the
environment used during data acquisition and an example laser scan simulated in
the corridor. The rooms used during the experiments are annotated.

6 Experiments with Place Classification

We conducted several series of experiments to evaluate the performance of our place
classification system. We tested its robustness to different types of variations, such
as those introduced by changing illumination or human activity over a long period of
time. The evaluation was performed on data acquired using a mobile robot platform
over a time span of 6 months, taken from the IDOL2 database (Image Database
for rObot Localization 2 [30]). Details about the database and experimental setup
are given in Section 6.1. The experiments were performed for single-cue models
and models based on different combinations of cues and modalities. We present
the results in Section 6.2 and Section 6.3 respectively. Additionally, we analyze
performance and properties of different cue integration schemes in Section 6.4.

6.1 Experimental Setup

The IDOL2 database was introduced in [30]. It comprises 24 image sequences
accompanied by laser scans and odometry data acquired using two mobile robot
platforms (PeopleBot and PowerBot). The images were captured with a Canon
VC-C4 perspective camera using the resolution of 320x240 pixels. In this paper, we
will use only the 12 data sequences acquired with the PowerBot, shown in Figure 5a.

The acquisition was performed in a five room subsection of a larger office envi-
ronment, selected in such way that each of the five rooms represented a different
functional area: a one-person office (1pO), a two-persons office (2pO), a kitchen
(KT), a corridor (CR), and a printer area (PR). The map of the environment and
an example laser scan are shown in Figure 5b. Example pictures showing interiors
of the rooms are presented in Figure 6. The appearance of the rooms was captured
under three different illumination conditions: in cloudy weather, in sunny weather,
and at night. The robot was manually driven through each of the five rooms while
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(a) Variations introduced by illumination

Corridor One-person office Two-persons office

(b) Variations observed over time

One-person office Kitchen Printer area

(c) Remaining rooms (at night)

Figure 6: Examples of pictures taken from the IDOL2 database showing the in-
teriors of the rooms, variations observed over time and caused by activity in the
environment as well as introduced by changing illumination.
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continuously acquiring images and laser range scans at a rate of 5fps. Each data
sample was then labelled as belonging to one of the rooms according to the posi-
tion of the robot during acquisition. Extension 1 contains a video illustrating the
acquisition process of a typical data sequence in the database. The acquisition was
conducted in two phases. Two sequences were acquired for each type of illumination
conditions over the time span of more than two weeks, and another two sequences
for each setting were recorded 6 months later (12 sequences in total). Thus, the
sequences captured variability introduced not only by illumination but also nat-
ural activities in the environment (presence/absence of people, furniture/objects
relocated etc.). Example images illustrating the captured variability are shown in
Figure 6.

We conducted four sets of experiments, first for each cue separately and then
for cues combined. In order to simplify the experiments with multiple cues, we
matched images with closest laser scans on the basis of the acquisition timestamp.
In case of each single experiment, both training and testing were performed on one
data sequence. The first set consisted of 12 experiments, performed on different
combinations of training and test data acquired closely in time and under similar
illumination conditions. In this case, the variability comes from human activity
and viewpoint differences. For the second set of experiments, we used 24 pairs of
sequences captured still at relatively close times, but under different illumination
conditions. In this way, we increased the complexity of the problem [43, 42]. In
the third set of experiments, we tested the robustness of the system to long-term
variations in the environment. Therefore, we conducted 12 experiments, where we
tested on data acquired 6 months later, or earlier, than the training data, again
under similar illumination conditions. Finally, we combined both types of variations
and performed experiments on 24 pairs of training and test sets, obtained 6 months
from each other and under different illumination settings. Note that in the last
two sets of experiments described, the task becomes more and more challenging as
the difference between training and test set increases. By doing this, we aim at
testing the gain in robustness expected from cue integration in very difficult, but
still realistic, scenarios.

For all experiments, model parameters were determined via cross validation.
Since the datasets in the IDOL2 database are unbalanced (on average 443 samples
for CR, 114 for 1pO, 129 for 2pO, 133 for KT and 135 for PR), as a measure of
performance for the reported results and parameter selection, we used the average
of classification rates obtained separately for each actual class (average per-class
recall). For each single experiment, the percentage of properly classified samples
was first calculated separately for each room and then averaged with equal weights
independently of the number of samples acquired in the room. This allowed to
eliminate the influence that large classes could have on the performance score.
Statistical significance of the presented results was verified using the Wilcoxon
signed-ranks test (when performance of two methods was compared) or Friedman
and post-hoc Nemenyi test (when multiple methods were compared) at a confidence
level of α = 0.05 as suggested in [15]. The results of the post-hoc tests were
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visualized using critical difference diagrams. The diagrams show average ranks of
the compared methods and the groups of methods that are not significantly different
are connected (the difference is smaller than the critical difference presented above
the main axis of the diagram). The reader is referred to [15] for details on the
applied tests and the critical difference diagrams presented below.

6.2 Experiments with Separate Cues

We first evaluated the performance of all four types of single-cue models: the two
SVM models based on visual features (CRFH, SIFT), the AdaBoost and the SVM
models trained on the laser range cues (referred to as L-AB and L-SVM). For SVM,
we tried the three multi-class extensions described in Section 4.1. The results of
all four sets of experiments for these models are presented in Figure 7-10 (the first
four bar groups). Moreover, the results of statistical significance tests comparing
the models based on the combined results of all four experiments are illustrated in
Figure 11. We first note that, as expected, CRFH and SIFT suffer from changes
in illumination (-15.3% and -11.0% respectively), while the geometrical features do
not (-1.9% for L-AB and -0.6% for L-SVM). Long-term variations pose a challenge
for both modalities (-7.0% – -10.2% for vision and -3.7% – -7.9% for laser). We also
see differences in performance between the two visual cues: CRFH suffers more
from changes in illumination, while SIFT is less robust to variations induced by
human activities. It is also interesting to note that under stable conditions, the
vision-based methods outperform the systems based on laser range cues (95.1%
for CRFH and 92.5% for L-SVM; the difference is statistically significant). This
illustrates the potential of visual cues, but also stresses the need for more robust
solutions.

These experiments are also a comparison between two recognition algorithms
using laser-range features, namely the boosting-based implementation (L-AB) pre-
sented in [33] and the current SVM-based implementation (L-SVM). Figures 7-10
and 11 show the results. We can see that the difference in performance is sta-
tistically significant in favor of the SVM-based method for all three multi-class
extensions (from 6.1% for Exp. 1 to 10.3% for Exp. 4 in average). The classifica-
tion results for the L-AB are worse than the results of the original paper by [33].
There are two main reasons for that. First, the number of classes is increased to
five, while in [33] was of a maximum of four. Second, in these experiments, we used
a restricted field of view of 180 degrees, whilst in [33] the field of view was of 360
degrees. This decreases the classification rate, as it has been shown in previous
work [34].

As already mentioned, all the experiments with SVMs were repeated for three
different multi-class extensions: standard OaO and OaA as well as modified OaA
algorithm. The obtained results are in agreement with [42] - in case of single cue
and G-DAS experiments, the modified version gives the best performance with
a statistically significant difference independently of the modality on which the
classifier was trained.
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Figure 7: Classification results for Exp. 1: stable illumination conditions, close in
time.
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Figure 8: Classification results for Exp. 2: varying illumination conditions, close
in time.
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Figure 9: Classification results for Exp. 3: stable illumination conditions, distant
in time.
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Figure 10: Classification results for Exp. 4: varying illumination conditions, distant
in time.
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Figure 11: Critical difference diagrams comparing four single-cue models and solu-
tions based on multiple cues integrated using SVM-DAS with the Nemenyi test for
a confidence level of α = 0.05. The comparison is based on the combined results
of Exp. 1-4 and presented separately for each multi-class extension. The average
ranks of the methods are plotted on the axis and the groups of methods that are
not significantly different are connected.

Figure 12: Distribution of errors made by the four models for each actual class
(bright colors indicate errors). The diagonal elements were removed.

Figure 12 shows the distribution of errors for each actual class (room) made by
the four models. It is apparent that each of the cues makes errors according to a
different pattern. At the same time, similarities occur between the same modalities.
We see that visual models are biased towards the corridor, while the geometrical
models tend to misclassify places as the printer area. A possible explanation is that
the vision-based models were trained on images acquired with perspective camera
with constrained viewing angle. As a result, similar visual stimuli coming from the
corridor are present in the images captured by the robot leaving each of the rooms.
The same area close to a doorway, from the geometrical point of view, is similar
to the narrow passage in the printer area. This analysis is a strong motivation to
integrate these various cues with a stack of classifiers, as theory indicates that this
is the ideal condition for exploiting the different informative content [40].

6.3 Experiments with Cue Integration

For the final experiments, we selected four different cue accumulation methods:
G-DAS and SVM-DAS with three kernel types (linear, RBF, and histogram in-
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Predicted Class
1pO CR 2pO KT PR

A
ct

u
a
l

C
la

ss 1pO 11.20 (93.71) 0.36 (3.06) 0.16 (1.33) 0.11 (0.96) 0.11 (0.94)
CR 0.25 (0.53) 45.36 (97.73) 0.19 (0.42) 0.33 (0.70) 0.29 (0.62)
2pO 0.17 (1.22) 0.11 (0.8) 13.26 (96.92) 0.06 (0.46) 0.08 (0.60)
KT 0.17 (1.18) 0.35 (2.45) 0.08 (0.57) 13.42 (95.12) 0.09 (0.67)
PR 0.09 (0.65) 0.77 (5.59) 0.03 (0.19) 0.05 (0.33) 12.90 (93.24)

Table 1: Confusion matrix for the multi-cue system based on CRFH, SIFT and
L-SVM integrated using SVM-DAS. Normalized average values in percentage over
all experiments are reported. The values in brackets were normalized separately for
each actual class (row). The presented results are only for the standard OaO multi-
class extension since the results for the remaining extensions were comparable.

tersection (HI) kernel [6]). The parameters of the algorithms (weights in case of
G-DAS and SVM model in case of SVM-DAS) were always adjusted on the basis
of outputs generated during all experiments with single-cue models trained on one
particular data sequence. Then, during testing, the previously obtained integration
scheme was applied to all experiments with models trained on a different sequence,
acquired under similar illumination and closely in time. This way, the general-
ization abilities of each of the methods were tested in a realistic scenario. In all
experiments, we found that SVM-DAS with an RBF kernel outperforms the other
methods and the difference in performance with respect to G-DAS was statistically
significant for all combinations of cues and multi-class extensions (Wilcoxon test).
For space reasons, we report results of each of the experiments only using SVM-
DAS based on the RBF kernel and G-DAS for comparison (Figure 7-10, last 9 bar
groups). A detailed comparison of all variants of SVM-DAS for the most complex
problem (Exp. 4) is given in Figure 13. Results of statistical significance tests com-
paring the multi-cue solutions with single-cue models based on the combined results
of all experiments are illustrated in Figure 11.

We tested the methods with several combinations of different cues and modal-
ities. First, we combined the two visual cues. We see that the generalization of a
purely visual recognition system can be significantly improved by integrating dif-
ferent types of cues, in this case local and global. This can be observed especially
for Exp. 4, where the algorithms had to tackle the largest variability. Despite that,
according to the error distributions in Figure 12, we should expect largest gain
when different modalities are combined. As we can see from Figure 7-10 this is the
case indeed. By combining one visual cue and one laser range cue (e.g. CRFH +
L-SVM), we exploit the descriptive power of vision in case of stable illumination
conditions and the invariance of geometrical features to the visual noise. Moreover,
if the computational cost is not an issue, the performance can be further improved
by using both visual cues instead of just one. As can be seen from Figure 11,
by integrating single-cue models or adding another cue to a multi-cue system, we
always get an improvement statistically significant.
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Figure 13: Comparison of performance of SVM-DAS based on different kernel func-
tions for the most complex problem (Exp. 4).

We performed a more detailed analysis of the best results. Table 1 contains
the confusion matrix for the multi-cue system based on CRFH, SIFT and L-SVM
integrated using SVM-DAS with an RBF kernel. We see that even if the the
corridor class contained on average four times more samples than each of the room
classes and was visually and geometrically distinctive, the results are balanced
and the recognition rates for each actual class are similar. In general, during our
experiments, more balanced solutions were preferred due to the performance metric
used (average of the diagonal values in brackets in Table 1).

As it was mentioned in Section 4.3, SVM-DAS can be applied for problems
where outputs of different classifiers need to be integrated. To test this in practice,
we combined the SVM models trained on visual cues with AdaBoost model based
on geometrical features (L-AB). As usual, for SVM we used several multi-class
extensions that in most cases produced outputs having different interpretation than
those generated by the multi-class algorithm used for AdaBoost. In those cases G-
DAS could not be applied. We present the results in Figure 7-10 (last bar group) and
Figure 11. The method obtained large and statistically significant improvements
compared to each of the individual cues. For instance for Exp. 4, the recognition
rate increased by 12.2% in average. This proves the versatility of our approach.

