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Abstract

Sum-Product Networks (SPNs) are a probabilistic

deep architecture with solid theoretical foundations,

which demonstrated state-of-the-art performance in

several domains. Yet, surprisingly, there are no

mature, general-purpose SPN implementations that

would serve as a platform for the community of ma-

chine learning researchers centered around SPNs.

Here, we present a new general-purpose Python li-

brary called LIBSPN, which aims to become such a

platform. The library is designed to make it straight-

forward and effortless to apply various SPN archi-

tectures to large-scale datasets and problems. The

library achieves scalability and efficiency, thanks to

a tight coupling with TensorFlow, a framework al-

ready used by a large community of researchers and

developers in multiple domains. We describe the de-

sign and benefits of LIBSPN, give several use-case

examples, and demonstrate the applicability of the

library to real-world problems on the example of

spatial understanding in mobile robotics.

1. Introduction

Over the last decade, advancements in deep learning have

enabled unprecedented performance in a wide range of ap-

plications. Recently, Sum-Product Networks (SPNs) have

emerged as a new promising architecture which combines

the advantages of deep learning and probabilistic model-

ing. SPNs learn tractable probabilistic models directly

from high-dimensional, noisy data. They are based on solid

theoretical foundations and have been shown to provide

state-of-the-art results in several different domains (Gens

& Domingos, 2012; Peharz et al., 2014; Amer & Todor-

ovic, 2016).
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One of the primary factors hindering research on Sum-

Product Networks and limiting their application to new

domains is the lack of accessible, actively maintained

software implementing general SPNs. It is the availabil-

ity of software libraries such as Caffe (Jia et al., 2014),

Theano (Theano Development Team, 2016), and Tensor-

Flow (Abadi et al., 2016) that greatly accelerated the re-

search on deep neural networks. Those libraries provide

a framework for implementing new approaches with min-

imum effort, comparing and benchmarking existing algo-

rithms, and finally, facilitate deployment of models to a

wide range of datasets and scenarios. They help in bring-

ing together researchers and developers actively contribut-

ing new techniques and code improvements.

In this paper, we present LIBSPN1, a general-purpose

Python library with the objective of serving similar pur-

poses for the community of researchers and developers cen-

tered around Sum-Product Networks. LIBSPN is designed

to accommodate various SPN architectures and offers a

rich set of features, with additional features being actively

developed. It offers a clean, object-oriented interface en-

abling quick prototyping and powerful customization. LIB-

SPN is tightly coupled with TensorFlow to achieve an ef-

ficient and scalable solution capable of utilizing multiple

CPU and GPU devices. It is designed to be intuitive and

familiar to existing TensorFlow users, and integrate seam-

lessly with the large repository of other machine learning

techniques already implemented within TensorFlow.

LIBSPN was created out of the need to apply new SPN

architectures to real-world problems in the domain of

robotics (Pronobis & Rao, 2017). While several other soft-

ware packages related to SPNs exist, they are often unmain-

tained, limited to a particular domain, data type or network

architecture, or implemented as research code demonstrat-

ing a specific algorithm (Poon & Domingos, 2011; Gens

& Domingos, 2013; Lowd & Rooshenas, 2015). Au-

thors of (Zhao et al., 2016a) provide a C++ implemen-

tation of several batch and online parameter learning al-

gorithms, but the code lacks GPU support and the ability

to generate or learn SPN structure. A notable exception

is Tachyon (Kalra, 2017), which also utilizes TensorFlow

1http://www.libspn.org/
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for GPU computations and implements several different

SPN learning algorithms. In comparison, LIBSPN offers

a cleaner, and more extensible interface; realizes a broader

set of network architectures and inferences; and provides a

large toolbox for data processing and introspection. More-

over, LIBSPN ships with custom TensorFlow operations

implemented directly in C++ and CUDA to address specific

requirements of SPN architectures that cannot be fulfilled

efficiently with native TensorFlow operations.

