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Abstract— This paper presents a probabilistic framework
combining heterogeneous, uncertain, information such as object
observations, shape, size, appearance of rooms and human
input for semantic mapping. It abstracts multi-modal sensory
information and integrates it with conceptual common-sense
knowledge in a fully probabilistic fashion. It relies on the con-
cept of spatial properties which make the semantic map more
descriptive, and the system more scalable and better adapted for
human interaction. A probabilistic graphical model, a chain-
graph, is used to represent the conceptual information and
perform spatial reasoning. Experimental results from online
system tests in a large unstructured office environment highlight
the system’s ability to infer semantic room categories, predict
existence of objects and values of other spatial properties as
well as reason about unexplored space.

I. INTRODUCTION

In this paper we deal with the problem of modeling space

in order to understand it, reason about it and be able to act

efficiently in it. We consider applications where the robot

is operating in indoor office or domestic environments, i.e.

environments which have been made for and are, up until

now, almost exclusively inhabited by humans. In such an

environment human concepts such as rooms, objects and

properties such as the size and shape of rooms are important,

not only because of the interaction with humans but also for

generating efficient robot behavior, knowledge representation

and abstraction of spatial knowledge. This is what we mean

by semantic mapping. The semantic mapping system we

present will be used in the context of a mobile robot (see

Fig. 1) but most of the system would remain unchanged if

for example used as part of a wearable device.

This paper builds on our previous work [7], [16] and

now focuses on semantic mapping presenting a complete

semantic mapping system with several contributions also at

a component level. The system makes use of multi-modal

sensory information, including information gathered from

humans where humans are attributed a ”sensor model” just

like other sensors. It supports inference about unexplored

concepts (e.g. objects, rooms) and allows for goal oriented

exploration using a distribution of possible extensions to

the known world. We present an extensive experimental

evaluation, both offline and online where the whole system

runs in real-time on an entire office floor.

A unique feature of our system is the ability to extract

semantic information from multiple heterogeneous modali-

ties and integrate it in a principled manner with conceptual
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Fig. 1. Our robot platform and an illustration of a semantic map.

common-sense knowledge in a fully probabilistic fashion.

The system combines information about the existence of

objects, landmarks, the appearance, geometry and topology

of space as well as human asserted input. This is possible

thanks to an architecture based on semantic properties of

spatial entities. The properties correspond to human concepts

of space and permit creation of a more descriptive spatial

representation in which all entities have attributes as shown

in Fig. 1 (e.g. large, square double office with multiple

books).

The presented approach is evaluated offline on a new

comprehensive database, COLD-Stockholm, capturing ap-

pearance and geometry of almost 50 rooms belonging to

different semantic categories as well as online in the same

environment on a mobile robot. A video illustrating the

system in action is available online at:

http://www.semantic-maps.org

The remaining sections first relate this work to other

approaches in the literature and then discuss the problem of

spatial understanding and present our framework from the

representational and systems point of view. This is followed

by a detailed presentation of our conceptual mapping and

reasoning component and experimental evaluation.

II. RELATED WORK

The semantic mapping problem has only recently received

significant attention. There exists a broad literature on mobile

robot localization, mapping, navigation and place classifica-

tion [3], [4], [20], [23], [19], [17]. Every such algorithm

maintains a representation of space and performs spatial

reasoning. However, this representation is usually specific

to the particular problem and only captures a fraction of the

broad spectrum of spatial knowledge. Other, more general

frameworks, such as the Spatial Semantic Hierarchy [9]

concentrate on lower levels of spatial knowledge abstraction
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[6] X X X X

[25] X X X X X X

[21] X X X X

[11] X

[22] X X X X X

[15] X X

[14] X X

This work X X X X X X X X X X

TABLE I

PROPERTIES OF VARIOUS SEMANTIC MAPPING APPROACHES

and do not support higher-level conceptualization or repre-

sentation of categorical information.

Table I compares properties of various semantic mapping

approaches for indoor environments. None of the listed

methods uses topology of the environment or general appear-

ance of places as a source of semantic information. This is

surprising given the large body of work on appearance-based

place categorization [20], [23], [19], [17]. Two methods, [25]

and [15] make use of geometric place information extracted

from laser range sensors, and only [25] applies a previously

developed place classification technique for this purpose.