6.4 Analysis of Cue Integration Schemes

Results presented so far clearly show that SVM-DAS performs significantly better
than G-DAS and, by using more sophisticated kernel types for SVM-DAS, it is
possible to perform non-linear cue accumulation. Moreover, the experiments (see
Figure 13) show that we can expect better results with the RBF kernel (especially
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Cues
(Primary cue)

Cue integration method

G-DAS
SVM-DAS

RBF Kernel

CRFH + SIFT 25.971±18.503 29.453±22.139

CRFH + L-SVM 21.230±20.199 32.736±20.256

SIFT + L-SVM 28.820±20.982 33.344±22.425

SIFT + CRFH + L-SVM 31.858±20.474 40.833±21.916

Table 2: Average percentages (with standard deviations) of test samples for which
all cues had to be used in order to obtain the maximal recognition rate.

for the OaO multi-class extension), although there is no drastic improvement. We
therefore suggest to choose the kernel according to constraints on the computational
cost of the solution. Since there are fast implementations of linear SVMs, it might
be beneficial to use a linear kernel in cases when the integration scheme must be
trained on a very large number of samples. In applications where only the number
of training parameters is an issue, the non-parametric histogram intersection kernel
can be used instead of RBF.

We now further discuss differences between high-level (e.g. SVM-DAS) and
low-level (feature level) cue integration. There are several advantages in integrat-
ing multiple cues with a high level strategy. First, different learning algorithms
can be used for each single cue. In our experiments, this allowed to combine SVM-
based models employing different kernel functions (e.g. the χ2 kernel for CRFH
and the match kernel for SIFT) or even different classifiers (AdaBoost and SVM).
Moreover, parameters can be tuned separately for each of the cues. Second, both
the training and recognition tasks can be divided into smaller subproblems that
can be easily parallelized. Finally, it is possible to decide on the number of cues
that should be extracted and used for each particular classification task. This is an
important feature, since, in most cases, decisions based on a subset of cues are cor-
rect while extraction and classification of additional features introduces additional
cost. For example, a solution based on global visual features, laser range cues and
SVM-DAS runs in real-time at a rate of approximately 5fps, which would not be
possible if an additional visual cue like SIFT was used. The computational cost can
be significantly reduced by taking the approach presented in [42]. By combining
confidence estimation methods with cue integration, we can use additional sources
of information only when necessary - when the decision based on one cue only is not
confident enough. This scheme is referred to as Confidence-based Cue Integration.
Table 2 presents the results of applying the scheme to the experiments presented in
this section. We see that, in general, we can base our decision on the fastest model
(marked with bold font in Table 2), such as the efficient and low-dimensional model
based on simple laser-range features, and we can retain the maximal performance
by using additional cues only in approximately 30% of cases. This greatly reduces
the computational time required on average e.g. approximately three times for
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Figure 14: Comparison of performance of two single-cue models and solutions based
on the cues integrated on both low and high level for the most complex problem
(Exp. 4).

CRFH, L-SVM and SVM-DAS. Additional cues will be used more often when the
variability is large, and rarely for less difficult cases. This is not possible in case of
low-level integration where all the cues must be extracted and classified in order to
obtain a decision.

Another important factor is performance. During our experiments, we compared
the performance of G-DAS and SVM-DAS (with an RBF kernel) with models build
on cues combined on the feature level. We performed three different sets of compar-
isons. First, we built single-cue models and models based on features combined on
the low level using SVM and the non-parametric linear kernel, using the same values
of the SVM training parameters for all models. Then, we integrated the outputs of
the single-cue models using G-DAS and SVM-DAS. In case when G-DAS was used,
the solution remained linear. In the second comparison, for building the models
we used the non-linear, non-parametric histogram intersection kernel. Finally, we
used an RBF kernel and performed parameter selection for each of the models. All
comparisons were based on CRFH and laser-range cues, since the dedicated kernel
function required by SIFT could not be used with any of the other features for
low-level integration.

The results for the most complex problem (Exp. 4) are given in Figure 14 and
statistical significance tests comparing the solutions are illustrated in Figure 15. It
can be observed that, in every case, the high-level integration significantly outper-
formed solutions based on features combined on the low level. In only one case
there was no significant difference between G-DAS and low-level integration; how-
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Figure 15: Critical difference diagrams comparing two single-cue models and solu-
tions based on the cues integrated on both low and high level with the Nemenyi test
for a confidence level of α = 0.05. The comparison is based on the combined results
of Exp. 1-4 and presented separately for three kernel functions and multi-class ex-
tensions used with SVM. The average ranks of the methods are plotted on the axis
and the groups of methods that are not significantly different are connected.

ever, SVM-DAS still performed better than the other solutions. This is in agreement
with the results reported in [52, 36] and can be explained by greater robustness of
the high-level methods to noisy cues or sensory channels and the ability of different
classifiers to adapt to the characteristics of each single cue.

7 Experiments with Semantic Space Labeling

We performed an independent live experiment to test our multi-modal semantic
space labeling system running in real-time on a mobile robot platform. The exper-
iment was performed during working hours in a typical office environment. Both
the environment and the robot platform were different than in case of the off-line
evaluation described in Section 6. The whole experiment was videotaped and a
video presenting the setup, experimental procedure and visualization of the results
can be found in Extension 2.

7.1 Experimental Setup

The experiment was performed between the 7th and 10th of September 2008 in
the building of the School of Computer Science at the University of Birmingham,
Birmingham, United Kingdom. The interior of the building consists of several
office environments located on three floors. For our experiments, we selected three
semantic categories of rooms that could be found in the building: a corridor, an
office and a meeting room. To build the model of an office, we acquired data
in three different offices: Aaron’s office (1st floor), Robert’s office (1st floor) and
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Aaron’s office (night, place class: office) Richrd’s office (night, place class: office)

Robert’s office (night, place class: office) Meeting room (cloudy)

Corridor 1st floor (night, place class: corridor) Corridor ground floor (night, place class: corridor)

(a) Samples from the data sequences used to train the models of place classes.

Nick’s office (sunny) Jeremy’s office (sunny)

Corridor 2nd floor (sunny) Meeting room (sunny)

(b) Samples acquired during the test run.

Figure 16: Examples of images and laser scans (synchronized) taken from the data
sequences used for training the models of place classes (a) and acquired during
the test run (b) in each of the rooms considered during the experiment. The
figure illustrates the within-category variations for corridors and offices as well as
other types of variability observed for each place class (e.g. different illumination
conditions, activity in the environment).
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Richard’s office (ground floor). To create a representation of the corridor class,
we recorded data in 2 corridors, one on the ground floor and one on the 1st floor.
The acquisition was performed at night. Finally, to train the model of a meeting
room, we used an instance on the 2nd floor. All training data expect the one from
the meeting room was acquired in another part of the building than the one used
testing. The data for this class were recorded during the day. A video illustrating
the whole data acquisition process is available as Extension 3. The interiors of the
rooms are presented in Figure 16a, as seen by vision and laser. The robot was
manually driven around each room and data samples were recorded at the rate of
5 fps. All the collected training data are available as Extension 6. In case of the
meeting room, corridor on the 1st floor as well as Aaron’s and Richard’s offices, the
acquisition was repeated twice.

For the real-time experiment, we built the system as described in Section 5.
Following the findings of the off-line experiments, we used SVM-DAS with the
RBF kernel to integrate the classifier outputs for vision and laser range data. For
efficiency reasons, we used only global features (CRFH) for the vision channel. We
used the one-against-all multi-class SVM extension for the place models. Other
parameters were set as described in Section 6.

We trained the place models separately for each modality on a dataset created
from one data sequence recorded in each of the rooms. One of the advantages of
SVM-DAS is the ability to infer the integration function from the training data,
after training the models. We used the additional data sequences acquired in some
of the rooms and trained SVM-DAS on the outputs of the uni-modal models tested
on these data.

The PeopleBot robot platform shown in Figure 3 was used for data acquisition
and the final experiment. The robot was equipped with a SICK laser range finder
and Videre STH-MDCS2 stereo head (only one of the cameras was used). The
images were acquired at the resolution of 320x240 pixels. The whole system was
implemented in the CAST (The CoSy Architecture Schema Toolkit, [23]) framework
and run on a standard 2.5GHz dual-core laptop. The processing for both modalities
was executed in parallel using both of the CPU cores.

7.2 Experimental Procedure and Results

Three days after the training data were collected, we performed a live experiment
in the lab on the 2nd floor in the same building. The experiment was conducted
during the day with sunny weather. The part of the environment that was explored
by the robot consisted of 2 offices (Nick’s office and Jeremy’s office), a corridor and
a meeting room. The interiors of the rooms and the influence of illumination can
be seen in the images in Figure 16b.

The SLAM system of the robot constructs a metric map and navigation graph.
In this experiment, the task is to semantically label the navigation graph nodes and
areas as the map is being built. The only knowledge given to the robot before the
experiment consisted of the models of the three place classes: “office”, “corridor”
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Figure 17: Final map obtained after the test run. The navigation graph is overlaid
on the metric map and the color of the circles around the graph nodes indicate the
place class assigned to each area bounded by detected doors. The system correctly
labeled all the areas in the environment.

and “meeting room”. As stated in Section 5, every time the robot created or revis-
ited a node, the accumulated beliefs about the semantic category of the area were
used to label the node and saved as a future prior. The label was also propagated
to the whole area. We used detected doors to assign nodes to areas.

The whole experiment was videotaped and a video presenting the experimental
setup, the test run and visualization of the obtained results can be found in in
Extension 2. The robot started in Nick’s office, and was manually driven through
the corridor to Jeremy’s office. Then, it was taken to the meeting room where
the autonomous exploration mode was turned on. The robot used a frontier-based
algorithm based on [62]. Laser data was limited to 2m distance in the exploration
to make sure that the robot not just perceived how the environment looked but also
covered it to build the navigation graph. After the meeting room was explored, the
robot was manually driven back to Nick’s office where the experiment finished. A
video presenting visualization of the full test run is available in Extension 4. The
labeling process was running on-line and the place classification was performed
approximately at the rate of 5 times per second. The final semantic map build
during the run is shown in Figure 17. We can see that the system correctly labeled
all the areas in the environment.

The sensory data acquired during the test run are available as Extension 6.
Moreover, a video presenting the sequence of images and laser scans is presented in
Extension 5. The fact that the data were stored allowed for additional performance
analysis of the multi-modal place classification system, similar to the one presented
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Figure 18: Place classification results obtained on the dataset recorded during the
test run. The first three bar charts show the results separately for each place class:
“corridor”, “meeting room” and “office”. The charts show the percentage of the
samples that were properly classified (most left bars marked with thick lines), but
also how the misclassifications were distributed. The chart on the right presents
the percentage of properly classified samples during the whole run. The two top
rows give results for single modalities, while the bottom row shows results for the
multi-modal system.

in Section 6. The results are displayed in Figure 18. When we look at the overall
classification rate for all the data samples in the test sequence, we see that vision
significantly outperformed laser in this experiment (66% v.s. 84%). Still, the
performance of the system was boosted by additional 8% compared to vision alone
when the two modalities were integrated. The gain is even more apparent if we look
at the detailed results for each of the classes (the first three charts in Figure 18).
We see that the modalities achieved different performance, but also different error
patterns, for each class. Clearly, the system based on laser range data is a very
good corridor detector. On the other hand, vision was able to distinguish between
the offices and the meeting room almost perfectly. Finally, the integrated system
always achieved the performance of the more reliable modality and for two out of
three classes outperformed the uni-modal systems. As can be seen in the video in
Extension 2 and 4, this provided stable performance for each of the classes and a
robust base for the semantic labeling system.

8 Conclusions

This paper addressed the problem of place classification and showed how it can be
applied to semantic knowledge extraction in robotic systems. This is an important
and challenging task, where multiple sensor modalities are necessary in order to
achieve generality and robustness, and enable systems to work in realistic settings.
To this end, we presented a new cue integration method able to combine multiple
cues derived by a single modality, as well as cues obtained by multiple sensors. The
method was thoroughly tested in off-line experiments on realistic data collected
under varying conditions and as part of a real-time system running on a robotic
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platform. The results obtained using multiple visual cues alone, and combined with
laser range features, clearly show the value of our approach. Finally, we showed
that the system can successfully be applied for the space labeling problem where
it can be used to augment the internal space representation with semantic place
information. All the data used in the paper are available as extensions to the paper
and from the IDOL2 database [29].

In the future, we plan to extend this method and attack the scalability issue,
with particular attention to indoor office environments. These are usually charac-
terized by a large number of rooms with very similar characteristics; we expect that
in such a domain our approach will be particularly effective. Another important
aspect of place classification is the intrinsic dynamics in the sensory information:
as rooms are used daily, furniture is moved around, objects are taken in and out of
drawers and people appears. All of this affects the sensor inputs of places in time.
We plan to combine our approach with incremental extensions of the SVM algo-
rithm [30, 37] and to extend these methods from fully supervised to semi-supervised
learning, so to obtain a system able to learn continuously from multiple sensors.
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1 Index to Multimedia Extensions

The multimedia extensions to this article are at: http://www.ijrr.org.

Extension Type Description
1 Video The acquisition procedure of a typical data sequence in the IDOL2 database.
2 Video The setup, procedure and visualization of the experiment with semantic space

labeling based on multi-modal place classification.
3 Video The process of acquiring data for training the models of places for the experiment

with semantic space labeling.
4 Video Visualization of the complete test run and results obtained during the experiment

with semantic space labeling.
5 Video The complete sequence of images and laser scans acquired during the test run of

the experiment with semantic space labeling.
6 Data The dataset (sequences of images and laser scans) collected during the experiment

with semantic labeling of space.

