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Abstract

A cornerstone for mobile robots operating in man-made environ-
ments and interacting with humans is representing and understanding
the human semantic concepts of space. In this report, we present a
multi-layered semantic mapping algorithm able to combine informa-
tion about the existence of objects in the environment with knowledge
about the topology and semantic properties of space such as room size,
shape and general appearance. We use it to infer semantic categories
of rooms and predict existence of objects and values of other spatial
properties. We perform experiments offline and online on a mobile
robot showing the efficiency and usefulness of our system.

1 Introduction

In this report we focus on the understanding of space to, for example, fa-
cilitate interaction between humans and robots and increase the efficiency
of the robot performing tasks in man-made environments. We consider
applications where the robot is operating in an indoor office or domestic
environment, i.e. environments which have been made for and are, up un-
til now, almost exclusively inhabited by humans. In such an environment
human concepts such as rooms and objects and properties such as the size
and shape of rooms are important, not only because of the interaction with
humans but also for knowledge representation and abstraction of spatial
knowledge. We will describe the system in the context of a mobile robot
(see Fig. 1) but most of the system would remain unchanged if used as part
of, e.g., a wearable device.
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Figure 1: Dora the Explorer as well as the elements and the data flow inside
the semantic mapping system.



The main contribution of this work is a way of combining information
about the existence of objects, the appearance, geometry and topology of
space for semantic mapping in a principled manner. It builds on our previous
work [1] where we presented a system for multi-clue integration of laser and
vision data for place categorization. A fundamental difference from that
work is that we now have decoupled the lowest levels of information from
the categorization by introducing the so called properties. This allows us to
incorporate additional sources of knowledge and describe the space at much
finer level of granularity.

Comparing to our previous approach, the vision and laser pipe lines
now feed into modules estimating the values of appearance and geometric
properties of space instead of directly categorizing rooms. In this way room
categories are not directly defined based on the low level sensor data but
in terms of spatial properties. This has several advantages. It paves the
way for better scalability. It makes training of new categories easier and is
therefore an important step towards a system that is able to support life-
long learning. The properties can correspond to human concepts of space.
The use of such human understandable properties provides better support
for verbalization of knowledge, e.g., the corridor is large (size property) and
elongated (shape property) as well as the dual, i.e., interpreting what a
human says and ultimately learning models for new categorizes based on
human input. Finally, additional spatial properties such as based on objects
or even actions observed in the environment can be easily incorporated.

We believe that objects play an important role in understanding space.
Introducing properties describing the existence of certain objects provides
a seamless way to integrate objects in the above mentioned system. A by-
product of the system presented in this report is that it allows for predicting
the existence of objects and the values of spatial properties. That is, given
that, for example, appearance and shape indicate that a certain room is
a kitchen the object properties associated with such room category might
suggest that it is likely to find a cereal box in that room.

Our new system also allows for human input being treated in the same
principled way as the information from a camera or a laser scanner. That
is, if a human tells us that there is a certain object nearby or that we are in
the room next to the kitchen this type of information can be incorporated.
Furthermore, by incorporating information about the topology of space we
can infer properties of space even without having made any observations
there. For example, starting in an office the system would be able to say
that it is very likely that the neighbouring room is a corridor because that
is the typical topology.

Another advantage with the property based system is that it allows us to
train the level above the properties in the system directly using ground truth
information. That is, instead of training based on the outcome from the low
level processing we can train with data from common sense databases or



crawling the internet for information about typical topologies, objects-room
relations, etc.

The presented approach is evaluated offline on a comprehensive database,
COLD-Stockholm, capturing appearance and geometry of almost 50 rooms
belonging to different semantic categories as well as online in the same en-
vironment on a mobile robot.

1.1 Outline

Section 2 relates the work in this report to what has been presented in the
literature. Section 3 goes into a bit more detail about spatial understanding
and more specifically about the employed spatial model. In Section 4 we
describe the properties we use in the system and in Section 5 we describe our
conceptual map. Section 6 gives a system overview and describes how its
components are connected. Section 7 describes the experimental setup and
Section 8 presents experimental results for room categorization both offline
and online. Finally, Section 9 draws conclusions and suggests avenues for
future research.