We begin by giving a short primer on SPNs and introduc-

ing a simple SPN model which serves as a running example

throughout the paper. Then, we present the design and fea-

tures of LIBSPN and give a simple usage example. Finally,

we apply LIBSPN in practice to two problems: a toy prob-

lem illustrating the probabilistic nature of SPNs and a real-

world problem in robotics demonstrating the ability of the

library to perform learning and inference with noisy data.

2. Sum-Product Networks

SPNs are a recently proposed probabilistic deep architec-

ture with several appealing properties and solid theoreti-

cal foundations (Peharz et al., 2015; Poon & Domingos,

2011; Gens & Domingos, 2012). One of the primary limi-

tations of probabilistic graphical models is the complexity

of their partition function, often requiring complex approx-

imate inference in the presence of non-convex likelihood

functions. In contrast, SPNs represent probability distri-

butions with partition functions that are guaranteed to be

tractable, and involve a polynomial number of sum and

product operations, permitting exact inference. While not

all probability distributions can be encoded by polynomial-

sized SPNs, recent experiments in several domains show

that the class of distributions modeled by SPNs is sufficient

for many real-world problems, including speech (Peharz

et al., 2014) and language modeling (Cheng et al., 2014),

human activity recognition (Amer & Todorovic, 2016), im-

age classification (Gens & Domingos, 2012), image com-

pletion (Poon & Domingos, 2011), and robotics (Pronobis

& Rao, 2017). SPNs model joint or conditional distribu-

tions and can be learned generatively (Poon & Domingos,

2011) or discriminatively (Gens & Domingos, 2012) us-

ing Expectation Maximization (EM) or gradient descent.

Additionally, several algorithms were proposed for simul-

taneous learning of network parameters and structure (Hsu

et al., 2017; Gens & Domingos, 2013; Peharz et al., 2013).

SPNs are a deep, hierarchical representation, capable of

representing context-specific independence and performing

fast, tractable inference on high-treewidth models.

As shown in Fig. 1, on a simple example of a naive Bayes

mixture model, an SPN is a generalized directed acyclic

graph composed of weighted sum and product operations.

The sums can be seen as mixture models over subsets of

Figure 1. An SPN implementing a naive Bayes mixture model

P (X1, X2), with three components over two binary variables.

The bottom layer consists of indicators for X1 and X2. Weighted

sum nodes, with weights attached to inputs, are marked with +,

while product nodes are marked with ×. Y1 represents a latent

variable (can be made explicit) marginalized out by the root sum.

variables, with weights representing mixture priors. The

latent variables of such mixtures can be made explicit and

their values inferred. Products can be viewed as features or

mixture components. Not all possible architectures consist-

ing of sums and products result in valid probability distri-

butions and certain constraints (completeness and decom-

posability (Poon & Domingos, 2011; Peharz et al., 2015))

must be followed to guarantee validity. SPNs can be de-

fined for both continuous and discrete variables, with evi-

dence for categorical variables often specified in terms of

binary indicators. Inference in SPNs is accomplished by

an upwards pass which calculates the probability of the

evidence and a downwards pass which obtains gradients

for calculating marginals or MPE state of the missing evi-

dence (in selective SPNs, see (Peharz et al., 2017)). The

latter can be obtained by replacing sum operations with

weighted max operations (the resulting network is some-

times referred to as Max-Product Network, MPN (Gens &

Domingos, 2012)).

3. Concepts and Design

Let us now introduce the fundamental concepts and design

principles of LIBSPN. LIBSPN is integrated with Tensor-

Flow (Abadi et al., 2016), and is using it as a backend for

distributing computations over multiple CPU and GPU de-

vices. TensorFlow is an open-source library for numeri-

cal computation developed by the Google Brain team. In

TensorFlow, a generic computation can be expressed as a

static directed data flow graph, where each node represents

an operation (a unit of computation) and the graph edge

represents flow of a multi-dimensional array (tensor) from

one node to another. Most operations in TensorFlow have

both CPU and GPU implementations, and the library man-

ages their deployment to the appropriate device. This en-

ables execution of TensorFlow graphs on a wide variety

of systems, ranging from mobile phones to clusters of ma-
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Figure 2. The SPN graph in LIBSPN corresponding to the SPN

model in Fig. 1. The bottom layer consists of a single variable

node iv x representing multiple indicator variables. Above, the

sum and product operations can be added to the SPN graph ei-

ther as single-operation nodes (prod * and sum * nodes) or as

blocks (layers) of multiple operations to increase compactness

and efficiency (prods * and sums *). The variable node iv y

attached to the root node represents an explicit latent variable. Fi-

nally, parameter nodes w * with sum weights are attached to each

sum node.