Table 3: Table of multimedia extensions.
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Abstract

A cornerstone for cognitive mobile agents is to represent the vast body of knowl-
edge about space in which they operate. In order to be robust and efficient, such rep-
resentation must address requirements imposed on the integrated system as a whole,
but also resulting from properties of its components. In this paper, we carefully an-
alyze the problem and design a structure of a spatial knowledge representation for a
cognitive mobile system. Our representation is layered and represents knowledge at
different levels of abstraction. It deals with complex, cross-modal, spatial knowledge
that is inherently uncertain and dynamic. Furthermore, it incorporates discrete
symbols that facilitate communication with the user and components of a cognitive
system. We present the structure of the representation and propose concrete instan-
tiations.

1 Introduction

Many recent advances in the fields of robotics and artificial intelligence have been
driven by the ultimate goal of creating artificial cognitive systems able to perform
human-like tasks. Several attempts have been made to create integrated cognitive
architectures and implement them on mobile robots [4, 3, 13, 1, 2]. There is an
increasing interest in, and demand for, robots that are capable of dealing with
complex and dynamic environments outside the traditional industrial workplaces.
These next generation robots will not only have to track their position and navigate
between points in space, but reason about space and their own knowledge, plan
tasks and knowledge acquisition and interact with people in a natural way.

Spatial knowledge constitutes a fundamental component of the knowledge base
of a cognitive agent providing a basis for navigation, reasoning, planning and
episodic memories. Moreover, it is a common ground for communication between
a robot and a human. In order for the process of acquisition, interpreting, stor-
ing and recalling of the spatial knowledge to be robust and efficient under limited
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resources and in realistic settings, the knowledge must be properly structured and
represented. Such knowledge representation must address requirements imposed
on the integrated system as a whole, but also resulting from properties of its com-
ponents. Due to this central role, the design of a spatial knowledge representation
should be one of the first steps in building a cognitive system.

In this work, we develop a structure of a spatial knowledge representation for a
cognitive mobile system that we call COARSE (Cognitive lAyered Representation
of Spatial knowledgE). We carefully analyze the role of a spatial representation and
formulate design assumptions and requirements imposed by the functionality and
components of an integrated system. Our representation is layered and represents
knowledge at different levels of abstraction, from low-level sensory input to high
level conceptual symbols. It is designed for representing complex, cross-modal,
spatial knowledge that is inherently uncertain and dynamic and includes discrete
symbols that facilitate communication with the user and components of the system.
Moreover, we propose models and algorithms that could be used as instantiations
of each layer of the representation.

This paper is motivated by the desire to create a framework that is powerful,
robust and efficient, but most importantly suited for mobile agents performing typ-
ical human-like tasks. The literature contains many algorithms for spatial mapping
and instantiations of mobile robotic systems. However, the existing representations
are either designed for a very specific domain [7, 12], they concentrate on a fraction
of the spatial knowledge [20, 23] or are designed to solve a single algorithmic task
very efficiently rather than for use within a larger system [8, 10, 18]. The idea of
this paper, is to take a step back, focus on structuring the whole body of spatial
knowledge and see how an analysis of requirements can lead the way towards a
powerful spatial representation for a cognitive mobile robot.

2 Related Work

There exists a broad literature on mobile robot localization, navigation and map-
ping and many algorithms relying on spatial knowledge have been proposed. These
include solutions to such problems as Simultaneous Localization and Mapping
(SLAM) [8, 15, 10, 18] or place classification [16, 20]. Every such algorithm main-
tains a representation of spatial knowledge. However, this representation is usually
specific to the particular problem and designed to be efficient within the single map-
ping system detached from any other interacting components. Other, more general
concepts, such as the Spatial Semantic Hierarchy [14] concentrate on lower levels
of spatial knowledge abstraction and do not support higher-level conceptualization
or representation of categorical information.

At the same time, we witness a growing interest in building artificial mobile
cognitive systems [4, 3, 1, 2]. These are complex, usually modular, systems that
require a unified and integrated approach to spatial knowledge representation. The
central role of spatial knowledge in those systems has been recognized and several
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authors proposed subsystems processing spatial knowledge integrated with other
components such as dialogue systems [24, 22]. However, neither of those provides
a clear structure of the represented knowledge, perform a thorough analysis of the
needs of different components of a mobile cognitive system or encapsulates all major
aspects of spatial knowledge.

The most comprehensive relevant representation has been proposed in [24].
However, it has several major drawbacks that makes it unsuitable for systems that
deal with dynamic and uncertain knowledge within large-scale, complex environ-
ments. First of all, the knowledge is never fully abstracted and is always grounded
in an accurate global metric map. This makes the system less robust and scalable.
Moreover, the categorical knowledge is not explicitly represented. The high-level
conceptualization relies on rigid ontologies and ignores uncertainties associated with
represented symbols. Finally, it is modality-specific and does not allow for knowl-
edge fusion from multiple sources. In the rest of the paper, we propose an approach
to spatial knowledge representation that addresses those problems.

3 Analysis of the Problem

Before designing a representation of spatial knowledge, it is important to review the
aspects a representation should focus on. In this section, we analyze those aspects
and propose our definition of a generic spatial knowledge representation. Then, we
formulate the problem within the context of cognitive systems.

3.1 What is a Spatial Knowledge Representation?

Following the analysis by Davis [9], we formulate several points that characterize a
general representation of spatial knowledge. A spatial representation can be seen
as:

a) A substitution (surrogate) for the world that allows the agent to perform
reasoning about the parts of the environment which are beyond its sensory horizon.
Such a surrogate is naturally imperfect, and is incomplete (some aspects are not
represented), inaccurate (captured with uncertainty), and will become invalid (e.g.
due to dynamics of the world that cannot be observed and is too complex to be
captured by the representation). Moreover, since the representation cannot be
perfect, all the inferences based on that representation, such as the outcomes of the
localization process, are uncertain. The only perfect representation of the world or
the environment in which the agent operates is the environment itself.

b) A set of ontological commitments that determine the terms in which the
agent thinks about space. The representation defines the aspects of the world that
should be represented. Moreover, it defines the level of detail at which they should
be represented as well as their persistence. The ontology should be understood in
more general terms, from spatial concepts and their relations to categorical models
or types of features extracted from the sensory input.
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c) A set of definitions that determine the reasoning that can be (and that should
be) performed within the framework and the possible inferences and their outcomes.
The reasoning will typically correspond to determining the current location with
respect to the internal map (topologically, semantically etc.), providing necessary
knowledge for the navigation process, determining the properties of a location in
space etc. Moreover, the representation defines how the location of the agent is
represented and in what terms it is possible to refer to points in space (e.g. in
terms of metric coordinates, semantic category of a place etc.).

d) A way of structuring the spatial information so that it is computationally
feasible to perform all the necessary processing and inferences in a specified time
(e.g. in real time) despite limited resources.

e) A medium of communication between the agent and human. If the agent
is supposed to exchange information with humans, the representation must be de-
signed in a way that allows the agent to interpret human expressions and generate
expressions that are comprehensible to humans.

f) Similarly, a medium of communication between components of an integrated
system.

3.2 Spatial Representation for Mobile Cognitive Systems

In this work, we narrow the focus to mobile cognitive systems. Based on the analy-
sis of existing approaches [3, 1, 23] as well as ongoing research on artificial cognitive
systems [4], we have identified several areas of functionality, usually realized through
separate subsystems, that must be supported by the representation. These include
localization, navigation, and autonomous exploration, but also understanding and
exploiting semantics associated with space, human-like conceptualization and cate-
gorization of space, reasoning about spatial units and their relations, human-robot
communication, action planning, object finding and visual servoing, and finally
recording and recalling episodic memories.

Having in mind the aforementioned functionalities, aspects covered by a repre-
sentation of spatial knowledge as well as limitations resulting from practical imple-
mentations, we have identified several desired properties and designed a represen-
tation reflecting those properties.

Complex, cross-modal, spatial knowledge in realistic environments is inherently
uncertain and dynamic. Therefore, it is futile to represent the environment as
accurately as possible. A very accurate representation must be complex, require
a substantial effort to synchronize with the world and still cannot guarantee that
sound inferences will lead to correct conclusions [9]. Our primary assumption is that
the representation should instead be minimal and inherently coarse and the spatial
knowledge should be represented only as accurately as it is required to support
the functionality of the system. Furthermore, redundancy should be avoided and
whenever possible and affordable, new knowledge should should be inferred from
the existing information. It is important to note that uncertainties associated with
represented symbols should be explicitly modeled.
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Information should be abstracted as much as possible to make it robust to
dynamic changes. Moreover, representations that are more abstract should be used
for longer-term storage. At the same time, knowledge extracted from immediate
observations can be much more accurate (e.g. for the purpose of visual servoing). In
other words, the agent should use the world as an accurate representation whenever
possible. It is important to mention that rich and detailed representations should
not constitute a permanent base for more abstract ones (as is the case in [24]).
Similarly, space should be represented on different spatial scales from single scenes
to whole environments.

Space should be discretized into a finite number of spatial units. Discretization
of continuous space is one of the most important abstracting steps as it allows to
make the representation robust, compact and tractable. Discretization drastically
reduces the number of states that have to be considered e.g. during the planning
process [11] and serves as a basis for higher level conceptualization [24].

A representation should allow not only for representing instantiations of spa-
tial segments visited by the robot. It is equally important to provide means for
representing unexplored space. Furthermore, categorical knowledge should be rep-
resented that is not specific to any particular location and instead corresponds to
general knowledge about the world. Typical examples would be categorical models
of appearance of places [20] or objects [19].

Finally, we focus on the fundamental role of the representation in human-robot
interaction. Spatial knowledge representation should model correspondence be-
tween the represented symbols and human concepts of space. Spatial properties
(e.g. shape, size), semantic categories of rooms (e.g. kitchen, office) or spatial
segments (e.g. rooms, floors, buildings) recognized by humans are examples of
such concepts. This correspondence could be used to generate and resolve spatial
referring expressions [24] or path descriptions.

4 Structure of the Representation

In this section, we propose a representation of spatial knowledge that adheres to the
desired properties formulated above. Figure 1 gives a general overview of the struc-
ture of the representation. It is sub-divided into four layers which can be regarded
as sub-representations focusing on different aspects of the world, abstraction levels
of the spatial knowledge and different spatial scales. Moreover, each layer defines
its own spatial entities and the way the agent’s position in the world is represented.
The properties of each layer are summarized in Table 1.

At the lowest abstraction level, we have the sensory layer which maintains an
accurate representation of the robot’s immediate environment extracted directly
from the robot’s sensory input. Higher, we have the place and categorical layers.
The place layer provides fundamental discretisation of the continuous space into
a set of distinct places. The categorical layer focuses on low-level, long-term cat-
egorical models of the robot’s sensory information. Finally, at the top, we have
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Figure 1: The layered structure of the spatial representation. The position of each
layer within the representation corresponds to the level of abstraction of the spatial
knowledge.
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Property Sensory Layer Place Layer Categorical
Layer

Conceptual
Layer

Aspects
represented

Accurate
geometry and
appearance

Local spatial
relations,
coarse appear-
ance, geometry

Perceptual
categorical
knowledge

High-level spa-
tial concepts /
Links concepts
↔ entities

Agent’s
position

Pose within the
local map

Place ID Relationship to
the categorical
models

Expressed in
terms of high
level spatial
concepts

Spatial
scope

Small-scale,
local

Large-scale Global Global

Knowledge
persistence

Short-term Long-term Very long-term Life-long /
Very long-term

Table 1: Comparison of properties of the four layers of the spatial representation.

the conceptual layer, which associates human concepts with the categorical models
in the categorical layer and groups places into human-compatible spatial segments
such as rooms. The following sections provide details about each of the layers.

4.1 Sensory Layer

In the sensory layer, a detailed robocentric model of the robot’s immediate envi-
ronment is represented based on direct sensory input as well as data fusion over
space around the robot and short time intervals. The sensory layer stores low-level
features and landmarks extracted from the sensory input together with their ex-
act position with respect to the robot. Measures of uncertainty are also included
in this representation. Landmarks that move beyond a certain distance are for-
gotten and replaced by new information. Thus, this representation is akin to a
sliding window, with robocentric and up-to-date direct perceptual information. It
is also essentially bottom-up only, though directives and criteria, such as guiding
the attentional process, may be imposed from upper layers.

The representation in the sensory layer helps to maintain stable and accurate
information about the relative movements of the robot. Moreover, it allows for
maintaining and tracking the position of various features while they are nearby.
This can be useful for providing "virtual sensing" such as 360◦ laser scans based on
short-term temporal sensory integration as well as generation of features based on
spatial constellations of landmarks located outside the field of view of the sensor.
Additionally, it could be used for temporal filtering of sensory input or providing
robustness to occlusions. Finally, the sensory layer can provide the low level robotic
movement systems with data for deriving basic control laws such as for obstacle
avoidance or visual servoing.
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4.2 Place Layer

The place layer is responsible for the fundamental, bottom-up discretization of
continuous space. In the place layer, the world is represented as a collection of
basic spatial entities called places as well as their spatial relations. Each place is
defined in terms of features that are represented in the sensory layer, but also spatial
relations to other places. The aim of this representation is not to represent the
world as accurately as possible, but at the level of accuracy sufficient for performing
required actions and robust localization despite uncertainty and dynamic variations.
Similarly, the relations do not have to be globally consistent as long as they are
preserved locally with sufficient accuracy. The representation of places in the place
layer persists over long term.