2 Related Work

The system we present here provides a much broader functionality than a
plain place categorization system, but as place categorization is one of its
typical uses, we give an overview of the work in that research field. Place cat-
egorization has been addressed both by the computer vision and the robotics
community. In computer vision the problem is often referred to as scene cat-
egorization. Although also related, object categorization methods are not
covered here. However, as already mentioned, we believe that objects are
key to understanding space and we will include them in our representation
but will make use of standard methods for recognizing/categorizing them.
In computer vision one of the first works to address the problem of place
categorization is [2] based on the so called ”gist” of a scene. One of the key
insights in the paper is that the context is very important for recognition
and categorization of both places and objects and that these processes are
intimately connected. Place recognition is formulated in the context of lo-
calization and information about the connectivity of space is utilized in a
Hidden Markov Model (HMM). Place categorization is also addressed using
an HMM. In [3] the problem of grouping images into semantic categories is
addressed. It is pointed out that many natural scenes are ambiguous and
the performance of the system is often quite subjective. That is, if two peo-
ple are asked to sort the images into different categories they are likely to
come up with different partitions. [3] argue that typicality is a key measure
to use in achieving meaningful categorizations. Each cue used in the catego-
rization should be assigned a typicality measure to express the uncertainty



when used in the categorization, i.e. the saliency of that cue. The system is
evaluated in natural outdoor scenes. In [4] another method is presented for
categorization of outdoors scenes based on representing the distribution of
codewords in each scene category. In [5] a new image descriptor, PACT, is
presented and shown to give superior results on the datasets used in [2,4].
In robotics, one of the early systems for place recognition is [6] where
color histograms is used to model the appearance of places in a topological
map and place recognition performed as a part of the localization process.
Later [7] uses laser data to extract a large number of features used to train
classifiers using AdaBoost. This system shows impressive results based on
laser data alone. The system is not able to identify and learn new categories:
adding a new category required off-line re-training, no measure of certainty
and it segmented space only implicitly by providing an estimate of the cate-
gory for every point in space. In [8] this work is extended to also incorporate
visual information in the form of object detections. Furthermore, this work
also adds an HMM on top of the point-wise classifications to incorporate
information about the connectivity of space and make use of information
such as offices are typically connected to corridors. In [9] a vision-only place
recognition system is presented. Super Vector Machines (SVMs) are used as
classifiers. The characteristics are similar to those of [7]; cannot identify and
learn new categorizes on-line, only works with data from a single source and
classification was done frame by frame. In [10,11] a version of the system
supporting incremental learning is presented. The other limitations remains
the same. In [12] a measure of confidence is introduce as a means to better
fuse different cues and also provide the consumer of the information with
some information about the certainty in the end result. In [13] the works
in [7,9] are combined using an SVM on top of the laser and vision based
classifiers. This allows the system to learn what cues to rely on in what room
category. For example, in a corridor the laser based classifier is more reliable
than vision whereas in rooms the laser does not distinguish between differ-
ent room types. Segmentation of space is done based on detecting doors
that are assumed to delimit the rooms. Evidence is accumulated within a
room to provide a more robust and stable classification. It is also shown
that the method support categorization and not only recognition. In [14]
the work from [5] is extended with a new image descriptor, CENTRIS, and
a focus on visual place categorization in indoor environment for robotics.
A database, VPC, for benchmarking of vision based place categorization
systems is also presented. A Bayesian filtering scheme is added on top of
the frame based categorization to increase robustness and give smoother
category estimates. In [15] the problem of place categorization is addressed
in a drastically different and novel way. The problem is cast in a fully
probabilistic framework which operates on sequences rather than individual
images. The method uses change point detection to detect abrupt changes
in the statistical properties of the data. A Rao-Blackwellized particle fil-



ter implementation is presented for the Bayesian change point detection to
allow for real-time performance. All information deemed to belong to the
same segment is used to estimate the category for that segment using a
bag-of-words technique. In [16] a system for clustering panoramic images
into convex regions of space indoors is presented. These regions correspond
roughly with the human concept of rooms and are defined by the similarity
between the images. In [17] panoramic images from indoor and outdoor
scenes are clustered into topological regions using incremental spectral clus-
tering. These clusters are defined by appearance and the aim is to support
localization rather than human robot interaction. The clusters therefore
have no obvious semantic meaning.