In [25], semantic cues can be obtained by a situated dialogue

with a user and [14] build maps augmented with semantic

symbols purely from human input. Almost every method

is focused primarily on using objects for extracting spatial

semantics [6], [25], [21], [11], [22], [15]. Objects clearly

carry a lot of semantic information; however, they are also

sparse and reliable object categorization in real-world envi-

ronments is still a major open challenge. At the same time,

valuable semantic cues are also encoded in geometry, general

appearance and topology. The inability to fuse together all

the sources of information is likely a result of the different

character of the different inputs. In this work, we present a

system able to combine all the aforementioned sources of

semantic information: general appearance and geometry of

places, object information, topological structure and human

input.

The conceptual map in our system is also a unique feature.

The most comprehensive related representations has been

proposed in [6] and [25]. Both approaches encode an ontol-

ogy of an indoor environment. However, those ontologies are

built manually and use traditional AI reasoning techniques

which are unable to incorporate uncertainty that is inherently

connected with semantic information obtained through robot

sensors in realistic environments. In contrast, we implement

a probabilistic ontology and a probabilistic inference engine

incorporating uncertainty in definitions of concepts and their

links to instances of spatial entities. Moreover, the values

of all properties for which direct evidence is not available

can be inferred based on all the available semantic informa-

tion. Additionally, as in case of [21] and [22] the concept

definitions are acquired automatically from online databases

and floor plans obtained from robotics datasets. Finally, we

have shown [7], [1] that our approach can be combined with

general planning components and is suitable for generating

Fig. 2. The layered structure of the spatial representation and a visualization
of an excerpt of the ontology of the conceptual layer. The conceptual layer
comprises knowledge about concepts (rectangles), relations between those
concepts and instances of spatial entities (ellipses).

active robot behavior in a similar fashion to [22].

III. SEMANTIC SPATIAL UNDERSTANDING

The functionality of our system is centred around the

representation of complex, cross-modal, spatial knowledge

that is inherently uncertain and dynamic. The representation

employed here follows the principles presented in [18].

The primary assumption in our approach is that spatial

knowledge should be abstracted to keep the representations

compact, make knowledge more robust to dynamic changes,

and allow the robot to infer additional knowledge about

the environment based on combining background knowledge

with observations. As one example of abstraction, we dis-

cretize the continuous space into discrete areas called places.

Places connect to other places by paths which are generated

as the robot travels between them forming a topological

map. Hypothesized places, referred to as placeholders, are

generated in the unexplored parts of space close to areas

visited by the robot. This permits reasoning about unknown

space [24]. An important concept employed by humans in

order to group locations is a room. Rooms tend to share

similar functionality and semantics and are typically assigned

semantic categorical labels e.g. a double office. This make

them appropriate units for knowledge integration over space.

A. Spatial Knowledge Representation

The structure of the spatial knowledge representation is

presented in Fig. 2. The framework comprises four layers,

each focusing on a different level of knowledge abstrac-

tion, from low-level sensory input to high-level conceptual

symbols.

The lowest level of our representation is the sensory

layer which maintains an accurate representation of the

robot’s environment corresponding to a metric map in our

system. Above, the place layer contains the place, paths

and placeholders. The categorical layer comprises universal
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categorical models (in our case static). These models describe

objects and landmarks, as well as spatial properties such

as a geometrical models of room shape or a visual models

of appearance. On top is the conceptual layer, which is the

primary focus of this paper. It is populated by instances of

spatial concepts and creates a unified representation relating

sensed instance knowledge from lower-level layers to general

common-sense conceptual knowledge. Moreover, it includes

a taxonomy of human-compatible spatial concepts. It is the

conceptual layer which would contain the information that

kitchens commonly contain cereal boxes and have a certain

appearance and allows the robot to infer that the cornflakes

box in front of the robot makes it more likely that the current

room is a kitchen.

B. Conceptual Knowledge Representation

A visualization of the data representation of the conceptual

layer is shown in Fig. 2. This representation is relational,

describing common-sense knowledge as relations between

concepts (e.g. kitchen has-object cornflakes), and describing

instance knowledge as relations between either instances and

concepts (e.g. object1 is-a cornflakes), or instances and other

instances (e.g. place1 has-object object1). Relations in the

conceptual map are either predefined, acquired, or inferred,

and can either be deterministic or probabilistic. Probabilistic

relations allow the expression of statistical dependencies

and uncertainty as in the case of the “kitchen has-object

cornflakes” or “room1 is-a hallway” relations which holds

only with a certain probability. An acquired relation is one

that is grounded in observations and generated as a result

of a perceptual process. Predefined relations are given (and

quantified in the case they are probabilistic) as part of a fixed

ontology of common-sense knowledge. Inferred relations are

the result of inference processes operating solely on the

conceptual map.