chines with multiple GPUs. Initially, TensorFlow has been

designed to support deep neural network models. As a re-

sult, several SPN-specific mathematical operations could

not be realized efficiently with the library. To address this

problem, and still benefit from the general infrastructure of

TensorFlow, LIBSPN contributes C++ CUDA implemen-

tations of several custom TensorFlow operations.

The workflow of TensorFlow assumes two independent

steps. First, a static graph of TensorFlow operations is cre-

ated, which serves as an implementation of the computa-

tion. Then, the graph is executed inside a session, which

manages the deployment of specific operations to specific

devices. To address the limitations of the static Tensor-

Flow graph and allow for higher-level, SPN-specific ab-

stractions, LIBSPN introduces a dynamic SPN graph, a di-

rected acyclic graph used to specify the structure of an SPN

model. The dynamic nature of the SPN graph enables au-

tomatic generation, learning and pruning of the SPN struc-

ture. The SPN graph consists of three types of nodes cor-

responding to single or multiple instances of: random vari-

ables, SPN operations (e.g. sums, products, or nonlinear-

ities), and parameters (e.g. sum weights). Representing

parameters as part of the SPN graph permits weight shar-

ing between multiple operations in an SPN. As is the case

for the TensorFlow graph, edges in the SPN graph repre-

sent flow of tensors. Specifically, the first dimension of

each tensor corresponds to a batch of data samples, while

the remaining dimensions represent multiple values passed

between the nodes. Such design makes it possible to feed

results of any computation directly into the SPN graph (e.g.

from data processing or other ML models). Fig. 2 shows a

visualization of an SPN graph for the naive Bayes mixture

model in Fig. 1.

In addition to the graph representing the model structure,

LIBSPN provides algorithm classes, which implement var-

ious inference, learning and data processing algorithms.

The role of the algorithm classes is to combine the model

structure together with specific computations defined by

the algorithms to generate a TensorFlow graph which is

later executed in a session. This conversion process in-

cludes optimizations that result in a smaller and more ef-

ficient TensorFlow graph. Additionally, a set of high-level

classes and a command-line interface facilitate creation of

standard models for typical datasets. The high-level inter-

face combines model structure generation, data (e.g. im-

age) processing, execution of learning and inference al-

gorithms as well as model loading and saving. LibSPN

is a Python library following the OOP principles. Conse-

quently, both the nodes of the graph and the algorithms are

implemented using interfaces and classes that can be easily

customized or extended.

4. Key Features of LibSPN

The goal of LIBSPN is to make it straightforward and ef-

fortless to apply SPNs to a wide range of applications and

become the platform of choice for new algorithms and de-

velopments contributed by the machine learning commu-

nity. To this end, LIBSPN offers the following advantages:

Generality: It is designed to be a general-purpose,

domain-independent library applicable to many data types.

Simplicity: It offers a clean, simple, and well-documented

Python interface. To facilitate prototyping, it is integrated

with the Jupyter Notebook.

Familiarity: It relies on concepts and constructs familiar

to the large community of existing users of TensorFlow.

Usability: It offers a set of high-level classes and a

command-line interface for standard models and datasets.

Expressiveness: It aspires to accommodate a wide range

of SPN architectures and inference/learning algorithms.

Efficiency: It leverages TensorFlow to efficiently perform

parallel computations on (multiple) GPUs. It ships with

custom TensorFlow operations implementing SPN-specific

functionality directly in C++ and CUDA.

Scalability: It scales to datasets larger than the memory.

Introspectability: It complements the TensorFlow intro-

spection tools with SPN-specific introspection and data vi-

sualization features integrated with Jupyter.