Besides places, the place layer also defines paths between them. The seman-
tic significance of a path between two places is the possibility of moving directly
between one and the other. This does not necessarily imply that the robot has
traveled this path previously. A link might be created for unexplored place e.g.
based on top-down cues resulting from the dialogue with the user (e.g. when the
user indicates part of the environment that should be of interest to the robot,
but not immediately). In addition, the place layer explicitly represents unexplored
space. Tentative places are represented which the robot would probably uncover if
it moved in a certain direction.

The place layer operates on distinct places as well as their connectivity and
spatial relations to neighboring places. No global representation of the whole en-
vironment is maintained. Still, since the local connectivity is available, global
representation (e.g. a global metric map) can be derived when needed. This repre-
sentation will not be accurate, but will preserve the connectivity and relaxed spatial
relations between all the places.

4.3 Categorical Layer

The categorical layer contains long-term, low-level representations of categorical
models of the robot’s sensory information. The knowledge represented in this layer
is not specific to any particular location in the environment. Instead, it represents
a general long-term knowledge about the world at the sensory level. In this layer
models of landmarks, objects or appearance-based room category or other proper-
ties of spatial segments such as shape, size or color are defined in terms of low-level
features. The position of this layer in the spatial representation reflects the as-
sumption that the ability to categorize and group sensory observations is the most
fundamental one and can be performed in a feed-forward manner without any need
for higher-level feedback from cognitive processes.

The categorical models stored in this layer give rise to properties that are utilized
by conceptual layer. In many cases, the values of those properties will correspond
to human spatial concepts, not to internal concepts of the robot (e.g. office-like
appearance or elongated shape). The properties might require complicated models



5. INSTANTIATIONS E11

that can only be inferred from training data samples. In case of models that
correspond to human concepts, they can be learned in a supervised fashion, using
a top-down supervision signal.

4.4 Conceptual Layer

The conceptual layer provides an ontology that represents taxonomy of the spatial
concepts and properties of spatial entities that are linked to the low-level categorical
models stored in the categorical layer. This associates semantic interpretations with
the low-level models and can be used to specify which properties are meaningful e.g.
from the point of view of human-robot interaction. Moreover, the conceptual layer
represents relations between the concepts and instances of those concepts linked
to the spatial entities represented in the place layer. This makes the layer central
for verbalization of spatial knowledge and interpreting and disambiguating verbal
expressions referring to spatial entities.

The second important role of the conceptual layer is to provide definitions of
the spatial concepts related to the semantic segmentation of space based on the
properties of segments observed in the environment. A building, floor, room or
area are examples of such concepts. The conceptual layer contains information that
floors are usually separated by staircases or elevators and that rooms usually share
the same general appearance and are separated by doorways. Those definitions can
be either given or learned based on asserted knowledge about the structure of a
training environment introduced to the system.

Finally, the conceptual layer provides definitions of semantic categories of seg-
ments of space (e.g. rooms) in terms of values of properties of those segments. The
properties can reflect the general appearance of a segment as observed from a place,
its geometrical features or objects that are likely to be found in that place.

5 Instantiations

This section indicates specific models and algorithms maintaining those models that
we propose to use for representing knowledge stored in each layer.

We propose to realize the sensory layer using a robocentric, metric SLAM [6, 5].
Robocentric mapping reflects the properties of the sensory layer and allows for
a straightforward treatment of forgetting knowledge that falls outside a certain
horizon around the robot. The robocentric map can be seen as a sliding window
centered on the robot and containing a detailed view of the world, which allows
the robot to maintain a drift free estimate of the pose as long as it stays in a
local region of space. The SLAM algorithm explicitly represents the uncertainty
associated with the pose of the robot and the location of all landmarks in the local
surrounding using a multivariate Gaussian distribution [6, 5].

We propose to instantiate the place layer based on the mapping framework pro-
posed in [21]. Central to the approach is the place map represented as a collection
of places. A place is defined by a subset of values of arbitrary, possibly complex,
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Figure 2: Overview of a possible instantiation of the conceptual layer. The solid
arrows represent dependencies, while the dashed arrows illustrate the ontology that
represents the taxonomy of spatial concepts and properties of spatial entities.

distinctive features and spatial relations reflecting the structure of the environment.
The features provide information about the world and can be perceived by an agent
when at that place. In this sense, the places build on the perception of the agent
and are based on its perceptual capabilities.

The categorical layer can be seen as an ensemble of categorical models of the
robot’s sensory information. The literature provides a broad range of models that
could be used for this purpose. First, in order to represent visual and geometrical
properties of areas in the environment, we suggest to use the multi-modal place
classification algorithm presented in [20]. Other methods can be employed for
representing landmarks (e.g. doors [17]) and object categories [19].

For the conceptual layer, we propose a possible instantiation presented in Fig-
ure 2. The conceptual layer provides an ontology that represents the taxonomy of
the spatial concepts and properties as well as dependencies between the concepts,
properties and instances of spatial entities. We use a fixed, handcrafted ontology
for representing the taxonomy and a probabilistic model for representing the de-
pendencies. In such an approach, the ontology is largely encoded in the structure
of the probabilistic model. We represent the location of the robot within segments
of space (e.g. a room or an area such as a dining area), the observed properties
of areas and rooms as well as semantic categories of areas and rooms in terms of
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random variables. In the illustration in Figure 2, we can consider the circles as
random variables and the solid arrows as dependencies within a graphical model.
At the same time, the is-a relations link the random variables with their values.
Further, the model represents the spatial hierarchy of segments of space. There is
a dependency between the location of the robot at different levels of this hierarchy
(e.g. a room and an area within the room). Moreover, the dependency between the
instance of a place and the properties of areas and rooms observed from this place
is represented. Those properties in turn influence the semantic categories of areas
or rooms to which the place belongs. Finally, the proposed model represents the
dependency between the area and room properties observed as the robot explores
the environment and the probability that the robot crossed a boundary of a spatial
segment. This link effectively defines the concepts of a room and an area and can
be used to provide semantic segmentation of space.

6 Conclusions and Future Works

In this paper, we presented an analysis of the requirements for a spatial knowledge
representation for cognitive systems and proposed a layered representation that
conforms to those requirements. The representation provides a unified and coher-
ent view on the structure of spatial knowledge and a basis for designing artificial
cognitive systems. We further proposed specific models and algorithms as possible
instantiations. Future work will focus on integrating those algorithms, which so
far were only evaluated in separation, into a complete spatial subsystem providing
spatial understanding capabilities for a mobile robot.
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Abstract

A cornerstone for mobile robots operating in man-made environments and inter-
acting with humans is representing and understanding the human semantic concepts
of space. In this report, we present a multi-layered semantic mapping algorithm
able to combine information about the existence of objects in the environment with
knowledge about the topology and semantic properties of space such as room size,
shape and general appearance. We use it to infer semantic categories of rooms and
predict existence of objects and values of other spatial properties. We perform ex-
periments offline and online on a mobile robot showing the efficiency and usefulness
of our system.

1 Introduction

In this report we focus on the understanding of space to, for example, facilitate
interaction between humans and robots and increase the efficiency of the robot
performing tasks in man-made environments. We consider applications where the
robot is operating in an indoor office or domestic environment, i.e. environments
which have been made for and are, up until now, almost exclusively inhabited by
humans. In such an environment human concepts such as rooms and objects and
properties such as the size and shape of rooms are important, not only for the sake of
the interaction with humans but also for knowledge representation and abstraction
of spatial knowledge. We will describe the system in the context of a mobile robot
(see Fig. 1) but most of the system would remain unchanged if used as part of, e.g.,
a wearable device.

The main contribution of this work is a way of combining information about
the existence of objects, the appearance, geometry and topology of space for se-
mantic mapping in a principled manner. It builds on our previous work [16] where
we presented a system for multi-cue integration of laser and vision data for place
categorization. A fundamental difference from that work is that we now have de-
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Figure 1: Dora the Explorer as well as the elements and the data flow inside the
semantic mapping system.

coupled the lowest levels of information from the categorization by introducing the
so called properties. This allows us to incorporate additional sources of knowledge
and describe the space at much finer level of granularity.

Comparing to our previous approach, the vision and laser pipe lines now feed
into modules estimating the values of appearance and geometric properties of space
instead of directly categorizing rooms. In this way room categories are not directly
defined based on the low level sensor data but in terms of spatial properties. This
has several advantages. It paves the way for better scalability. It makes training
of new categories easier and is therefore an important step towards a system that
is able to support life-long learning. The properties can correspond to human
concepts of space. The use of such human understandable properties provides better
support for verbalization of knowledge, e.g., the corridor is large (size property) and
elongated (shape property) as well as the dual, i.e., interpreting what a human says
and ultimately learning models for new categorizes based on human input. Finally,
additional spatial properties such as based on objects or even actions observed in
the environment can be easily incorporated.

We believe that objects play an important role in understanding space. Intro-
ducing properties describing the existence of certain objects provides a seamless
way to integrate objects in the above mentioned system. A by-product of the sys-
tem presented in this report is that it allows for predicting the existence of objects
and the values of spatial properties. That is, given that, for example, appearance
and shape indicate that a certain room is a kitchen the object properties associated
with such room category might suggest that it is likely to find a cereal box in that
room.

Our new system also allows for human input being treated in the same principled



2. RELATED WORK F5

way as the information from a camera or a laser scanner. That is, if a human
tells us that there is a certain object nearby or that we are in the room next
to the kitchen this type of information can be incorporated. Furthermore, by
incorporating information about the topology of space we can infer properties of
space even without having made any observations there. For example, starting in
an office the system would be able to say that it is very likely that the neighbouring
room is a corridor because that is the typical topology.

Another advantage with the property based system is that it allows us to train
the level above the properties in the system directly using ground truth information.
That is, instead of training based on the outcome from the low level processing we
can train with data from common sense databases or crawling the internet for
information about typical topologies, objects-room relations, etc.

The presented approach is evaluated offline on a comprehensive database, COLD-
Stockholm, capturing appearance and geometry of almost 50 rooms belonging to
different semantic categories as well as online in the same environment on a mobile
robot.

1.1 Outline

Section 2 relates the work in this report to what has been presented in the literature.
Section 3 goes into a bit more detail about spatial understanding and more specif-
ically about the employed spatial model. In Section 4 we describe the properties
we use in the system and in Section 5 we describe our conceptual map. Section 6
gives a system overview and describes how its components are connected. Section 7
describes the experimental setup and Section 8 presents experimental results for
room categorization both offline and online. Finally, Section 9 draws conclusions
and suggests avenues for future research.

2 Related Work

The system we present here provides a much broader functionality than a plain
place categorization system, but as place categorization is one of its typical uses,
we give an overview of the work in that research field. Place categorization has
been addressed both by the computer vision and the robotics community. In com-
puter vision the problem is often referred to as scene categorization. Although
also related, object categorization methods are not covered here. However, as al-
ready mentioned, we believe that objects are key to understanding space and we
will include them in our representation but will make use of standard methods for
recognizing/categorizing them.

In computer vision one of the first works to address the problem of place cate-
gorization is [20] based on the so called "gist" of a scene. One of the key insights in
the paper is that the context is very important for recognition and categorization
of both places and objects and that these processes are intimately connected. Place
recognition is formulated in the context of localization and information about the
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connectivity of space is utilized in a Hidden Markov Model (HMM). Place catego-
rization is also addressed using an HMM. In [24] the problem of grouping images
into semantic categories is addressed. It is pointed out that many natural scenes
are ambiguous and that the performance of the system is often quite subjective.
That is, if two people are asked to sort the images into different categories they
are likely to come up with different partitions. [24] argue that typicality is a key
measure to use in achieving meaningful categorizations. Each cue used in the cate-
gorization should be assigned a typicality measure to express the uncertainty when
used in the categorization, i.e. the saliency of that cue. The system is evaluated
in natural outdoor scenes. In [2] another method is presented for categorization of
outdoors scenes based on representing the distribution of codewords in each scene
category. In [26] a new image descriptor, PACT, is presented and shown to give
superior results on the datasets used in [20, 2].