The representation defines a taxonomy of concepts and

associations between instances and concepts using hyponym

relationships (is-a). Then, directed relations (has-a) are used

to describe properties of room categories in terms of spatial

properties, such as shape, size or appearance, and objects.

Finally, we use undirected associative relations to represent

connectivity between rooms.

IV. SEMANTIC MAPPING

A. Property-based Semantic Mapping

An important paradigm underpinning the design of our

semantic mapping approach is the use of properties of

space. Properties can be seen as attributes characterizing

discrete spatial entities identified by the robot, such as places

or placeholders. Additionally, properties can correspond to

human concepts and thus provide another layer of spatial se-

mantics shared between the robot and the user. The values of

properties can be inferred from observations and other prop-

erties. Properties result from interpreting specific sensory

information directly. They are modality specific and each

property is connected to a model of sensory information.

Higher level concepts, such as room categories, are defined

based on the properties. As a result, to the conceptual rea-

soning, properties serve as connections between higher level

concepts and low-level observations. Moreover, they permit

building more specialized concepts that would be difficult

to infer from uni-modal observations. The idea of using an

intermediate level of properties in a feed-forward manner

for place categorization has been evaluated previously as a

proof of concept [16]. In this work, we generalize beyond a

pure feed-forward strategy, so that both properties and room

categories influence each other and provide a much more

complete representation of space. Hence, we can define the

problem of semantic mapping as that of estimating the joint

probability distribution over categorical room labels and all

values of properties of space for all places.

The current implementation of our system utilizes several

types of properties assigned to places:

• objects - each object class results in one property

associated with a place encoding the expected/observed

number of such objects at a certain place

• doorway - determines if a place is located in a doorway

• shape - geometrical shape of a place extracted from

laser data (e.g. elongated, square)

• size - size of a place extracted from laser data (e.g. large

(compared to other typical rooms))

• appearance (e.g. office-like appearance) - visual appear-

ance of a place

In addition to the properties of places, placeholders also have:

• associated space - the amount of visible free space

around the placeholder not yet assigned to any place

For details about estimation of the placeholder property

values, see [24]. We maintain a probability distribution over

the property values in the system.

The property-based architecture has several advantages.

First, it provides fine-grained and more descriptive repre-

sentation of space. This can enhance the quality of human-

robot interaction, increasing the robot’s ability to understand

referring expressions and acquire spatial knowledge directly

from humans as well as human’s understanding of the

robot’s internal spatial knowledge. The additional semantic

knowledge can also be used for generating a more efficient

robot’s behavior, for example on the task of finding objects

in large-scale environments [7], [1].

The approach has many of the advantages of high-level

sensor fusion which was shown to outperform low-level fea-

ture integration for several problems (see [17] and references

therein). It allows for integration of heterogeneous modalities

and various types of models adapted to the characteristics

of each modality (e.g. robust kernel-based discriminative

models for high-dimensional data and probabilistic gener-

ative models for data of lower dimensionality or conceptual

knowledge). Finally, it enhances the scalability of the ap-

proach in several ways. Instead of having to build a model

from the level of sensor data for every new category, we

can reuse the low level models. This saves memory (models

of visual data can be hundreds of megabytes in size) and

saves computations (calculations shared across categories).
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Fig. 3. Structure of the system and data flow between its main components.

The introduction of properties also facilitates training. Once

models associated with properties are trained, training the

system for a new category is decoupled from low-level sensor

data.

B. The Semantic Mapping System

A visualization of the system components and data flow is

presented in Fig. 3 and follows the principles outlined above.

The layered structure of the spatial knowledge representation

as well as the property-based architecture naturally permit the

existence of data driven processes that abstract and integrate

knowledge. In order to make those processes tractable, the

updates of more abstract representations is performed only

if a discrete value changes or a continuous values changes

above a certain threshold (selected manually).

First, mapping and topology maintenance processes create

the topological graph of places, paths and placeholders. A

SLAM algorithm [5] builds a metric map of the environment.