As mentioned above [8] makes use of object observations to perform the
place categorization. In [18] objects also play a key role in the creation
of semantic maps and the anchoring problem, i.e., that of associating sen-
sor level information with the same entity at the symbolic level is studied.
In [19] a 3D model centered around objects is presented as a way to model
places and to support place recognition. In [20] a Bayesian framework for
connecting objects to place categories is presented. In [21] the work in [§]
is combined with detections of objects to deduce the specific category of a
room in a first-order logic way.

3 Semantic Spatial Understanding

In order to build a semantic mapping system, it is necessary to make cer-
tain assumptions about how the vast body of the spatial knowledge should
be represented. The functionality of our system is centred around the rep-
resentation of complex, cross-modal, spatial knowledge that is inherently
uncertain and dynamic. The representation employed here follows the prin-
ciples presented in [22]. In addition to supporting standard applications such
as localisation and path planning, it integrates instance knowledge with con-
ceptual world knowledge using a probabilistic framework. Below, we first
describe the fundamental concepts that we use to describe space and then
present an overview of a spatial knowledge representation on top of which
our system is built.

3.1 The Ontology of Space

Our primary assumption is that spatial knowledge should be abstracted.
This keeps the complexity of under control, makes the knowledge more ro-
bust to dynamic changes, and allows to infer additional knowledge about
the environment. One of the most important steps in abstraction of spatial
knowledge is discretisation of continuous space. In our view, the environ-
ment is decomposed into discrete areas called places. Places connect to other



places using paths which are generated as the robot travels the distance be-
tween them. Thus, places and paths constitute the fundamental topological
graph of the environment.

An important concept employed by humans in order to group locations
is a room. Rooms tend to share similar functionality and semantics which
make them a good candidate for integrating semantic knowledge over space.
In the case of indoor environments, rooms are usually separated by doors
or other narrow openings. Thus, we propose to use a door detector and
perform reasoning about the segmentation of space into rooms based on the
doorway hypotheses.

Many other concepts than simply related to the topology are being used
by humans to describe space. In this work, we focus on the combination of
objects, which we believe are strongly related to the semantic category of
a place where they are typically located, with other spatial properties. As
properties, we identify shape of a room (e.g. elongated), size of a room (e.g.
large, compared to other typical rooms) as well as the general appearance
of a room (e.g. office-like appearance).

3.2 Spatial Knowledge Representation

The spatial knowledge representation on top of which we build our system
is presented in Fig. 2. It consists of four layers corresponding to different
levels of abstraction, from low-level sensory input to high-level conceptual
symbols. Each layer defines its own spatial entities and the way the agent’s
position in the world is represented.

The knowledge is abstracted and represented only as accurately as neces-
sary, and uncertainty is present at all levels. This keeps the complexity of the
representation under control, makes the knowledge more robust to dynamic
changes, and allows to infer additional knowledge about the environment.

The lowest level of our representation is the sensory layer. This maintains
an accurate representation of the robot’s immediate environment. Above
this are the place and categorical layers. The place layer discretises con-
tinuous space into a finite number of places, plus paths between them. As
a result, the place layer represents the topology of the environment. The
categorical layer contains categorical models (in our case pre-trained) of the
robot’s sensory information which are not specific to any particular location
or environment. These could be the sensory models of object categories,
but also values of spatial properties such as an elongated shape or office-like
appearance. On top of this, the conceptual layer creates a unified represen-
tation relating sensed instance knowledge to general conceptual knowledge.
It includes a taxonomy of human-compatible spatial concepts which are
linked to the sensed instances of these concepts drawn from lower layers. It
is the conceptual layer which contains the information that kitchens com-
monly contain cereal boxes and have certain general appearance and allows



the robot to infer that the cornflakes box in front of the robot makes it
more likely that the current room is a kitchen. In the following sections, we
focus on the concrete implementations of the principles outlined here and
algorithms maintaining the representations in each of the layers.