In robotics, one of the early systems for place recognition is that of [21] where
color histograms are used to model the appearance of places in a topological map
and place recognition performed as a part of the localization process. Later [10]
uses laser data to extract a large number of features used to train classifiers using
AdaBoost. This system shows impressive results based on laser data alone. The
system is not able to identify and learn new categories: adding a new category
required off-line re-training, no measure of certainty and it segmented space only
implicitly by providing an estimate of the category for every point in space. In [11]
this work is extended to also incorporate visual information in the form of object
detections. Furthermore, this work also adds an HMM on top of the point-wise
classifications to incorporate information about the connectivity of space and make
use of information such as offices are typically connected to corridors. In [13, 14] a
vision-only place recognition system is presented. Super Vector Machines (SVMs)
are used as classifiers. The characteristics are similar to those of [10]; cannot identify
and learn new categorizes on-line, only works with data from a single source and
classification was done frame by frame. In [8, 15] a version of the system supporting
incremental learning is presented. The other limitations remains the same. In [12]
a measure of confidence is introduce as a means to better fuse different cues and
also provide the consumer of the information with some information about the
certainty in the end result. In [16] the works in [10, 13, 14] are combined using
an SVM on top of the laser and vision based classifiers. This allows the system to
learn what cues to rely on in what room category. For example, in a corridor the
laser based classifier is more reliable than vision whereas in rooms the laser does
not distinguish between different room types. Segmentation of space is done based
on detecting doors that are assumed to delimit the rooms. Evidence is accumulated
within a room to provide a more robust and stable classification. It is also shown
that the method support categorization and not only recognition. In [25] the work
from [26] is extended with a new image descriptor, CENTRIS, and a focus on
visual place categorization in indoor environment for robotics. A database, VPC,
for benchmarking of vision based place categorization systems is also presented.
A Bayesian filtering scheme is added on top of the frame based categorization to
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increase robustness and give smoother category estimates. In [18] the problem
of place categorization is addressed in a drastically different and novel way. The
problem is cast in a fully probabilistic framework which operates on sequences rather
than individual images. The method uses change point detection to detect abrupt
changes in the statistical properties of the data. A Rao-Blackwellized particle filter
implementation is presented for the Bayesian change point detection to allow for
real-time performance. All information deemed to belong to the same segment
is used to estimate the category for that segment using a bag-of-words technique.
In [28] a system for clustering panoramic images into convex regions of space indoors
is presented. These regions correspond roughly with the human concept of rooms
and are defined by the similarity between the images. In [22] panoramic images from
indoor and outdoor scenes are clustered into topological regions using incremental
spectral clustering. These clusters are defined by appearance and the aim is to
support localization rather than human robot interaction. The clusters therefore
have no obvious semantic meaning.

As mentioned above [11] makes use of object observations to perform the place
categorization. In [4] objects also play a key role in the creation of semantic maps
and the anchoring problem, i.e., that of associating sensor level information with the
same entity at the symbolic level, is studied. In [19] a 3D model centered around
objects is presented as a way to model places and to support place recognition.
In [23] a Bayesian framework for connecting objects to place categories is presented.
In [27] the work in [11] is combined with detections of objects to deduce the specific
category of a room in a first-order logic way.

3 Semantic Spatial Understanding

In order to build a semantic mapping system, it is necessary to make certain as-
sumptions about how the vast body of the spatial knowledge should be represented.
The functionality of our system is centred around the representation of complex,
cross-modal, spatial knowledge that is inherently uncertain and dynamic. The rep-
resentation employed here follows the principles presented in [17]. In addition to
supporting standard applications such as localisation and path planning, it inte-
grates instance knowledge with conceptual world knowledge using a probabilistic
framework. Below, we first describe the fundamental concepts that we use to de-
scribe space and then present an overview of a spatial knowledge representation on
top of which our system is built.

3.1 The Ontology of Space

Our primary assumption is that spatial knowledge should be abstracted. This
keeps the complexity under control, makes the knowledge more robust to dynamic
changes, and allows to infer additional knowledge about the environment. One of
the most important steps in abstraction of spatial knowledge is discretization of
continuous space. In our view, the environment is decomposed into discrete areas
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called places. Places connect to other places using paths which are generated as
the robot travels the distance between them. Thus, places and paths constitute the
fundamental topological graph of the environment.

An important concept employed by humans in order to group locations is that
of a room. Rooms tend to share similar functionality and semantics which make
them a good candidate for integrating semantic knowledge over space. In the case
of indoor environments, rooms are usually separated by doors or other narrow
openings. Thus, we propose to use a door detector and perform reasoning about
the segmentation of space into rooms based on the doorway hypotheses.

Many other concepts than simply those related to the topology are being used
by humans to describe space. In this work, we focus on the combination of objects,
which we believe are strongly related to the semantic category of a place where they
are typically located, with other spatial properties. As properties, we identify shape
of a room (e.g. elongated), size of a room (e.g. large, compared to other typical
rooms) as well as the general appearance of a room (e.g. office-like appearance).

3.2 Spatial Knowledge Representation

The spatial knowledge representation on top of which we build our system is pre-
sented in Fig. 2. It consists of four layers corresponding to different levels of ab-
straction, from low-level sensory input to high-level conceptual symbols. Each layer
defines its own spatial entities and the way the agent’s position in the world is rep-
resented.

The knowledge is abstracted and represented only as accurately as necessary,
and uncertainty is present at all levels. This keeps the complexity of the represen-
tation under control, makes the knowledge more robust to dynamic changes, and
allows to infer additional knowledge about the environment.

The lowest level of our representation is the sensory layer. This maintains an
accurate representation of the robot’s immediate environment. Above this are the
place and categorical layers. The place layer discretises continuous space into a finite
number of places, plus paths between them. As a result, the place layer represents
the topology of the environment. The categorical layer contains categorical models
(in our case pre-trained) of the robot’s sensory information which are not specific
to any particular location or environment. These could be the sensory models of
object categories, but also values of spatial properties such as an elongated shape
or office-like appearance. On top of this, the conceptual layer creates a unified
representation relating sensed instance knowledge to general conceptual knowledge.
It includes a taxonomy of human-compatible spatial concepts which are linked to
the sensed instances of these concepts drawn from lower layers. It is the conceptual
layer which contains the information that kitchens commonly contain cereal boxes
and have certain general appearance and allows the robot to infer that the cornflakes
box in front of the robot makes it more likely that the current room is a kitchen. In
the following sections, we focus on the concrete implementations of the principles
outlined here and algorithms maintaining the representations in each of the layers.
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Figure 2: The layered structure of the spatial representation. The position of each
layer within the representation corresponds to the level of abstraction of the spatial
knowledge. The conceptual layer illustrates part of the ontology representing both
instance and predefined world knowledge.
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4 Categorical Models of Sensory Information

The system employs categorical models of sensory information which abstract the
information into a set of spatial concepts. These models correspond to the categor-
ical layer of the spatial representation.

Independent models of shape, size and appearance properties are built. To pro-
vide sufficient robustness and tractability in the presence of noisy, high-dimensional
information, we use non-linear kernel-based discriminative classifier models, namely
Support Vector Machines, as proposed in [16]. Those models are trained on features
extracted directly from the robot’s sensory input. Following [16], we use a set of
simple geometrical features extracted from laser range data in order to train the
shape and size models. The appearance models are build from two types of visual
cues, global, Composed Receptive Field Histograms (CRFH) and local based on the
SURF features discretized into visual words [1]. We compute CRFH from second
order normalised Gaussian derivative filters applied to the illumination channel at
two scales. The two visual features are further integrated using the Generalized
Discriminative Accumulation Scheme (G-DAS [16]). In case of SVMs, special care
must be taken in choosing an appropriate kernel function. Here we used the RBF
kernel for the geometrical shape model and χ2-kernel for the visual appearance
model.

The models are trained from sequences of images and laser range data recorded
in multiple instances of rooms belonging to different categories and under various
different illumination settings (during the day and at night). By including several
different room instances into training, the acquired model can generalise sufficiently
to provide categorisation rather than instance recognition. In order to measure
the uncertainty associated with the generated hypotheses, confidence measures are
derived from the distances between the classified samples and discriminative model
hyperplanes [16].

5 The Conceptual Map

The key component of our semantic mapping approach is the probabilistic concep-
tual map which can be seen as a realization of the conceptual layer of the spatial
representation. In order to fully exploit the uncertainties provided by the multi-
modal lower-level models, the robot needs to be capable of uncertain reasoning on
the conceptual level. Below, we first present the uncertain ontology of the con-
ceptual map relating sensed instance knowledge and general conceptual knowledge.
Then, we provide an implementation of the map in terms of a probabilistic graphical
model.

5.1 Uncertain Ontology

The ontology of spatial concepts and instances of those concepts implemented in the
conceptual map is presented in Fig. 2. In order to represent the uncertainty associ-
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ated with some of the relationships, we extended the standard ontology notation by
annotating relations as either probabilistic or non-probabilistic. The resulting on-
tology defines a taxonomy of concepts through hyponym relationships (is-a) as well
as relations between concepts (has-a). As in [27], the ontology distinguishes three
primary sources of knowledge: predefined (taxonomy and conceptual common-sense
knowledge, e.g. the likelihood that cornflakes occur in kitchens), acquired (knowl-
edge acquired using the robot’s sensors), and finally inferred (knowledge generated
internally, e.g. that the room is likely to be a kitchen, because you are likely to
have observed cornflakes in it). We could further differentiate between acquired
knowledge and asserted knowledge which can be obtained by interaction with a
human.

The ontology ties the concepts to instance symbols derived from the lower level
representations. The instance knowledge includes the presence of objects and sensed
spatial properties such as shape, size, appearance and topology. The conceptual
knowledge comprises common-sense knowledge about the occurrence of objects in
rooms of different semantic categories, and the relations between these categories
and the aforementioned spatial properties.

In our system, the “has-a” relations for rooms, objects, shapes, sizes and appear-
ances were acquired by analysing common-sense knowledge available through the
world wide web (for details see [5]) as well as annotations available together with
the database described in this report. The relation linking rooms and objects was
first bootstrapped using a part of the Open Mind Indoor Common Sense database1.
Obtained object-location pairs were then used to generate ‘obj in the loc’ queries
to an online image search engine. The number of returned hits was used to obtain
the probabilities of existence of an object of a certain category in a certain type
of room. All relations that were not directly present in the obtained results, were
assumed to hold with a certain constant probability.

5.2 Probabilistic Inference

The conceptual map constructed according to the ontology presented above was
implemented using a chain graph probabilistic model [7]. Chain graphs are a natural
generalization of directed (Bayesian Networks) and undirected (Markov Random
Fields) graphical models. As such, they allow for modelling both “directed” causal
as well as “undirected” symmetric or associative relationships, including circular
dependencies.

The joint density f of a distribution that satisfies the Markov property associ-
ated with a chain graph can be written as [7]:

f(x) =
∏

τ∈ T

f(xτ |xpa(τ)),

1http://openmind.hri-us.com/

http://openmind.hri-us.com/
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Figure 3: Structure of the chain graph model compiled from the conceptual map.
The vertices represent random variables. The edges represent the directed and
undirected probabilistic relationships between the random variables. The textured
vertices indicate observations that correspond to sensed evidence.

where pa(τ) denotes the set of parents of vertice τ . This corresponds to an outer
factorization which can be viewed as a directed acyclic graph with vertices rep-
resenting the multivariate random variables Xτ , for τ in T (one for each chain
component). Each factor f(xτ |xpa(τ)) factorizes further into:

f(xτ |xpa(τ)) =
1

Z(xpa(τ))

∏

α∈A(τ)

φα(xα),

where A(τ) represents sets of vertices in the normalized undirected graph Gτ∪pa(τ),
such that in every set, there exist edges between every pair of vertices in the set.
The factor Z normalizes f(xτ |xpa(τ)) into a proper distribution.

In order to perform inference on the chain graph, we first convert it into a factor
graph representation and apply an approximate inference engine, namely Loopy
Belief Propagation [9], to comply with time constraints imposed by the robotic
applications.

The structure of the chain graph model is presented in Fig. 3. The structure
of the model depends on the topology of the environment. Each discrete place
is represented by a set of random variables connected to variables representing
semantic category of a room. Moreover, the room category variables are connected
by undirected links to one another according to the topology of the environment.
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Figure 4: The Poisson distributions modelling the existence of a certain number
of objects in a room on the example of computers present in a double office and a
professor’s office.

The potential functions φrc(·, ·) represent the type knowledge about the connectivity
of rooms of certain semantic categories.

The remaining variables represent shape, size and appearance properties of space
and presence of a certain number of instances of objects as observed from each
place. These can be connected to observations of features extracted directly from
the sensory input. As explained in Section 4, these links are quantified by the
categorical models in the categorical layer. Finally, the functions psh(·|·), psi(·|·),
pa(·|·), poi

(·|·) utilise the common sense knowledge about object, spatial property
and room category co-occurrence to allow for reasoning about other properties and
room categories.

The conditional probability distributions poi
(·|·) are represented by Poisson dis-

tributions. The parameter λ of the distribution allows to set the expected number
of object occurrences. This is exemplified in Fig. 4 presenting two distributions
corresponding to the relation between the number of computers in different types
of offices used later in the experiments. In the specific case of the double office,
we set the expected number of computers to two. However, in all remaining cases,
including the professor’s office, the parameter λ was calculated to match the prob-
ability of there being no objects of a certain category as provided by the common
sense knowledge databases. The result is that the room is more likely to be a double
office rather than a professor’s office if there are multiple computers in it.

6 System Overview

Having described the representations and the primary elements of the system, we
now explain the data flow through the system and mention all the remaining com-
ponents. A coarse visualization of the data flow is presented in Fig. 1.
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The layered structure of the spatial knowledge representation naturally permits
the existence of data driven processes that abstract knowledge existing in the lower-
level layers to contribute to knowledge in higher-level layers. This is the general
principle reflected by the data flow described below. In order to make those pro-
cesses tractable, the updates are performed only if a substantial change (according
to a modality-specific heuristic) has occurred.

First, mapping and topology maintenance processes create the place map. A
SLAM algorithm [3] builds a metric map of the environment which can be seen
as the sensory layer of the representation. The metric map is further discretized
into places distributed spatially in the metric map. The places together with paths
obtained by traversing from one place to another constitute the place map of the
place layer. Then, based on the information about the connectivity of places and
the output of a template-based laser door detector, a process forms rooms by clus-
tering places that are transitively interconnected without passing a doorway. Since
the door detection algorithm can produce false positives and false negatives, room
formation must be a non-monotonic process to allow for knowledge revision. Room
formation and maintenance is handled by a general purpose rule engine, which is
able to make non-monotonic inferences in its symbolic knowledge. The approach is
an adaptation of the one by [6].