In our implementation the places are spread out over space

like bread crumbs every one meter [25]. Unexplored space

is covered with placeholders indicating location of potential

places that can be discovered through exploration [24]. This

approach to space discretization is limited and requires

maintaining a global metric map of the environment. Vision-

based topological mapping algorithms such as [4] could be

used instead.

In the case of indoor environments, rooms are usually

separated by doors or other narrow openings. Thus, we

currently use the doorway place property in order to form

rooms. A simple, template-based door detector [8] oper-

ates on laser range data and the doorway property of a

place is set depending on whether the place is located

inside a doorway. Then, based on the information about the

connectivity of places and the doorway property value, a

process forms rooms by clustering places that are transitively

interconnected without passing a doorway. Since the door

detection algorithm can produce false positives and false

negatives, room formation is using non-monotonic inference

as described in [25]. We intend to involve all properties of

space for room segmentation in the future.

The categorical sensory models of properties are continu-

ously classifying the robot’s observations obtained from the

laser range finder and a camera. The estimated classification

confidence information for each property value is then accu-

mulated over each of the viewpoints observed by the robot

while being in a certain place using a spatio-temporal accu-

mulation algorithm presented in [17] and further normalized

to form probabilities. The outcomes are then compared to

previous observations in order to detect significant changes

and fed into the conceptual mapping and reasoning compo-

nent where they trigger probabilistic inference. If available,

human asserted knowledge is provided to the conceptual

mapping component where it is combined with the property

values.

The resulting system operates in real-time on a standard

laptop and is capable of semantic mapping of large scale

environments. Since the probabilistic conceptual inference

is computationally very efficient, it requires only a small

fraction of the computational power. The system scales well

not only with the number of room categories, but also

with the size of the environment. The system dynamically

segments space and integrates knowledge over time, space

and multiple information sources. The next sections provide

details about the sensory models as well as the the conceptual

mapping component.

V. SENSORY MODELS OF PROPERTIES

To extract the semantic properties of spatial entities, the

system employs a set of categorical models of sensory

information. These models are implemented according to

established object and scene modeling approaches.

a) Geometrical Property Models: Two independent

models of shape and size properties are built. In both

cases we use a set of simple geometrical features extracted

from laser scans, as proposed in [17]. To provide sufficient

robustness and tractability in the presence of noisy, high-

dimensional information, we use kernel-based discriminative

classifiers, namely Support Vector Machines (SVM) (see [17]

for details). The models are trained from sequences of laser

scans recorded in multiple instances of rooms of different

shape and size. By including several different room instances

into training, the acquired model can generalize sufficiently

to provide categorization rather than instance recognition. We

identified 3 room shapes (elongated, rectangular and square)

as well as 3 room sizes (small, medium and large).

b) Appearance Property Models: We built two different

models of general visual appearances of places, one for

global and one for local image representation. The former

was built from the Composed Receptive Field Histograms

(CRFH) [17] calculated over the whole image, while the lat-

ter from local SURF features quantized into visual words [2].

The outputs of the two models were further integrated using

the Generalized Discriminative Accumulation Scheme (G-

DAS [17]). The models were trained on image sequences

acquired in rooms belonging to various categories under

different illumination conditions in order to generalize to

new environments. We identified 7 different appearances:

anteroom-like, bathroom-like, hallway-like, kitchen-like, lab-

like, meetingroom-like, office-like.
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Fig. 4. Structure of the chain graph model of the conceptual map. The
vertices represent random variables. The edges represent the directed and
undirected probabilistic relationships between the random variables. The
textured vertices indicate observations that correspond to sensed evidence.

c) Object Models: To model objects, we used the

approach taken from the BLORT toolkit [13] based on SIFT

recognition. We trained 6 object instance models for objects

belonging to categories typically find in office environments:

a book, a cereal box, a computer, a robot, a stapler, and a

roll of toilet paper.

VI. PROBABILISTIC CONCEPTUAL MAPPING

AND REASONING

To fully exploit the uncertainties provided by the sensory

models of properties and permit uncertain spatial reasoning,

the conceptual map is represented as a probabilistic chain

graph model [10]. The structure is adapted at runtime accord-

ing to the state of the underlying topological map. This is a

unique feature of our approach compared to other semantic

mapping systems (see Section II).