Flexibility: It integrates well with other software packages

and the quickly growing repository of machine learning

techniques implemented with TensorFlow.

Extensibility: The object-oriented interface of LIBSPN

makes it easy to implement custom extensions to model

architectures, algorithms, and datasets.

Reliability: The library comes with an extensive suite of

tests and is actively maintained.
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LIBSPN implements a wide range of features and addi-

tional features are being actively developed:

• Building custom networks

– Building SPNs from single operations or blocks (lay-

ers) of operations

– Support for categorical variables and continuous vari-

ables [Partial]

– Realizing joint and conditional distributions

– Realizing MPNs and SPNs

– Creating custom operation nodes (e.g. nonlinearities)

– Adding explicit latent variables

• Automatic SPN validity checking and scope calculation

• SPN structure generation

– Generating dense random SPNs of varying complexity

– Network pruning (Poon & Domingos, 2011)

– Structure learning algorithms (Gens & Domingos,

2013; Vergari et al., 2015; Hsu et al., 2017) [Under

development]

– Hybrid models with convolutional neural networks

[Under development]

• Inference

– Marginal and MPE inference (for selective SPNs (Pe-

harz et al., 2017))

– Inferring values of explicit latent variables (often used

for classification)

– Sampling [Under development]

• Learning

– Batch and online learning

– Expectation-maximization learning (hard (Poon &

Domingos, 2011) and soft (Peharz et al., 2017) [Un-

der development])

– Gradient descent learning using TensorFlow optimiza-

tion (Gens & Domingos, 2012) [Under development]

– Weight sharing

• Saving and loading of trained SPNs

• SPN network visualization

• Helper classes and a command-line interface for building

standard models for data classification and generation

• Helper classes for data handling

– Data loading and saving (data can be larger than the

memory) for standard datasets (images and CSV files)

– Data batching and shuffling

– Compatibility with the TensorFlow input pipeline

– Generation of toy datasets

– Basic data visualizations

We hope that contributions from the machine learning com-

munity will bring additional features, including other learn-

ing algorithms (Zhao et al., 2016b; Rashwan et al., 2016)).

5. Use Case Examples

We now illustrate the concepts behind LIBSPN, its inter-

face, and several of its fundamental features in practice. To

this end, we demonstrate how LIBSPN can be used to build

a simple SPN model, learn its parameters from a dataset

and perform inference.

Building the SPN Graph We begin be assembling a cus-

tom SPN graph on the example of the graph shown in

Fig. 2, initially using nodes representing single sum and

product operations:

1 import libspn as spn

2

3 iv_x = spn.IVs(num_vars=2, num_vals=2)

4 sum_11 = spn.Sum((iv_x, [0,1]))

5 sum_12 = spn.Sum((iv_x, [0,1]))

6 sum_21 = spn.Sum((iv_x, [2,3]))

7 sum_22 = spn.Sum((iv_x, [2,3]))

8 prod_1 = spn.Product(sum_11, sum_21)

9 prod_2 = spn.Product(sum_11, sum_22)

10 prod_3 = spn.Product(sum_12, sum_22)

11 root = spn.Sum(prod_1, prod_2, prod_3)

12 iv_y = root.generate_ivs()

13 spn.generate_weights(root,

init_value=spn.ValueType.RANDOM_UNIFORM(0, 1))→֒

Once the library is imported, we can simply create nodes

in the graph by instantiating the classes representing node

types. First, a single node iv_x representing four indica-

tors for two binary variables X1 and X2 is added. Then,

three layers of sum and product operations are assembled.

Each operation node takes multiple values as input. If a

child node outputs more than a single value, the parent node

can select which values to use as input (as e.g. in line 4).

Finally, we use two helper methods generate_ivs and

generate_weights to add a variable node representing

the explicit latent variable iv_y of the root sum, and the

parameter nodes holding the weights of all sums (initial-

ized with random values). Alternatively, these variable and

parameter nodes can be created manually, and simply at-

tached to the sum nodes. This can be used to create a graph

in which weights are shared between multiple sums.