4 Categorical Models of Sensory Information

The system employs categorical models of sensory information which ab-
stract the information into a set of spatial concepts. These models corre-
spond to the categorical layer of the spatial representation.

Independent models of shape, size and appearance properties are built.
To provide sufficient robustness and tractability in the presence of noisy,
high-dimensional information, we use non-linear kernel-based discrimina-
tive classifier models, namely Support Vector Machines, as proposed in [1].
Those models are trained on features extracted directly from the robot’s
sensory input. Following [1], we use a set of simple geometrical features
extracted from laser range data in order to train the shape and size models.
The appearance models are build from two types of visual cues, global, Com-
posed Receptive Field Histograms (CRFH) and local based on the SURF
features discretized into visual words [23]. We compute CRFH from sec-
ond order normalised Gaussian derivative filters applied to the illumination
channel at two scales. The two visual features are further integrated using
the Generalized Discriminative Accumulation Scheme (G-DAS [1]). In case
of SVMs, special care must be taken in choosing an appropriate kernel func-
tion. Here we used the RBF kernel for the geometrical shape model and x?
kernel for the visual appearance model.

The models are trained from sequences of images and laser range data
recorded in multiple instances of rooms belonging to different categories and
under various different illumination settings (during the day and at night).
By including several different room instances into training, the acquired
model can generalise sufficiently to provide categorisation rather than in-
stance recognition. In order to measure the uncertainty associated with the
generated hypotheses, confidence measures are derived from the distances
between the classified samples and discriminative model hyperplanes [1].

5 The Conceptual Map

The key component of our semantic mapping approach is the probabilistic
conceptual map which can be seen as a realization of the conceptual layer
of the spatial representation. In order to fully exploit the uncertainties pro-
vided by the multi-modal lower-level models, the robot needs to be capable
of uncertain reasoning on the conceptual level. Below, we first present the
uncertain ontology of the conceptual map relating sensed instance knowledge
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Figure 2: The layered structure of the spatial representation. The position of
each layer within the representation corresponds to the level of abstraction of
the spatial knowledge. The conceptual layer illustrates part of the ontology
representing both instance and predefined world knowledge.



and general conceptual knowledge. Then, we provide an implementation of
the map in terms of a probabilistic graphical model.

5.1 Uncertain Ontology

The ontology of spatial concepts and instances of those concepts imple-
mented in the conceptual map is presented in Fig. 2. In order to represent
the uncertainty associated with some of the relationships, we extended the
standard ontology notation by annotating relations as either probabilistic
or non-probabilistic. The resulting ontology defines a taxonomy of concepts
through hyponym relationships (is-a) as well as relations between concepts
(has-a relationships). As in [21], the ontology distinguishes three primary
sources of knowledge: predefined (taxonomy and conceptual common-sense
knowledge, e.g. the likelihood that cornflakes occur in kitchens), acquired
(knowledge acquired using the robot’s sensors), and finally inferred (knowl-
edge generated internally, e.g. that the room is likely to be a kitchen, because
you are likely to have observed cornflakes in it). We could further differ-
entiate between acquired knowledge and asserted knowledge which can be
obtained by interaction with a human.

The ontology ties the concepts to instance symbols derived from the
lower level representations. The instance knowledge includes the presence
of objects and sensed spatial properties such as shape, size, appearance and
topology. The conceptual knowledge comprises common-sense knowledge
about the occurrence of objects in rooms of different semantic categories,
and the relations between these categories and the aforementioned spatial
properties.

In our system, the “has-a” relations for rooms, objects, shapes, sizes and
appearances were acquired by analysing common-sense knowledge available
through the world wide web (for details see [24]) as well as annotations
available together with the database described in this report. The relation
linking rooms and objects was first bootstrapped using a part of the Open
Mind Indoor Common Sense database!. Obtained object-location pairs were
then used to generate ‘obj in the loc’ queries to an online image search
engine. The number of returned hits was used to obtain the probabilities
of existence of an object of a certain category in a certain type of room.
All relations that were not directly present in the obtained results, were
assumed to hold with a certain constant probability.