Chain graphs are a natural generalization of directed

(Bayesian Networks) and undirected (Markov Random

Fields) graphical models. As such, they allow for modeling

both “directed” causal as well as “undirected” symmetric

or associative relationships, including circular dependencies

originating from possible loops in the topological graph.

In order to perform inference on the chain graph, we first

convert it into a factor graph representation and apply an

approximate inference engine, namely Loopy Belief Propa-

gation [12], to comply with time constraints imposed by the

robotic applications.

A. Conceptual Map

The structure of the chain graph for the conceptual map

is presented in Figure 4. Each discrete place instance is

represented by a set of random variables, one for each

property linked to that place. These are each connected to a

random variable for the room category, representing the “is-

a” relation between rooms and their categories in Figure 2.

Moreover, the room category variables are connected by

undirected links to one another according to the topological

map. The doorway places are seen as transition areas be-

tween rooms and are not represented in the conceptual map.

The potential functions φrc(·, ·) describe knowledge about

typical connectivity of rooms of certain categories (e.g. that

kitchens are more likely to be connected to corridors than to

other kitchens).

The remaining variables represent shape, size and ap-

pearance properties of space and the presence of objects.

These are connected to observations of features extracted

directly from the sensory input. These links are quantified

by the categorical models of sensory information. Finally,

the distributions psh(·|·), psi(·|·), pa(·|·), poi(·|·) represent

the common sense knowledge about shape, size, appearance,

and object co-occurrence, respectively. It is assumed that the

same object is never represented twice in the conceptual

map and data association between object observations is

performed while maintaining the sensory layer.

If human asserted input about room categories or other

properties of the system is available, it can be seamlessly

integrated with the other sources of information. Human

assertions about semantic room categories are included by

adding a new variable representing an observation of the

human assertion and a potential φha(·, ·) representing the

relation between the assertion and the room category. Iden-

tical procedure can be applied if the asserted knowledge is

available about some other property of space, e.g. presence

of an object.

B. Representing and Quantifying Relations

In our system, the “has-a” relations for room connectivity,

shapes, sizes and appearances represented by the potential

φrc(·, ·) and distributions psh(·|·), psi(·|·), pa(·|·), poi(·|·)
were acquired by analyzing annotations in the database used

in this paper. Co-occurrences between room categories of

neighboring rooms as well as room categories and property

values were counted and later normalized to form distribu-

tions.

The conditional probability distributions poi(·|·) are rep-

resented by Poisson distributions. The Poisson distribution

was selected in order to easily model the expected number

of object occurrences through its parameter λ as well as the

ability to estimate λ from the probability of object existence

obtained from common-sense knowledge databases. The

probability of existence of an object of a certain category in

a certain type of room was first bootstrapped using a part of

the Open Mind Indoor Common Sense database1. Obtained

object-location pairs were then used to generate ‘obj in the

loc’ queries to an online image search engine. The number

of returned hits were used to obtain the probability value.

More details about this approach can be found in [7]

The relations between human assertions and concepts

(e.g. φha(·, ·)) can be used to represent the uncertainty in

perception of the human statements as well as a dependency

between various assertions and concept values (e.g. both

“kitchenette” and “kitchen” might be used to refer to a

kitchen). In our system, we assign the potential value 0.8

when the assertion exactly matches the room category and

we distribute the potential 0.2 evenly across all the remaining

assertions.

1http://openmind.hri-us.com/
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Fig. 5. Examples of extensions of the conceptual map permitting reasoning
about unexplored space behind placeholder located in room 1.

C. Reasoning about Unexplored Space

The primary benefits of having a probabilistic relational

conceptual representation is its capability to perform uncer-

tain inference about some concepts based solely on their

relations to other concepts rather than direct observations.

This permits spatial reasoning about unexplored space and

we will show two examples of that.

Consider the case of predicting the presence of objects of

certain categories in a room with a known category. This can

be easily performed in our model by adding variables and

relations for object categories without providing the actual

object observations. We will show through the experiments

that the system is able to continuously predict the existence

of objects based on other semantic cues.

Another way of using the predictive power of the con-

ceptual map is to predict the existence of a room of a

certain category in the unexplored space behind a place-

holder. In such case, the conceptual map is extended from

the room in which the placeholder exists with variables

representing categories of hypothesized rooms for different

possible room configurations in the unexplored space. For

each configuration, the categories of the hypothesized rooms

are calculated and the obtained probabilities of existence of

rooms of certain categories are summed over all possible

configurations.