The same SPN model can also be realized using nodes im-

plementing groups of sum or product operations:

1 iv_x = spn.IVs(num_vars=2, num_vals=2)

2 sums_1 = spn.ParSums((iv_x, [0,1]), num_sums=2)

3 sums_2 = spn.ParSums((iv_x, [2,3]), num_sums=2)

4 prods_1 = spn.PermProducts(sums_1, sums_2)

5 root = spn.Sum(prod_1, prod_2, prod_3)

Note that all nodes inherit from a common class Node

which defines their generic interface. This interface can be

used to introduce custom types of operations, variables or

parameters.

Finally, we could simply employ a dense SPN generator to

create the network:

1 gen = spn.DenseSPNGenerator(num_decomps=1,

num_subsets=2, num_mixtures=2)→֒

2 iv_x = spn.IVs(num_vars=2, num_vals=2)

3 root = gen.generate(iv_x)

The generator is aware of the scopes of its inputs and can

be used to build very complex SPNs on top of any input.
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Inspecting the Graph Once an SPN graph is created or

generated, it can be inspected or visualized:

1 print(root.get_num_nodes()) # 15 (includes params)

2 print(root.get_scope()) # {iv_x:0, iv_x:1, iv_y:0}

3 assert root.is_valid()

4 spn.display_spn_graph(root)

Here, we print the number of nodes in the graph as well as

its scope, i.e. the set of variables that appear in the graph

(the scope in the example includes variables X1, X2, and

Y1). Scope can be calculated for any node in the SPN graph

and is used internally to verify if the structure of the graph

follows the principles of completeness and decomposabil-

ity (see line 3). The function display_spn_graph can

be used to visualize the SPN graph identified by its root.

Learning Given the initial graph structure, we can use

one of the learning algorithm classes to generate Tensor-

Flow operations performing learning of model parameters:

1 learner = spn.EMLearner(root, <learning_params>)

2 init_weights = spn.initialize_weights(root)

3 init_learning = learner.initialize()

4 learn = learner.learn()

5 likelihood = tf.reduce_mean(learner.root_value)

Once the TensorFlow operations are generated, they can

be run inside a session that will distribute the computation

over all available CPU and GPU devices:

1 # Training set

2 iv_x_arr = [[0,1], [1,1], ...]

3 iv_y_arr = [[-1]] * len(iv_x_arr) # No evidence

4

5 # Learning

6 with spn.session() as (sess, _):

7 sess.run(init_weights)

8 sess.run(init_learning)

9 for epoch in range(num_epochs):

10 likelihood_arr, _ = sess.run([likelihood, learn],

feed_dict={iv_x:iv_x_arr, iv_y:iv_y_arr})→֒

11 print("Avg. likelihood: %s" % (likelihood_arr))

In this example, the dataset is specified using simple arrays.

This includes pairs of values2 of the variables X1 and X2,

as well as corresponding values of the variable Y1 (value

−1 indicates lack of evidence).

Using Large Datasets The SPN graph can use any ten-

sor as a source of data for variable nodes. This enables in-

tegration with external models implemented with Tensor-

Flow, as well as the use of the standard TensorFlow in-

put pipeline. This mechanism is exploited by the dataset

classes in LIBSPN, available for data types such as im-

ages, CSV files and certain custom datasets. These classes

automatically load and shuffle batches of data during learn-

ing and permit the use of datasets larger than the available

memory. The previous example can be modified to auto-

matically load batches of data from a file:

2The IVs node converts an integer value of a variable to a
set of indicators internally.

Figure 3. Visualization generated by TensorBoard, the Tensor-

Flow introspection tool, illustrating the structure of the Tensor-

Flow graph calculating the MPE state of variables in the SPN

graph in Fig. 2. The TensorFlow operations are grouped to avoid

clutter, with some groups expanded to illustrate their content. The

bottom layer of the graph consists of nodes representing SPN pa-

rameters and inputs. The LogValue group contains the oper-

ations computing the log value of the SPN (upward pass). The

MPEPath group calculates hard gradients (downward pass), with

the MPEState group extracting the MPE state of SPN variables

from the hard gradients.