5.2 Probabilistic Inference

The conceptual map constructed according to the ontology presented above
was implemented using a chain graph probabilistic model [25]. Chain graphs
are a natural generalization of directed (Bayesian Networks) and undirected

"http://openmind.hri-us.com/
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Figure 3: Structure of the chain graph model compiled from the concep-
tual map. The vertices represent random variables. The edges represent
the directed and undirected probabilistic relationships between the random
variables. The textured vertices indicate observations that correspond to
sensed evidence.

(Markov Random Fields) graphical models. As such, they allow for mod-
elling both “directed” causal as well as “undirected” symmetric or associa-
tive relationships, including circular dependencies.

The joint density f of a distribution that satisfies the Markov property
associated with a chain graph can be written as [25]:

f(‘T) = H f(xT’a:pa(T))v

Te T

where pa(7) denotes the set of parents of vertices 7. This corresponds to
an outer factorization which can be viewed as a directed acyclic graph with
vertices representing the multivariate random variables X, for 7 in T' (one
for each chain component). Each factor f(xr|%pq(-)) factorizes further into:

f(xT‘xpa(‘r)) = 1( H ¢O¢(‘T0é)7

where A(T) represents sets of vertices in the normalized undirected graph
Grupa(r)» such that in every set, there exist edges between every pair of
vertices in the set. The factor Z normalizes f(zr|Zpq(r)) into a proper dis-
tribution.

In order to perform inference on the chain graph, we first convert it
into a factor graph representation and apply an approximate inference en-
gine, namely Loopy Belief Propagation [26], to comply with time constraints
imposed by the robotic applications.

11
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Figure 4: The Poisson distributions modelling the existence of a certain
number of objects in a room on the example of computers present in a
double office and a professor’s office.

The structure of the chain graph model is presented in Fig. 3. The
structure of the model depends on the topology of the environment. Each
discrete place is represented by a set of random variables connected to vari-
ables representing semantic category of a room. Moreover, the room cate-
gory variables are connected by undirected links to one another according
to the topology of the environment. The potential functions ¢y.(-,-) repre-
sent the type knowledge about the connectivity of rooms of certain semantic
categories.

The remaining variables represent shape, size and appearance properties
of space and presence of a certain number of instances of objects as ob-
served from each place. These can be connected to observations of features
extracted directly from the sensory input. As explained in Section 4, these
links are quantified by the categorical models in the categorical layer. Fi-
nally, the functions psp,(-|-), psi(-]), Pa(|), Po, (+|-) utilise the common sense
knowledge about object, spatial property and room category co-occurrence
to allow for reasoning about other properties and room categories.

The conditional probability distributions p,, (-|-) are represented by Pois-
son distributions. The parameter A of the distribution allows to set the
expected number of object occurrences. This is exemplified in Fig. 4 pre-
senting two distributions corresponding to the relation between the number
of computers in different types of offices used later in the experiments. In
the specific case of the double office, we set the expected number of comput-
ers to two. However, in all remaining cases, including the professor’s office,
the parameter \ was calculated to match the probability of there being no
objects of a certain category as provided by the common sense knowledge
databases. The result is that the room is more likely to be a double office
rather than a professor’s office if there are multiple computers in it.

12



6 System Overview

Having described the representations and the primary elements of the sys-
tem, we now explain the data flow through the system and mention all the
remaining components. A coarse visualization of the data flow is presented
in Fig. 1.

The layered structure of the spatial knowledge representation naturally
permits the existence of data driven processes that abstract knowledge exist-
ing in the lower-level layers to contribute to knowledge in higher-level layers.
This is the general principle reflected by the data flow described below. In
order to make those processes tractable, the updates are performed only if a
substantial change (according to a modality-specific heuristic) has occurred.