In a simple case, we can consider only three hypotheses:

(1) placeholder does not lead to a new room; (2) placeholder

leads to a single new room; (3) placeholder leads to a new

room connected to another new room. If we assign equal

likelihood to the case (2) and (3), it is sufficient to calculate

a probability of the placeholder leading to at least one room

(p(r)). This can be estimated as follows: p(r) = p(ph)(1−
p(d)) + p(d), where p(ph) denotes the probability that the

placeholder leads to another placeholder and thus potentially

to another room and p(d) is the probability associated with

the placeholder doorway property. p(ph) can be estimated

from the associated space placeholder property.

VII. EXPERIMENTAL SCENARIO

All the categorical models used in the experiments were

trained on the COLD-Stockholm database2. Several parts

2http://www.semantic-maps.org/db

of the database were previously used during the RobotVi-

sion@ImageCLEF3 contests and proved to be challenging in

the context of room categorization. The database consists of

multiple sequences of image, laser range and odometry data.

The acquisition was performed on four different floors (4th to

7th) of an office environment, consisting of 47 areas (usually

corresponding to separate rooms) belonging to 15 different

semantic and functional categories and under several differ-

ent illumination settings (cloudy weather, sunny weather and

at night). Each data sample is labeled as belonging to one

of the areas according to the position of the robot during

acquisition. More detailed information about the database

can be found online2.

A. Experimental Setup

In order to guarantee that the system will never be tested

in the same environment in which it was trained, we have

divided the COLD-Stockholm database into two subsets. For

training and validation, we used the data acquired on floors

4, 5 and 7. The data acquired on floor 6 were used for testing

during our offline experiments and the online experiment was

performed on the same floor.

For the purpose of the experiments, we have extended the

annotation of the COLD-Stockholm database to include the

3 room shapes, 3 room sizes as well as 7 general appear-

ances. The room size and shape, were decided based on the

length ratio (elongated (0, 0.4], rectangular (0.4, 0.8), square

[0.8, 1]) and maximum length of edges (small [0m, 3m),
medium [3m, 5m), large [5m,∞)) of a rectangle fitted to

the room outline. These properties together with 6 object

types defined 11 room categories used in our experiments:

an anteroom, a bathroom, a computer lab, a robot lab, a

conference hall, a hallway, a kitchen, a meeting room, and

three types of offices, a double office, a single office and a

professor’s office. The three types of offices, the two types

of labs as well as the meeting room and conference hall

shared appearance properties (office-like, lab-like and meet-

ing room-like respectively) and could only be discriminated

by a using a combination of properties.

VIII. EXPERIMENTS

We first build and evaluate the performance of each of the

sensory models of properties offline. To build the models, the

rooms having the same values of properties were grouped to

form the training and validation datasets. Then, parameters

of the models were obtained by cross-validation. Finally, all

training and validation data were collected together and used

to train the final models. The evaluation was performed on

test data acquired in previously unseen rooms.

The classification rates obtained for each of the properties

and cues are presented in Tab. II. The rates represent the

percentage of correct classifications obtained separately for

each of the classes, and then averaged in order to exclude the

influence of unbalanced testing set. We can see that all clas-

sifiers provided a recognition rate above 80%. Additionally,

3http://www.robotvision.info
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Property Cues Classification rate

Shape Geometric features 84.9%

Size Geometric features 84.5%

Appearance CRFH 80.5%

Appearance BOW-SURF 79.9%

Appearance CRFH + BOW-SURF 84.9%

TABLE II

CLASSIFICATION RATES OBTAINED FOR EACH PROPERTY AND CUE.

we see that integrating two visual cues (CRFH and BOW-

SURF) increased the classification rate of the appearance

property by almost 5 percentage points. For an additional

analysis of results, we refer the reader to [16].

The obtained models were used in the semantic mapping

system during the online experiments. The experiments were

performed on the 6th floor of the building where the COLD-

Stockholm database was acquired, i.e. in the part which was

not used for training. The robot was manually driven through

two parts of the environment consisting of 13 different

rooms. It performed real-time semantic mapping without

relying on any previous observations of the environment. The

obtained maps of the two parts of the environment (A and

B) as well as the robot trajectory are presented in Fig. 6.

The robot gathered observations of shapes, sizes, appear-

ances and objects present in the environment and performed

reasoning about the values of properties and room categories.