1 dataset = spn.CSVFileDataset(’data.csv’,

num_epochs=10, batch_size=10, shuffle=True, ...)→֒

2 samples, labels = dataset.get_data()

3 iv_x.attach_feed(samples)

4 iv_y.attach_feed(labels)

5

6 with spn.session() as (sess, run):

7 sess.run(init_weights)

8 sess.run(init_learning)

9 try:

10 while run():

11 sess.run(learn)

12 except tf.errors.OutOfRangeError:

13 print("Done!")

Making Inferences Finally, we can make a wide range

of inferences using the learned model. First, we can simply

calculate the value of the SPN or MPN for (partial) evi-

dence. This corresponds to calculating the joint/marginal

probability or probability of the MPE state. As in the case

of learning, we begin by creating TensorFlow operations

performing the calculation:

1 marginal_val = root.get_value(

inference_type=spn.InferenceType.MARGINAL)→֒

2 mpe_val = root.get_value(

inference_type=spn.InferenceType.MPE)→֒
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Here, the parameter inference_type is used to spec-

ify whether sum (SPN) or max (MPN) operations are used

during the upward pass through the network. The parame-

ter is useful also during learning to control the way latent

variables are inferred. The resulting TensorFlow graph will

be similar to the upward pass TensorFlow graph shown in

Fig. 3. Then, we can run the inference operations in a ses-

sion for specific values of the variables:

1 iv_x_arr = [[0, 1], [0, -1], [-1, -1]]

2 iv_y_arr = [[0], [-1], [-1]]

3

4 with spn.session() as (sess, _):

5 marginal_val_arr = sess.run(marginal_val,

feed_dict={iv_x: iv_x_arr, iv_y: iv_y_arr})→֒

6 mpe_val_arr = sess.run(mpe_val, feed_dict={iv_x:

iv_x_arr, iv_y: iv_y_arr})→֒

7

8 print(marginal_val_arr) # 0.06, 0.31, 1.0

9 print(mpe_val_arr) # 0.06, 0.14, 0.216

Specifying −1 as the value of a variable marginalizes the

variable out in case of marginal inference. In particular,

the last sample in the three-sample batch in the above ex-

ample3 marginalizes out all the variables, effectively cal-

culating the value of the partition function. The resulting

TensorFlow graph is illustrated in Fig. 3.

We can now calculate the MPE state for the missing evi-

dence:

1 mpe_state = spn.MPEState()

2 iv_x_mpe, iv_y_mpe = mpe_state.get_state(

root, iv_x, iv_y)→֒

3

4 with spn.session() as (sess, _):

5 iv_x_mpe_arr, iv_y_mpe_arr = sess.run(

[iv_x_mpe, iv_y_mpe],

feed_dict={iv_x: iv_x_arr, iv_y: iv_y_arr})

→֒

→֒

6

7 print(iv_x_mpe_arr) # [[0, 1], [0, 0], [1, 0]]

8 print(iv_y_mpe_arr) # [[0], [0], [2]]

For the same variable assignment as in the previous exam-

ple, we get the MPE state of X2 and Y1 for X1 = 0, as well

as the MPE state of all variables. Latent variables, such as

Y1, are often used to represent the class label in classifica-

tion models. In such case, MPE inference corresponds to

classification.

Command-line Interface Besides the object-oriented

interface, the library provides a set of command-line tools.

These tools are designed to facilitate data processing, learn-

ing and inference for typical datasets and use cases. In par-

ticular, the spn-model script offers a set of commands,

e.g. load for loading a model, build for building the

initial SPN structure, train for learning a model, and

test for making inferences, including classification and

data sample generation. Each command accepts a series

3The first dimension of iv_x_arr and iv_y_arr cor-

responds to batch samples.