First, mapping and topology maintenance processes create the place
map. A SLAM algorithm [27] builds a metric map of the environment which
can be seen as the sensory layer of the representation. The metric map is
further discretized into places distributed spatially in the metric map. The
places together with paths obtained by traversing from one place to another
constitute the place map of the place layer. Then, based on the information
about the connectivity of places and the output of a template-based laser
door detector, a process forms rooms by clustering places that are transi-
tively interconnected without passing a doorway. Since the door detection
algorithm can produce false positives and false negatives, room formation
must be a non-monotonic process to allow for knowledge revision. Room
formation and maintenance is handled by a general purpose rule engine,
which is able to make non-monotonic inferences in its symbolic knowledge.
The approach is an adaptation of the one by [28].

The categorical models are provided with sensory information from the
laser range finder and a camera. This information is classified and confidence
estimates are provided indicating the similarity of the sensory input to each
of the categorical models. The estimated confidence information is then ac-
cumulated over each of the viewpoints observed by the robot while being in
a certain place [1] and further normalised to form potentials. The categori-
sation results are fed back into the chain graph triggering an inference in
the probabilistic model. Accordingly, room categorisation is performed as a
result of the reasoning process in the conceptual map.

7 Experimental Scenario

All the categorical models used in the experiments were trained on the
COLD-Stockholm database. COLD-Stockholm is a new database acquired
as an extension of the COLD database®. Several parts of the database were

Zhttp://www.cas.kth.se/COLD
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previously used during the RobotVision@ImageCLEF? contests and proved
to be challenging in the context of room categorization.

7.1 The COLD-Stockholm Database

The database consists of multiple sequences of image, laser range and odom-
etry data. The sequences were acquired using the MobileRobots PowerBot
robot platform equipped with a stereo camera system in addition to a laser
scanner. The acquisition was performed on four different floors (4th to
7th) of an office environment, consisting of 47 areas (usually correspond-
ing to separate rooms) belonging to 15 different semantic and functional
categories and under several different illumination settings (cloudy weather,
sunny weather and at night). The floors are structurally similar but the in-
divudual rooms are quite different. The robot was manually driven through
the different floors of the environment while continuously acquiring images
at a rate of 5fps. Each data sample was then labelled as belonging to one
of the areas according to the position of the robot during acquisition. Ex-
amples of images from the COLD-Stockholm database are shown in Fig. 5.
More detailed information about the database can be found online?.

7.2 Experimental Setup

In order to guarantee that the system will never be tested in the same
environment in which it was trained, we have divided the COLD-Stockholm
database into two subsets. For training and validation, we used the data
acquired on floors 4, 5 and 7. The data acquired on floor 6 were used
for testing during our offline experiments and the online experiment was
performed on the same floor.

For the purpose of the experiments presented in this report, we have
extended the annotation of the COLD-Stockholm database to include 3 room
shapes, 3 room sizes as well as 7 general appearances. The room size and
shape, were decided based on the length ratio and maximum length of edges
of a rectangle fitted to the room outline. These properties together with 6
object types defined 11 room categories used in our experiments. The values
of the properties as well as the room categories are listed in Fig. 8.

8 Experiments

We performed two types of experiments. First, offline to evaluate the per-
formance of our property classifiers. Then, we used the models obtained
during the offline experiments and performed real-time semantic mapping
on a mobile robot.

Shttp://www.robotvision.info
“http://www.cas.kth.se/cold-stockholm
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Figure 5: Examples of images from the COLD-Stockholm database acquired
in 9 different rooms. A video illustrating the acquisition process is available
on the website of the database.

15



Property Cues Classification rate

Shape Geometric features 84.9%
Size Geometric features 84.5%
Appearance | CRFH 80.5%
Appearance | BOW-SURF 79.9%
Appearance | CRFH + BOW-SURF 84.9%

Table 1: Classification rates obtained for each of the properties and cues.

8.1 Offline Experiments

The offline experiments evaluated the performance of each of the property
categorizers separately. First, the rooms having the same values of properties
were grouped to form the training and validation datasets. Then, parameters
of the models were obtained by cross-validation. Finally, all training and
validation data were collected together and used for training the final models
which were evaluated on test data acquired in previously unseen rooms.