The categorical models are provided with sensory information from the laser
range finder and a camera. This information is classified and confidence estimates
are provided indicating the similarity of the sensory input to each of the categorical
models. The estimated confidence information is then accumulated over each of
the viewpoints observed by the robot while being in a certain place [16] and further
normalised to form potentials. The categorisation results are fed back into the
chain graph triggering an inference in the probabilistic model. Accordingly, room
categorisation is performed as a result of the reasoning process in the conceptual
map.

7 Experimental Scenario

All the categorical models used in the experiments were trained on the COLD-
Stockholm database. COLD-Stockholm is a new database acquired as an extension
of the COLD database2. Several parts of the database were previously used during
the RobotVision@ImageCLEF3 contests and proved to be challenging in the context
of room categorization.

7.1 The COLD-Stockholm Database

The database consists of multiple sequences of image, laser range and odometry
data. The sequences were acquired using the MobileRobots PowerBot robot plat-

2http://www.cas.kth.se/COLD
3http://www.robotvision.info

http://www.cas.kth.se/COLD
http://www.robotvision.info
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Figure 5: Examples of images from the COLD-Stockholm database acquired in
9 different rooms. A video illustrating the acquisition process is available on the
website of the database.

form equipped with a stereo camera system in addition to a laser scanner. The
acquisition was performed on four different floors (4th to 7th) of an office environ-
ment, consisting of 47 areas (usually corresponding to separate rooms) belonging
to 15 different semantic and functional categories and under several different illu-
mination settings (cloudy weather, sunny weather and at night). The floors are
structurally similar but the indivudual rooms are quite different. The robot was
manually driven through the different floors of the environment while continuously
acquiring images at a rate of 5fps. Each data sample was then labelled as belonging
to one of the areas according to the position of the robot during acquisition. Ex-
amples of images from the COLD-Stockholm database are shown in Fig. 5. More
detailed information about the database can be found online4.

4http://www.cas.kth.se/cold-stockholm

http://www.cas.kth.se/cold-stockholm
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Property Cues Classification rate

Shape Geometric features 84.9%
Size Geometric features 84.5%
Appearance CRFH 80.5%
Appearance BOW-SURF 79.9%
Appearance CRFH + BOW-SURF 84.9%

Table 1: Classification rates obtained for each of the properties and cues.

7.2 Experimental Setup

In order to guarantee that the system will never be tested in the same environment
in which it was trained, we have divided the COLD-Stockholm database into two
subsets. For training and validation, we used the data acquired on floors 4, 5 and
7. The data acquired on floor 6 were used for testing during our offline experiments
and the online experiment was performed on the same floor.

For the purpose of the experiments presented in this report, we have extended
the annotation of the COLD-Stockholm database to include 3 room shapes, 3 room
sizes as well as 7 general appearances. The room size and shape, were decided based
on the length ratio and maximum length of edges of a rectangle fitted to the room
outline. These properties together with 6 object types defined 11 room categories
used in our experiments. The values of the properties as well as the room categories
are listed in Fig. 8.

8 Experiments

We performed two types of experiments. First, offline to evaluate the performance
of our property classifiers. Then, we used the models obtained during the offline
experiments and performed real-time semantic mapping on a mobile robot.

8.1 Offline Experiments

The offline experiments evaluated the performance of each of the property cate-
gorizers separately. First, the rooms having the same values of properties were
grouped to form the training and validation datasets. Then, parameters of the
models were obtained by cross-validation. Finally, all training and validation data
were collected together and used for training the final models which were evaluated
on test data acquired in previously unseen rooms.

The classification rates obtained during those experiments for each of the prop-
erties and cues are presented in Tab. 1. The models were trained and tested on
3 different shapes, 3 different sizes and 7 different appearances. The rates were
obtained separately for each of the classes and then averaged in order to exclude
the influence of unbalanced testing set. We can see that all classifiers provided a
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Shape Size

Appearance Appearance Appearance
CRFH BOW-SURF CRFH + BOW-SURF

Figure 6: Confusion matrices for the offline experiments with sensory categorical
models of each of the properties.

recognition rate above 80%. Additionally, we see that integrating two visual cues
(CRFH and BOW-SURF) increased the classification rate of the appearance prop-
erty by almost 5%. Moreover, from the confusion matrices in Fig. 6 we see that
the confusion occurs always between property values being semantically close and
in case of appearance is largely reduced by cue integration.

8.2 Online Experiments

The models obtained during the offline experiments were used in the semantic
mapping system during the online experiments. The experiments were performed
on the 6th floor of the building where the COLD-Stockholm database was acquired,
i.e. in the part which was not used for training. The robot was manually driven
through 15 different rooms while performing real-time semantic mapping without
relying on any previous observations of the environment. The obtained maps of
parts of the environment (A and B) are presented in Fig. 7.

The robot recorded beliefs about the shapes, sizes, appearances, objects found
and the room categories for every significant change event in the conceptual map.
The results for the two parts of the environment are presented in Fig. 8. Each
column in the plot corresponds to a single event and the source of that event is



F18 PAPER F. UNDERSTANDING THE REAL WORLD

Part A

Part B

Figure 7: Topological maps of the environment anchored to a metric map indicating
the outcomes of room segmentation and categorization (best viewed in color). The
pie charts indicate the location of places in the environment and the probability
distribution over the inferred room categories (each color corresponds to a room
category). For the detailed information about the inferred categories, see Fig. 8.
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indicated using dots (changes) and crosses (additions) at the bottom. At certain
points in time, the robot was provided with asserted human knowledge about the
presence of objects in the environment.

By analysing the events and beliefs for part A, we see that the system correctly
identified the first two rooms as a hallway and a single office using purely shape,
size and general appearance (there are no object related events for those rooms).
The next room was properly classified as a double office, and that belief was further
enhanced by the presence of two computers. The next room was initially identified
as a double office until the robot was given information that there is a single com-
puter in this room. This was an indication that the room is a single person office
that due to its dimensions is likely to belong to a professor.

Looking at part B, we see that the system identified most of the room categories
correctly with the exception of a single office which due to a misclassification of
size was incorrectly recognized as a double office. The experiment proved that the
system can deliver an almost perfect performance by integrating multiple sources
of semantic information.

A video illustrating showing the system in action is available online at http:

//www.pronobis.pro/research/semantic-mapping.

9 Conclusions and Future Works

In this report we have presented a probabilistic framework combining heterogenous,
uncertain, information such as object observations, the shape, size and appearance
of rooms for semantic mapping. A graphical model, more specifically a chain-graph,
is used to represented the semantic information and perform the inference over it.
We introduced the concept of properties between the low level sensory data and the
high level concepts such as room categorizes. The properties allowed us to decouple
the learning processes at the different levels and pave the way for better scalability.
By making the properties understandable to humans, possibilities open in terms of
spatial knowledge verbalization and interpretation of human input.

There are several ways in which the work presented in this report can be ex-
tended. We intend to look closer at how to define new categories based on a human
description. For example, a person might describe a student canteen as a large
room, kitchen like with very many tables. We will also look at ways to make the
segmentation of space part of the estimation process as is made in PLISS [18].
We further plan to investigate more applications where the semantic information
provided by our system can be utilized.
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Part A Part B

Figure 8: Visualization of the events registered by the system during exploration
and its beliefs about the categories of the rooms as well as the values of the proper-
ties. The room category ground truth is marked with thick dashed lines while the
MAP value is indicated with white dots. A video showcasing the system is available
at: http://www.pronobis.pro/research/semantic-mapping.
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Abstract

Robots must perform tasks efficiently and reliably while acting under uncertainty.
One way to achieve efficiency is to give the robot common-sense knowledge about
the structure of the world. Reliable robot behaviour can be achieved by modelling the
uncertainty in the world probabilistically. We present a robot system that combines
these two approaches and demonstrate the improvements in efficiency and reliabil-
ity that result. Our first contribution is a probabilistic relational model integrating
common-sense knowledge about the world in general, with observations of a partic-
ular environment. Our second contribution is a continual planning system which is
able to plan in the large problems posed by that model, by automatically switching be-
tween decision-theoretic and classical procedures. We evaluate our system on object
search tasks in two different real-world indoor environments. By reasoning about
the trade-offs between possible courses of action with different informational effects,
and exploiting the cues and general structures of those environments, our robot is
able to consistently demonstrate efficient and reliable goal-directed behaviour.

1 Introduction

One dream of the AI community is to build a robot capable of performing tasks on
demand in dynamic real-world environments like homes and offices. Such a robot
must perform task and observation planning under uncertainty in pursuit of its
current goals. It must do this while exploiting knowledge about the nature of the
environments in which it is expected to operate. Towards realising the stated dream,
this paper presents a robot system that uses a new planning approach to reason
with new representations of space. Our approach integrates probabilistic models
of common-sense conceptual knowledge, with models of the visual appearance of
objects and of room categories, to represent an object search task. In order to allow
the robot to effectively exploit this knowledge, we have developed a novel system
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Figure 1: Our object search robot in a home environment composed of rooms of
different categories. An example use case of the system is to find cornflakes located
in the kitchen. The mobile robot is equipped with a laser scanner and a stereo
camera rig.

for continual planning that automatically switches between using decision-theoretic
and classical procedures to synthesise efficient action strategies.

We have implemented our approach on the mobile robot depicted in Fig. 1,
and evaluated that system by having it perform object search tasks in real-world
home and office environments. The objects it is able to search for are all instances of
categories, e.g. a specific box of cornflakes in the kitchen, as depicted in Fig. 1, is an
instance of the category of cornflakes boxes, which is itself a sub-category of cereal
boxes. The robot uses structured representations of knowledge at this conceptual
level – e.g. cereal boxes are often located in kitchens or dining rooms, and sofas are
often located in living rooms. Such relational structure expresses generalisations
across multiple environments, and can be naturally represented probabilistically in
order to support intelligent decision making across multiple environments. We have
compiled a common-sense knowledge base in an offline manner. Our two key novel
contributions are:
1. A probabilistic conceptual map that combines general purpose and contin-
gent spatial knowledge in a single structure, together with processes for creating,
maintaining, and reasoning with it. This relational structure models the uncertain
contingent knowledge the robot has about instances (e.g. what category of room it
thinks room 1 is) in conjunction with its – also uncertain – common-sense concep-
tual knowledge (e.g. which types of objects are located in a particular category of
room).
2. A switching continual planner that synthesises action strategies for the very
large partially observable decision processes posed by the tasks we consider. Our
approach is to switch between decision-theoretic and classical modes of planning at
different levels of abstraction. The classical system quickly solves a determinisation
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of the problem at hand, interpreting probabilistic information in terms of a cost
model. The decision-theoretic system quickly solves abstract decision problems
derived using the classical plan and the probabilistic belief-state. Overall, this
approach allows the system to exploit our rich representation of spatial knowledge,
and generate intelligent behaviour under uncertainty in a timely manner.

2 Related Work

Probabilistic representations are employed for many localised functions in robots
operating in the real world. For example, [23] use such representations in most
of their system’s individual components, but their robot behaviour is generated
using a reactive controller rather than a domain-independent planner as here. [11]
treat sensing deterministically and beliefs qualitatively during planning. We are not
aware of any robot system that features both a unifying probabilistic representation,
and a domain-independent planner which is able to reason quickly over that unified
decision-theoretic model to generate behaviour.

Object search with mobile robots has been studied for almost 20 years, yet no
previous system plans with probabilistic conceptual knowledge about both room
and object categories. Instead, most dedicated systems treat the problem as a
geometric one. For example, recently [20] propose how a robot can optimally locate
an object in a mostly unknown 3D space. Closest to our approach is the work by [1]
who used probabilistic spatial relations and static properties of rooms to pose the
object search problem as a fully-observable Markov decision process (MDP). This
work employed background knowledge to inform an MDP planner of good locations
(e.g. room1) to search for a particular object. Earlier work by [8] proposed to
make this relationship bi-directional: objects give evidence for room categories,
and room categories provide information about where objects can be found. In [2]
this approach was extended to treat some of the conceptual knowledge as uncertain,
although sensing here is restricted to object occurrence and the planner does not use
a stochastic model of sensing. [24] went beyond this to perform room categorisation
using Bayesian reasoning about the presence of objects, but did not (as none of these
did) include observation models for planning.

Compared to these existing approaches, we utilise a richer spatial representa-
tion combining visual room appearance, room geometry, presence of objects and
the topological structure of space, extending our previous work [16] which only
combined visual appearance of rooms and their geometry for the purpose of room
categorisation. Also, our system is a successor to a robot that was able to exploit
only deterministic conceptual and instance knowledge [9].

3 Conceptual Map

The conceptual map realises the highest layer of the our qualitative spatial frame-
work [17, 16]. This framework comprises several layers of abstraction from sensor
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readings, up to a topological map represented as a graph of interconnected places
which each form a part of a room. On top of the topological map the framework
includes the conceptual map populated by instances, of pre-defined concepts, gener-
ated by dedicated processes. An excerpt of a conceptual map for our object search
task is shown in Fig. 2. The conceptual map is relational, describing common-sense
knowledge as relations between concepts, and describing instance knowledge as re-
lations between either instances and concepts, or instances and other instances.
Relations in the conceptual map are either predefined, acquired, or inferred, and
can either be deterministic or probabilistic. A non-existing relation in the concep-
tual map is thought of as having probability 0. An acquired relation is one that
is grounded in observation and generated as a result of a sensing process. Prede-
fined relations are given (and quantified in the case they are probabilistic) as part
of a fixed ontology of default knowledge. Any inferred relations are the result of
inference processes operating solely on the conceptual map.