(a) Data and true likelihoods (b) Learned likelihoods

Figure 4. (a) Training data samples together with their true like-

lihoods. The samples have discrete values, and are jittered on the

plot to illustrate their concentration. (b) Likelihoods for all val-

ues of the discrete variables X1 and X2 obtained from a learned

model.

of command-line options. For example, train requires

specifying the dataset type, the type of the learning algo-

rithm and the learning parameters. The commands can be

chained with their options loaded from a YAML file, e.g.:

1 spn-model -c "data_params.yaml" -c "model_params.yaml"

build train save "model.spn"→֒

6. Applications and Evaluation

In this section, we apply LIBSPN to two problems. First,

we use an illustrative toy example to demonstrate the abil-

ity of LIBSPN to learn a probability distribution from data

samples. Then, we apply LIBSPN to a real-world prob-

lem in robotics, which requires a custom SPN architecture

and multiple types of real-time inferences based on noisy

sensory data captured by a mobile robot.

6.1. Learning Distributions

We begin by tasking LIBSPN with the problem of learning

a probability distribution over two discrete variables from

a dataset of samples. The samples were originally drawn

from a Gaussian mixture distribution with 5 components,

and then discretized to take 30 values. The samples as well

as their true likelihoods are illustrated in Fig. 4a.

To generate the initial structure of the model, we used the

dense SPN generator included with the library. We set the

parameters of the generator to obtain a naive Bayes mix-

ture SPN, similar to the example in Fig. 1, but with a larger

number of sum nodes over the indicator variables for the

variables X1 and X2. We used the same learning proce-

dure as in the following experiment with real-world data.

We began with an over-complete model (including 40 sums

per variable) and proceeded with hard EM learning from

the data samples4. We terminated learning after 50 epochs,

4When inferring latent variables, we used sums for the upward
pass and maxes for the downward pass. As a result, the value of
each latent variable is computed conditioning on the MPE values
of variables above it and marginalizing out the variables below it.
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Figure 5. The structure of the SPN implementing the model used

for spatial understanding. The bottom images illustrate a robot in

an environment and a robocentric polar grid formed around the

robot. The SPN is built on top of indicator variables (orange)

representing the occupancy in each cell of the polar grid (one for

empty, occupied and unknown space). Explicit latent variable Y

capturing the place class is shown in the gray callout.

and pruned the network to eliminate edges associated with

weights close to zero. The resulting network included only

31 out of the initial 80 sum nodes defined over the input

indicators. The pruning can be seen as a simple form of

structure learning.

The likelihoods generated by the trained model for each

value of the discrete input variables are shown in Fig. 4b.

It is evident that the model learns a distribution resembling

the one from which the training samples were drawn. This

demonstrates the ability of the library to build probabilistic

models capturing distributions with complex shapes.

6.2. Spatial Understanding in Robotics

In our next experiment, we aimed at validating the appli-

cability of the library to realistic problems involving high-

dimensional noisy data. Our domain of choice was mo-

bile robotics and the problem was defined as one of mod-

eling the space around a robot navigating through a large

office building. Below, we briefly summarize the exper-

imental setup, the architecture of the model and the ob-

tained results. For additional details, the reader is referred

to (Pronobis & Rao, 2017).

As training data, we used sensory observations captured

by the robot using a laser-range finder. The observations

were first integrated using a local occupancy-grid mapping

algorithm. The algorithm performed spatio-temporal inte-

gration of the sensed distance to obstacles and represented

the information in terms of grid cells that are either empty,

occupied or unknown. The resulting local maps describe

the geometry of the environment surrounding the robot.

These Cartesian grid maps were then converted to a po-

lar representation (examples of such polar occupancy grids

are shown in Fig. 7). The resulting grids contain higher-

resolution details closer to the robot and lower-resolution

information further away, a useful property for both spatial

understanding and action planning in this domain.

The architecture of the SPN model we built with LIBSPN

is shown in Fig.5. It represents a probability distribution

over the occupancy information in the polar grid and the

semantic category of the place at which the robot was po-

sitioned when the data was captured. The structure of the

model is partially static and partially generated randomly.

The resulting model is a single SPN, which is assembled

from three levels of sub-SPNs. We begin by splitting the

polar grid equally into 8 views (45 degrees each). For

each view, we use a random SPN generator to recursively

build a hierarchy of distributions for subsets of polar cells.