The classification rates obtained during those experiments for each of the
properties and cues are presented in Tab. 1. The models were trained and
tested on 3 different shapes, 3 different sizes and 7 different appearances.
The rates were obtained separately for each of the classes and then averaged
in order to exclude the influence of unbalanced testing set. We can see
that all classifiers provided a recognition rate above 80%. Additionally, we
see that integrating two visual cues (CRFH and BOW-SURF) increased
the classification rate of the appearance property by almost 5%. Moreover,
from the confusion matrices in Fig. 6 we see that the confusion occurs always
between property values being semantically close and in case of appearance
is largely reduced by cue integration.

8.2 Online Experiments

The models obtained during the offline experiments were used in the se-
mantic mapping system during the online experiments. The experiments
were performed on the 6th floor of the building where the COLD-Stockholm
database was acquired, i.e. in the part which was not used for training. The
robot was manually driven through 15 different rooms while performing real-
time semantic mapping without relying on any previous observations of the
environment. The obtained maps of parts of the environment (A and B) are
presented in Fig. 7.

The robot recorded beliefs about the shapes, sizes, appearances, objects
found and the room categories for every significant change event in the con-
ceptual map. The results for the two parts of the environment are presented
in Fig. 8. Each column in the plot corresponds to a single event and the
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Figure 6: Confusion matrices for the offline experiments with sensory cate-
gorical models of each of the properties.

Part A Part B

Figure 7: Topological maps of the environment anchored to a metric map in-
dicating the outcomes of room segmentation and categorization (best viewed
in color). The pie charts indicate the location of places in the environment
and the probability distribution over the inferred room categories (each color
corresponds to a room category). For the detailed information about the
inferred categories, see Fig. 8.
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source of that event is indicated using dots (changes) and crosses (additions)
at the bottom. At certain points in time, the robot was provided with as-
serted human knowledge about the presence of objects in the environment.

By analysing the events and beliefs for part A, we see that the system
correctly identified the first two rooms as a hallway and a single office using
purely shape, size and general appearance (there are no object related events
for those rooms). The next room was properly classified as a double office,
and that belief was further enhanced by the presence of two computers.
The next room was initially identified as a double office until the robot was
given information that there is a single computer in this room. This was an
indication that the room is a single person office that due to its dimensions
is likely to belong to a professor.

Looking at part B, we see that the system identified most of the room
categories correctly with the exception of a single office which due to a mis-
classification of size was incorrectly recognized as a double office. The ex-
periment proved that the system can deliver an almost perfect performance
by integrating multiple sources of semantic information.

A video illustrating showing the system in action is available online at

http://www.pronobis.pro/research/semantic-mapping.

9 Conclusions and Future Works

In this report we have presented a probabilistic framework combining het-
erogenous, uncertain, information such as object observations, the shape,
size and appearance of rooms for semantic mapping. A graphical model,
more specifically a chain-graph, is used to represented the semantic infor-
mation and perform the inference over it. We introduced the concept of
properties between the low level sensory data and the high level concepts
such as room categorizes. The properties allowed us to decouple the learn-
ing processes at the different levels and pave the way for better scalability.
By making the properties understandable to humans, possibilities open in
terms of spatial knowledge verbalization and interpretation of human input.
There are several ways in which the work presented in this report can be
extended. We intend to look closer at how to define new categories based
on a human description. For example, a person might describe a student
canteen as a large room, kitchen like with very many tables. We will also look
at ways to make the segmentation of space part of the estimation process
as is made in PLISS [15]. We further plan to investigate more applications
where the semantic information provided by our system can be utilized.
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Figure 8: Visualization of the events registered by the system during ex-
ploration and its beliefs about the categories of the rooms as well as the
values of the properties. The room category ground truth is marked with

thick dashed lines while the MAP value is indicated with white dots.

A

video showcasing the system is available at: http://www.pronobis.pro/
research/semantic-mapping.
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