In our implementation of the conceptual map, the concepts, and relations be-
tween these, were selected to enable our robot to reason about conceptual knowledge
for efficient object search. The representation defines a taxonomy of concepts us-
ing hyponym relationships (is-a) as well as directed relations between rooms and
objects (has-a). However, we also represent undirected associative relations (such
as the connectivity between rooms) in our model. The processes that populate the
model with instances and acquired relations between those are shown at the bottom
of Fig. 2 and are as follows.

3.1 Sensing & Acting

In our system sensing is managed by a collection of processes which abstract from
odometry data, laser scans and video sequences to maintain instances and the prob-
abilistic relations which link these instances to concepts and other instances. We
distinguish continuous and active sensing. The former is passive, continuously re-
vising the robot’s subjective beliefs about the world. It is lightweight, and does not
require a planner that might schedule information gathering actions. In contrast,
active sensing is deliberately planned for.

Mapping and Topology Maintenance is a continuous process that uses a SLAM
algorithm [7] to maintain metric and topological maps of the environment and lo-
calise the robot in those maps. It discretises space into metrically localised places
approximately 1m apart (represented by discs in Fig. 5). It also maintains a nav-
igation graph that supports movement from one place to another. Place existence
and connectivity is treated deterministically in our current system. In order that
topological places be interpreted with respect to higher level spatial concepts, map-
ping also features door frame detection from laser data. Using the non-monotonic
reasoning approach of [9] places are grouped into rooms based on these detected
door frames. The results of this continuously running process are instances of places
and rooms with acquired connectivity relations.
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Figure 2: An abstract view of the processes and representations of the system.
Sensing processes (at the bottom) discretise and categorise sensor input into in-
stances (shown as ellipses) and acquired relations in conceptual layer. This layer
also comprises knowledge about concepts (rectangles) of which only an excerpt in
shown. The switching planner (cf. Sec. 4) reasons upon the state distribution given
by the conceptual map.

Shape and Appearance Classification is achieved by continuous sensing of
shape and appearance properties at topological places. Following [16], for a small
discrete set of views at each place the robot senses low level features: (a) about the
geometric shape from that view according to laser scans, and (b) about its visual
appearance according to Composed Receptive Field Histograms. Those features
are evaluated on the basis of Support Vector Machine (SVM) models of specialised
concepts of “Room Property” – e.g. elongated, office-like, etc. Accumulated confi-
dences gained from the SVM models across views are normalised to gain probabil-
ities. These are represented in the probabilistic “is-a” relation that ties property
instances to the specific concepts (cf. Fig. 2).

Object Detection is the only active sensing process in our system. It is triggered
when the robot executes a visual sensing action. The underlying vision algorithms
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for object detection are from the BLORT toolkit [14], and are applied to images
from the robot’s cameras. Object detection exhibits false positive and false negative
detection rates that characterise the observation model for planning. Observation
models allow the robot to reason that it might not have sensed an object despite
it being perceivable, and vice-versa. The robot can then quantify the effects of
active sensing processes on the conceptual map. For example, a detected object
leads to the creation of a “has-object” relation for the specific instance the robot
was looking for (cf. Fig. 2).

Actions in our system are all triggered by the planner. The planner typically
solves two sub-problems: navigation and local active visual search. Navigation
in the world is planned using the navigation graph defined by the connectivity
relations. Movement between places is executed by the navigation component and
includes local object avoidance. Local active visual search first requires an action
to trigger the generation of discrete viewpoints. Following [1], the generation action
is executed as a Monte-Carlo sampling of local metric maps yielding information
about the probability of object presence. Viewpoints are assigned an observation
probability for a set of objects. The planner then reasons using actions to move to
a viewpoint and trigger goal-directed object detection for appropriate objects.

3.2 The Chain Graph Representation

The conceptual map features probabilistic relations whose probability values cannot
directly be acquired through sensing processes but have to be inferred (cf. Fig. 2).
In order to support Bayesian inference in the conceptual map, the relational rep-
resentation is compiled into a chain graph [12] representation, whose structure is
adapted online according to the state of underlying topological map. Chain graphs
provide a natural generalisation of directed (Bayesian Networks) and undirected
(Markov Random Fields) graphical models, allowing us to model both “directed”
causal (such as “is-a” relations) as well as “undirected” symmetric or associative re-
lations (such as connectivity). The use of a chain graph allows us to model circular
dependencies originating from possible loops in the topological graph, as well as di-
rect use of the probabilistic relations between the concepts. In our implementation,
chain graph inference is event-driven. For example, if an appearance property, or
object detection alters the probability of a relation, inference proceeds to propagate
the consequences throughout the graph. In our work, the underlying inference is
approximate, and uses the fast Loopy Belief Propagation [13] procedure.

An exemplary chain graph corresponding to the conceptual map shown in Fig. 2
is presented in Fig. 3. Each discrete place instance is represented by a set of
random variables, one for each class of relation linked to that place. These are
each connected to a random variable over the categories of rooms, representing the
“is-a” relation between rooms and their categories in Fig. 2. Moreover, the room
category variables are connected by undirected links to one another according to the
topological map. Here, the potential functions φrc(·, ·) describe the type knowledge
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Figure 3: Structure of the chain graph model compiled from the conceptual map.
The vertices represent random variables. The edges represent the directed and
undirected probabilistic relationships between the random variables. The textured
vertices indicate observations that correspond to sensed evidence.

about the connectivity of rooms of certain categories (e.g. that kitchens are more
likely to be connected to corridors than to other kitchens).

The remaining variables represent: shape and appearance properties of space
as observed from each place, and the presence of objects. These are connected to
observations of features extracted directly from the sensory input. As explained in
Sec. 3.1, these links are quantified by the categorical models of sensory informa-
tion. Finally, the distributions ps(·|·), pa(·|·), poi

(·|·) represent the common sense
knowledge about shape, appearance, and object co-occurrence, respectively. They
allow for inference about other properties and room categories e.g. that the room
is likely to be a kitchen, because you are likely to have observed cornflakes in it.

3.3 Quantifying Probabilistic Relations

Our robot appeals to common-sense conceptual knowledge in order to act intel-
ligently in indoor environments. That knowledge encapsulates, for instance, how
likely it is that cereals will be found in kitchens, how hallways are usually long and
offices visually cluttered, and how rooms of different types are typically connected.
A question that remains is how we can quantify the probabilistic relations, such
as “has-object”, in Fig. 2. Our approach is to leverage common-sense knowledge
available through the world wide web (WWW) to yield object-location cooccurrence
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priors.
In our system, object and location concepts are taken from the ‘locations’

database provided by the Open Mind Indoor Common Sense (OMICS)1 project.
Compiled with the express aim of making indoor mobile robots more intelligent,
that database comprises 5,800 user-given associations between common everyday
objects (ca. 2,900 unique categories) and their typical locations (ca. 500 unique
categories). It does not, however, quantify the likelihood of object-location pairs.
Where o is a specialisation of object (e.g. “milk”) and l a location (e.g. “office”),
we obtain cooccurrence frequency estimates by counting the number of hits an im-
age search engine2 returns when resolving “o in the l” queries for each of the 1.5
million object-location pairs from OMICS. Writing #q(o&l) for the number of hits
returned by that query, and #q(l) for the number when we query the noun term l,
then the cooccurrence prior c(o, l), that o is located in l, is given by Eq. 1.

c(o, l) =

(√
#q(o&l)√

#q(l)

)B

(1)

In Eq. 1, B= 1
2 for pairs that are said to occur together in the OMICS locations

database, and is otherwise 1. We avoid using the raw frequencies from the search
engine results to mitigate the problems of: (1) occluded objects being underrepre-
sented in image search queries – e.g., cups are stored in cupboards, and (2) image
search queries are often biased to human interest, and omit the mundane and or-
dinary – e.g., ducks and baths are common, however faucets and baths are rarely
mentioned together. We mitigate those problems by first applying the square root
function to the counts. The B term has the effect of biasing the estimates to
coocurrences that are deterministically represented in the OMICS database.

4 Switching Continual Planner

To generate flexible goal-oriented behaviour our system employs a domain-independent
planner. This takes a starting belief-state description compiled from the probabilis-
tic conceptual map. From a planning perspective our mobile robot domain poses
important but contrary challenges. On the one hand, planning and execution mon-
itoring must be lightweight, robust, timely, and should span the lifetime of the
robot. Those processes must seamlessly accommodate exogenous events, changing
objectives, and the underlying unpredictability of the environment. On the other
hand, in order to act intelligently the robot must perform computationally expen-
sive reasoning about contingencies, and possible revisions of its subjective belief
according to quantitatively modelled uncertainty in acting and sensing. Addressing
specifically this second challenge, [22] identify continual planning in the presence
of detailed probabilistic models as an important direction for research.

1openmind.hri-us.com, Honda Research Institute USA
2images.bing.com

openmind.hri-us.com
images.bing.com
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There has been much recent work scaling POMDP solution procedures to medium-
sized instances. In the case of general domain-independent factored systems, the
state-of-the-art scales to relatively small problems with 222 states [19].3 At their
limit, these procedures take over an hour to converge. For classes of POMDP
that feature exploitable structures, for example, no actions with negative effects,
problems with as many as 1030 states can be targeted by offline procedures [4].
Moving someway towards addressing all the challenges we have outlined, recent
online POMDP solution procedures have been developed which can exploit highly
approximate value functions – typically computed using a point-based procedure –
and heuristics in forward search [18]. These approaches are applicable in relatively
small problems, and can require expensive problem-specific offline processing in or-
der to yield good behaviours. A very recent and promising online approach for large
POMDPs employs Monte-Carlo sampling to break the curse of dimensionality in
situations where goal reachability is easy [21]. Although we believe it an interesting
item for future work to pursue that direction, it should be noted that ease of goal
reachability is not guaranteed in the problems we face.

Our work takes a concrete step towards addressing all the challenges we out-
lined. We have developed a switching domain-independent planning system that
operates according to the continual planning paradigm [3]. It uses first-order
declarative problem and domain representations, expressed in a novel extension
of PPDDL [26] called Decision-Theoretic (DT)PDDL, for modelling stochastic de-
cision problems that feature partial observability. In this paper we restrict our at-
tention to DTPDDL models that correspond to deterministic-action goal-oriented
POMDPs where all actions have non-zero cost4 – i.e., an optimal policy can be
formatted as a finite horizon contingent plan. Also, without a loss of generality we
assume goals (i.e., conditions for reward) and action preconditions are conjuncts
over positive propositions(/facts).

Our continual planning system switches, in the sense that the underlying plan-
ning procedure changes depending on our robot’s subjective degrees of belief, and
progress in plan execution. The system is continual in the usual sense that, what-
ever the session, plans are adapted and rebuilt online in reaction to changes to the
planning model – e.g. when objectives are modified, or when our robot’s path is
obstructed by a door being closed. When the underlying planner is a determinis-
tic sequential planner, i.e., a classical planner, we say planning is in a sequential
session, and otherwise it is in a DT session. By autonomously mixing these two
types of sessions our robot is able to be robust and responsive to changes in its
environment, and make appropriate decisions in the face of uncertainty.

3Considering only room categories and distribution of objects, problems we consider in this
paper have over ∼ 1027 states. The details of view points from local active visual search, and
those of robot location further increase that figure. Therefore, not only because they are offline,
but also because they have limited scalability these approaches are infeasible in our setting.

4In the case of finite-horizon planning, POMDPs with stochastic actions can be compiled into
equivalent deterministic-action POMDPs, where all the original action uncertainty is expressed in
the starting-state distribution [15].
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During a sequential session a rewarding trace of a possible execution is com-
puted, in our experiments using a modified version of Temporal Fast Downward (TFD) [6].
Taking the form of a classical plan, the trace specifies a sequence of actions that
achieves the objectives following a deterministic approximation of the problem at
hand, i.e., a determinisation [25]. A trace is a sequence of elements that are either:
(i) actions from the DTPDDL description of the world, or (ii) atomic assumptions,
modelled as deterministic actions, made about the truth value of facts that can only
be determined at runtime – e.g., that the cereal is located in the kitchen. During
sequential sessions the planner trades action costs, goal rewards, and determinacy,
finding a highly valuable plan π = s0, a0, s1, a1, .., sN according to Equation 2.

V (π) =
∏

i=1..N−1

ρi

∑

i=1..N−1

R(si, ai) (2)

Here, ρi is the probability that the outcome, state si+1, of the ith sequenced
action ai occurs, and R(sj , aj) is the instantaneous reward received for executing
action aj in state sj . The system always begins with a sequential session, and once
TFD produces a trace, plan execution proceeds by applying actions in sequence
from that trace until ρi < .95 for the next scheduled action ai. A DT session then
begins which tailors sensory processing to determine whether the assumptions made
in the trace hold, or which otherwise acts to achieve the overall objectives.