If an observation of an object of a certain category was

not available, the robot reasoned about its existence based

on other available information. The robot recorded beliefs

about the shapes, sizes, appearances, objects found and

the room categories for every significant change event in

the conceptual map. The results for the two parts of the

environment are presented in Fig. 7. Each column in the

plot corresponds to a single event, and the cells show the

probabilities assigned to beliefs. For better analysis, compare

the results in Fig. 6 and Fig. 7 using the room numbers as

a reference.

By analyzing the events and beliefs for part A, we see

that the system correctly identified the first two rooms as

a hallway and a single office using purely shape, size and

general appearance (there are no object related events for

those rooms). The next room was properly classified as a

double office, and that belief was further enhanced by the

presence of two objects of the category “computer”. The

next room was initially identified as a double office until

the robot was given a human assertion that there is a single

computer in this room. This was an indication that the room

is a single person office that due to its dimensions is likely to

belong to a professor. The remaining rooms were correctly

identified as single offices (rooms 4 and 5) and a meeting

room (room 6).

Looking at part B, we see that the system identified most

of the room categories correctly with the exception of a

single office (room 2), which due to a misclassification of

size was incorrectly recognized as a double office. The robot

was first driven to the robot lab, which was correctly catego-

rized thanks to a combination of a appearance information

(lab-like) and an object observation (a robot). Remaining

rooms were mapped primarily based on general appearance

information as well as geometric properties.

In several rooms, we did not provide any object observa-

tions (rooms 0, 1 in part A and 0, 2, 3, 5 in part B). Therefore

all the object presence beliefs shown in Fig. 7 obtained

for those rooms are predictions of unexplored concepts.

The experiment showed that the system can deliver good

performance by integrating multiple sources of semantic

information. As previously mentioned, a video showcasing

the system is available online.

IX. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a probabilistic framework

combining heterogeneous, uncertain, information such as

object observations, the shape, size, appearance of rooms

and human input for semantic mapping. A graphical model,

more specifically a chain-graph, is used to represent the

semantic information and perform inference over it. We used

the concept of spatial properties which allowed us to make

the knowledge representation more descriptive and pave the

way for better scalability. Finally, we showed how to use the

representation in order to reason about unexplored concepts.

There are several ways in which the work presented in

this report can be extended, however three are of particular

importance. First, we intend to look at ways to make the

segmentation of space part of the estimation process as

is made in PLISS [19], and while doing so, rely on all

available properties. Second, we plan to replace the current

space discretization approach with a feature-based cluster-

ing technique such as in [4]. Finally, we will investigate

the problem of detection and learning of novel properties

and room categories to pave the way towards fully self-

extendable semantic mapping.
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[18] A. Pronobis, K. Sjöö, A. Aydemir, A. N. Bishop, and P. Jensfelt,
“Representing spatial knowledge in mobile cognitive systems,” in
Proc. of IAS’10.

[19] A. Ranganathan, “PLISS: Detecting and labeling places using online
change-point detection,” in Proc. of RSS’10.

[20] A. Torralba, K. Murphy, W. Freeman, and M. Rubin, “Context-based
vision system for place and object recognition,” in Proc. of ICCV’03.

[21] S. Vasudevan and R. Siegwart, “Bayesian space conceptualization
and place classification for semantic maps in mobile robotics,” RAS,
vol. 56, no. 6, 2008.

[22] P. Viswanathan, D. Meger, T. Southey, J. J. Little, and A. K. Mack-
worth, “Automated spatial-semantic modeling with applications to
place labeling and informed search,” in Proc. of CRV’09.

[23] J. Wu, H. I. Christensen, and J. M. Rehg, “Visual place categorization:
problem, dataset, and algorithm,” in Proc. of IROS’09.

[24] J. L. Wyatt, A. Aydemir, M. Brenner, M. Hanheide, N. Hawes,
P. Jensfelt, M. Kristan, G.-J. M. Kruijff, P. Lison, A. Pronobis, K. Sjöö,
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& self-extension:a systems and representational approach,” IEEE

Transactions on Autonomous Mental Development, vol. 2, no. 4, 2010.
[25] H. Zender, O. M. Mozos, P. Jensfelt, G.-J. M. Kruijff, and W. Burgard,

“Conceptual spatial representations for indoor mobile robots,” RAS,
vol. 56, no. 6, 2008.

3522