Then, on top of all the sub-SPNs representing the views,

we randomly generate an SPN representing complete place

geometries for each place class. The sub-SPNs for place

classes are combined by a sum node forming the root of

the network. The latent variable associated with the root

node is made explicit and is set to the appropriate class la-

bel during learning.

The model was trained using hard EM from polar grids cap-

tured on several floors of an office building and tested on

samples collected on another floor. We tasked the learned

model with several inferences. As the first inference prob-

lem, we chose classification, where the goal was to infer

the semantic place class given an observed polar grid. As a

baseline, we used a well-established model based on SVM

and geometric features extracted from laser scans (Prono-

bis et al., 2010). To ensure the best SVM result, we used

the RBF kernel and selected the kernel and learning pa-

rameters directly on the test set. The polar grids used for

training were collected in places belonging to four differ-

ent classes: a large office, a small office, a corridor and a

doorway. The classification rate averaged over all classes

(giving equal importance to each class) was 85.9% ± 5.4

for SVM and 92.7%± 6.2 for SPN.

Next, to evaluate the quality of the learned likelihood val-
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Figure 6. ROC curves for novelty detection. Inliers are consid-

ered positive, while novel samples are negative.

(a) Corridor (b) Large Office

Figure 7. Examples of completed polar grids with masked data

for two out of the four place categories. The left image shows

original data, and the right image shows reconstructed data within

the shaded area.

ues, we evaluated the model for the task of novelty detec-

tion. We used the same trained model as for classification,

and used the likelihood of a polar grid (the value of the root

node of the SPN) to determine whether or not the grid was

captured in a place belonging to one of the four categories

available during training. The model was tested on previ-

ously unseen examples from the known classes as well as

examples captured in places belonging to novel classes. As

a baseline, we used a 1-class SVM trained as in the previ-

ous experiment. The cumulative ROC curve for the detec-

tion task is shown in Fig. 6. Here, again, SPN performed

significantly better, with AUC of 0.81 compared to 0.76 for

SVM.

The next two inferences evaluated the generative abilities

of the model. First, we used the trained SPN to generate

missing observations in partially masked polar grids. We

masked a random 90-degree view in each test polar grid

(25% of the grid cells) and inferred the masked values. All

indicators for the masked polar cells as well as the class

latent variable were set to 1 to indicate missing evidence,

and MPE inference followed. Fig. 7 shows examples of

completed polar grids. Overall, when averaged over all

test examples and data splits, SPN correctly reconstructed

77.14%± 1.04 of masked cells. This time as a baseline we

(a) Corridor (b) Large Office

Figure 8. Prototypical polar grids inferred based on the semantic

place class.

used Generative Adversarial Networks, which for a similar

setup recovered 75.84%± 1.51 of masked cells.

Finally, we tasked the network with generating complete,

prototypical representations of places based only on the se-

mantic category. This time, the value of the latent class

variable was set, and the MPE state of the variables repre-

senting occupancy was inferred. The generated polar oc-

cupancy grids are shown in Fig. 8. Comparing it with the

true data samples shown in Fig. 7), we can see that each

prototype is very characteristic of the class from which it

was generated.

7. Conclusions

This papers presents LIBSPN, a general-purpose library

for inference and learning with Sum-Product Networks,

designed to facilitate application of various SPN architec-

tures to large-scale datasets and problems. Through ex-

periments, we have demonstrated the potential of LIBSPN

in real-world applications. Compared to models such as

SVMs and Generative Adversarial Networks, the SPN im-

plemented with LIBSPN offered superior performance for

the tasks of classification and novelty detection, and com-

parable generative potential. Importantly, for robotic ap-

plications, all inferences performed using LIBSPN were

significantly faster than required for real-time operation.

The library is currently in active development, and its de-

velopers are continuously extending the set of available

features. The features in active development include com-

plete support for gradient descent learning, generation and

learning of several new SPN architectures as well as inte-

gration with convolutional models.

We hope that the efficiency, scalability and universal de-

sign of the library will make it the platform of choice for

implementing new SPN algorithms contributed by the ma-

chine learning community, and will open doors for many

new applications of Sum-Product Networks.
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