Because DT planning in large problems is too slow for our purposes, DT sessions
plan in an abstract decision process determined by the current trace and underlying
belief-state. The abstract process posed to the DT planner is constructed by first
constraining as statically false all propositions except those which are true with
probability 1, or which are assumed true in the current trace. For example, if
coffee cups are not necessarily in the kitchen, and the serial plan does not schedule
actions whose outcomes are preconditioned on a cup being somewhere in particular
(e.g., searching for or retrieving the cup from a view in the kitchen), then on first
construction the states of the abstract process do not mention cups. Next, those
static constraints are removed, one proposition at a time, until the number of states
that can be true with non-zero probability in the initial belief of the abstract process
reaches a given threshold (in our real-world experiments, 150 states). In detail, for
each statically-false proposition we compute the entropy of the state assumptions
of the current trace conditional on that proposition. Let X be a set of propositions
and 2X the powerset of X, then taking

χ = {
∧

x∈X′∩X

x ∧
∧

x∈X\X′

¬x | X
′ ∈ 2X},

we have that χ is a set of conjunctions each of which corresponds to one truth
assignment to elements in X. Where p(φ) gives the probability that a conjunction
φ holds in the belief-state of the DTPDDL process, the entropy of X conditional
on a proposition y, written H(X|y), is given by Equation 3.
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(A) Partially constrained abstract
belief-state

(B) Underlying DTPDDL belief

(:init (=(is-in Robot)kitchen)

(.6(and(=(is-in cereal)kitchen)

(.9(=(is-in milk) kitchen))

.1(=(is-in milk)office))

.4(and(=(is-in cereal)office)

(.1(=(is-in milk)kitchen))

.9(=(is-in milk)office)))

(:init (=(is-in Robot)office)

(.6(and(=(is-in cereal)kitchen)

(.9(=(is-in milk)kitchen))

.1(=(is-in milk) office))

.4(and(= (is-in cereal)office)

(.1(=(is-in milk)kitchen))

.9(=(is-in milk)office)))

(.6(=(is-in cup)office)

.4(=(is-in cup)kitchen)))

(C) Fully constrained abstract belief-state

(:init (=(is-in Robot)kitchen)

(.6(=(is-in cereal)kitchen)))

Figure 4: Simplified examples of abstract belief-states from DT sessions.

H(X|y) =
∑

x∈χ,y′∈{y,¬y}

p(x ∧ y
′) log2

p(y′)

p(x ∧ y′)
(3)

A low H(X|y) value suggests that knowing the truth value of y is useful for
determining whether or not some assumptions X hold. When removing a static
constraint on propositions during the abstract process construction, yi is considered
before yj if H(X|yi) < H(X|yj). For example, if the serial plan assumes the robot
is in a kitchen, then propositions about the contents of kitchens, e.g. that there
is a cup in the kitchen, are added to characterise the abstract process’ states. If
sensing scheduled during the DT session fails to find a cup in the room, then the
kitchen assumption can be judged during DT deliberations. To the abstract model
we add disconfirm and confirm actions that judge each assumption in the trace.
These actions yield a small reward if the corresponding judgement is true and
small penalty otherwise. Once a judgement action is scheduled for execution the
DT session is terminated, and a new sequential session begins.

Abstract Process Example Following the syntax and semantics of PPDDL,5

for a simplified object search task the current belief is described by the expression
in Fig. 4B. This admits 8 states with non-zero probability. For example, with
probability .324 the robot is in the office, cereal and milk are in the kitchen, and a
cup is in the office. Suppose a serial session plans: (1) to relocate the robot to the
kitchen, (2) observe the cereal, and (3) report that cereal is located in the kitchen
to a user. Characterising the abstract problem posed to the DT session at step
(2), Fig. 4C gives the belief in the case where all static constraints hold. Taking

5Omitting the “probabilistic” string at the start of the corresponding PPDDL blocks to keep
the descriptions small.
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assumption X to be (=(is-in cereal)kitchen), in relaxing static constraints the
following entropies are calculated:

.47 = H(X|(=(is-in milk)office))

= H(X|(=(is-in milk)kitchen))

.97 = H(X|(=(is-in cup)office))

= H(X|(=(is-in cup)kitchen))

Therefore, the first static constraint to be relaxed is (=(is-in milk)office), or
equivalently (=(is-in milk)kitchen), giving a refined abstract belief state de-
picted in Fig. 4A. Summarising, if the DT session is restricted to belief-states with
fewer than 8 elements, then the starting belief-state of the DT session does not
mention a “cup”.

5 Experimental Evaluation

To evaluate the implemented representational and planning techniques, we first
analysed our robot system performing an object search task in two different real-
world environments: a larger office (O, 13 places in 3 rooms) and a smaller home
(H, 7 places in 3 rooms). A sketch of the object search setting in environment H
is depicted in Fig. 1. Our evaluation compares the full system described in this
paper, exploiting probabilistic conceptual knowledge and evidence from shape and
appearance classification, to a baseline system that cannot make use of the concep-
tual knowledge. We refer to these as the “full” and “lesioned” systems respectively.
In the lesioned system continuous sensing of shape and appearance properties is dis-
abled, emulating the limited reasoning available in our previous system [9]. There-
fore it can neither use these properties to infer the categories of rooms nor can it
exploit conceptual knowledge about object-location co-occurrence.

In all runs, a box of cornflakes (the object to search for) was placed in the en-
vironment among many other objects belonging to the nine categories the robot
has been trained to detect. In the experiments, only a subset of all object-location
co-occurrence frequencies consisting of 152 relations between the 19 selected object
concepts (cornflakes among them) and seven given room concepts (among them
kitchen, living room, corridor, and office) was employed. In a first set of runs
directly comparing the full system (FC) to the lesioned case (LC), the box of
cornflakes was in the kitchen, which is the canonical location for this type of ob-
ject according to the common-sense conceptual knowledge (with a probability of
P (cornflakes|kitchen) = 0.336). In a second set of runs, the object was at a
non-canonical location (P (cornflakes|living_room) = 0.035) to test the full con-
figuration (results denoted as FNC).

Hypotheses The hypotheses leading to this study design are that (i) the exploita-
tion of the conceptual knowledge in the full system will enable the robot to achieve
the task quicker in canonical cases when compared to the lesioned system in the
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Figure 5: Environment H with numbered places, and pie charts indicating prob-
abilities of room categories (yellow=living room, red=kitchen, green=corridor,
blue=office, grey=others). The labels attached to place node in the living room
(upper right) indicate the most likely values in the distribution of classified shape
(top) and visual (bottom) properties, respectively. Detected doors, used for room
partitioning, are shown as door frames. The kitchen is at the lower right.

conf. obj.
loc.

lesion ♯succ./♯tot.
H

♯succ./♯tot.
O

avg. time H avg. time O

FC kitchen no 10/10 5/6 5.8min 6.8min
LC kitchen yes 9/10 5/5 11.3min 13.5min
FNC liv. room,

office
no 3/3 n/a 10.2min n/a

Table 1: Runtimes for the three cases tested: full system (FC) and lesioned system
(LC), both with object in canonical position; NFC: full system with object in non-
canonical position. Total time to solve the task reported in minutes. The FNC case
was only tested in environment H.

same experimental setup, (ii) although more efficient in the average case, the sys-
tem will be robust in the presence of sensing errors, and (iii) that the system will
still be able to achieve its goal, even relatively efficiently, in non-canonical setups.
In all runs, before the robot was given the goal to find the object, it performed a
short exploration of adjacent places to sense room properties in order to infer the
category of the room (if this evidence was not lesioned). The acquired map after
this short exploration for the H environment is shown in Fig. 5. The robot has
already sensed room properties and hence evidence about the category of the room
it is in is available in the conceptual map when making a first plan.
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Figure 6: Box and whisker diagrams of total runtime to achieve the given task
in two environments comparing the ‘full (FC)’ to the ‘lesioned (LC)’ case. In the
FC case for environment H one run took longer than 14 minutes indicated by the
outlier.

Quantitative Results from Real-World Experiments The cornflakes box was
found by the robot in 32 of the 34 runs. In the two failed runs the robot maneu-
vered itself into a corner of the room and required human intervention. The total
execution time of the successful FC and LC runs are plotted in Fig. 6.6 Hypothesis
(i) claims that the robot is able to exploit the evidence gained from perceiving its
environment by integrating this with conceptual knowledge about the commonali-
ties of such environments. That our system does this is confirmed by a significant
difference (Mann-Whitney test p < 0.01 for both environments) in average runtime
reported in Tab. 1 for these two configurations. Looking at the typical sequence of
actions for the FC configuration it becomes apparent that planning inferred lower
costs for driving into the kitchen to begin searching (despite that being an extra
distance to travel without looking for objects). This observation also explains the
relative improvement of FC in the larger O environment, comprising larger space
that has to be searched exhaustively, being comparatively higher than in H.

In all our runs, total running time was dominated by action execution with
planning being a distant second. The total time spent on planning was between
16.9 seconds for the FC runs in the H environment and 64.8 seconds for the LC

6A video available at http://youtu.be/0QcmSDZR-c4 illustrates an exemplary F C run in the
H environment.

http://youtu.be/0QcmSDZR-c4
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configuration in the larger O environment. The time was divided roughly equally
between the serial and DT sessions. The time spent on planning per planner call
was slightly higher in the FC configurations, but this was offset by a much lower
number of calls in the full configuration (on average 6 compared to 13 for H, 5.6
to 20.6 for O).

Qualitative Discussion of Results The results comparing FC and LC runs
could admittedly have been obtained using a system that determinsitically exploits
structural knowledge about cornflakes being found in kitchens instead of making
use of the probabilistic formulation of the knowledge. Hence, the results so far
only confirm hypothesis (i). With regard to hypothesis (iii) we can confirm that
the robot was able to solve non-canonical configurations 100% of the time. In
these runs, the robot also first searched in the kitchen before returning to the other
room and eventually finding the object there. A system entirely dogmatic about
the cornflakes being in kitchens (having modeled this relation as deterministic)
would not have been able to consider this alternative. Another interesting case
we encountered is evident in Fig. 6(a). The single outlier in this figure is related
to hypothesis (ii), indicating that that our system can cope with uncertainty in
sensing. In this case the robot also first drove to the kitchen (following its initial
sequential plan), entered a DT session to find the object, but eventually failed
to detect the object (due to an object detection false negative). Hence, the DT
session disconfirmed the original assumption that was made. Accordingly a plan
was created that drove the robot back to the living room to continue its search there;
again due to the remaining probability of finding objects also in non-canonical
locations. However, after a comprehensive search, the likelihood of finding the
object in the kitchen by looking again became higher, so the robot went back and
eventually found it. In general, realistically, object detection was very reliable in
our system, with observation probabilities estimated as .05 for false positives and
false negatives. Accordingly, we only observed one such case of a sensing error in
our runs. In order to assess the potential of the switching planner in greater detail
we conducted further experiments in a simulated setting, where we were in control
of sensing characteristics.

Planning with Noisy Sensing We integrated our switching planner in an en-
hanced version of the MAPSIM simulation environment [3] and performed a de-
tailed experimental evaluation, comparing switching using our DT procedure with
a greedy dual-mode [5] baseline we called “cp”. For experimentation in simula-
tion the base planner during sequential sessions is a cost-optimising version of Fast
Downward [10]. For the dual-mode baseline, when a scheduled action triggers a
switch to a DT session, the system plans to a single entropy reduction action whose
execution can provide evidence regarding the truth value of an assumption from the
current trace. Control is returned to a new sequential session as soon as a sensing
action is executed.

We evaluate those approaches in simulation on a number of tasks, including a 6-
room environment comprising 26-places and 21-objects. In simulation we considered
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Figure 7: Average run cost (bars) and portion of successful runs (line) in simulation.
For the left plot sensing is reliable, middle is semi-reliable, and right is noisy.

3 levels of reliability in sensing: reliable sensors have a .1 probability of a false
negative, semi-reliable have a chance of 0.3 of false negative and 0.1 of false positive,
and noisy sensors with probabilities of 0.5 and 0.2 respectively. Our evaluation
examines DT sessions with initial belief-states admitting between 20 (written “dt
20”) and 100 abstract states with non-zero probability. We run 50 simulations in
each configuration, and plot quality data in Fig. 7 for observed behaviours in the 6-
room environment where the goal is to find and report the location of a target object
to a user. Here, compared to the simple greedy sensing strategy of cp, we have that
DT sessions yield a higher rate of success, and lower expected cost of achieving
the goal. Moreover, as the reliability of sensing degrades there is a clear benefit in
performing expensive DT planning. Although there is insufficient space to present
the results here, we observed that the overall time spent planning increases linearly
as we move from cp to progressively refined abstractions in DT sessions.

6 Conclusion

We presented a mobile robot system that integrates two original approaches for
representing and reasoning about uncertainty. The first is a conceptual map, a
representation of space that combines knowledge about its qualitative structure (e.g.
a topological map), with probabilistic knowledge (e.g. that cereal boxes are found
in kitchens 33% of the time). The second is a continual planning and execution
monitoring system that employs switching to plan for very large partially observable
problems that are posed by this representation. It is important to note that the
integration of these approaches is crucial to the success of our work. Without the
novel planner, the representation would not be capable of influencing behaviour.
Without the novel representation, the planner would not be able to reason over both
probabilistic instance and conceptual knowledge at the same time. We evaluated
this combination in our robot in two real-world environments, and found that it is
able to yield efficient and robust behaviours in an object search task.
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