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Abstract— We propose a new probabilistic framework that
allows mobile robots to autonomously learn deep, generative
models of their environments that span multiple levels of
abstraction. Unlike traditional approaches that combine engi-
neered models for low-level features, geometry, and semantics,
our approach leverages recent advances in Sum-Product Net-
works (SPNs) and deep learning to learn a single, universal
model of the robot’s spatial environment. Our model is fully
probabilistic and generative, and represents a joint distribution
over spatial information ranging from low-level geometry to
semantic interpretations. Once learned, it is capable of solving
a wide range of tasks: from semantic classification of places,
uncertainty estimation, and novelty detection, to generation
of place appearances based on semantic information and
prediction of missing data in partial observations. Experiments
on laser-range data from a mobile robot show that the proposed
universal model obtains performance superior to state-of-the-
art models fine-tuned to one specific task, such as Generative
Adversarial Networks (GANs) or SVMs.

I. INTRODUCTION

The ability to acquire and represent spatial knowledge is

fundamental for mobile robots operating in large, unstruc-

tured environments. Such knowledge exists at multiple levels

of abstraction, from robot’s sensory data, through geome-

try and appearance, up to high-level semantic descriptions.

Experiments have demonstrated that robots can leverage

knowledge at all levels to better perform in the real-world [1].

Traditionally, robotic systems utilize an assembly of inde-

pendent spatial models [2], which exchange information in a

limited fashion. This includes engineered feature extractors

and combinations of machine learning techniques, making

integration with planning and decision making difficult. At

the same time, the recent success of deep learning proves that

replacing multiple representations with a single integrated

model can lead to a drastic increase in performance [3][4].

As a result, deep models have also been applied to spatial

modeling tasks, such as place classification and semantic

mapping [5][6]. Yet, the problem was always framed as one

of classification, where sensory data is fed to a convolutional

neural network (CNN) to obtain semantic labels.

In contrast, in this work our goal is not only to unify

multiple representations into a single model, but also to

demonstrate that the role of a spatial model can go beyond

classification. To this end, we propose the Deep Generative

Spatial Model (DGSM), a probabilistic model which learns

a joint distribution between a low-level representation of the

geometry of local environments (places) and their semantic
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interpretation. Our model leverages Sum-Product Networks

(SPNs), a novel probabilistic deep architecture [7][8].

SPNs have been shown to provide state-of-the-art results

in several domains [9][10][11]. However, their potential has

not previously been exploited in robotics. DGSM consists of

an SPN with a unique structure designed to hierarchically

represent the geometry and semantics of a place from the

perspective of a mobile robot acting in its environment.

To this end, the network represents place geometry using

a robot-centric, polar grid, where the nearby objects are

captured in more detail than more distant context. On top of

the place geometry, we propose a unique network structure

which combines domain knowledge with random network

generation (which can be seen as a form of structure learning)

for parts of the network modeling complex dependencies.

DGSM is generative, probabilistic, and therefore universal.

Once learned, it enables a wide range of inferences. First, it

can be used to infer a semantic category of a place from sen-

sory input together with probability representing uncertainty.

The probabilistic output provides rich information to a po-

tential planning or decision-making subsystem. However, as

shown in this work, it can also be used to detect novel place

categories. Furthermore, the model reasons jointly about the

geometry of the world and its semantics. We exploit that

property for two tasks: to generate prototypical appearances

of places based on semantic information and to infer missing

geometry information in partial observations. We use laser-

range data to capture the geometry of places; however the

performance of SPNs for vision-based tasks [7][9] indicates

that the model should also accommodate 3D and visual

information without changing the general architecture.

Our goal is to demonstrate the potential of DGSM, and

deep generative models in general, to spatial modeling in

robotics. Therefore, we present results of four different

experiments addressing each of the inference tasks. In each

experiment, we compare our universal model to an alternative

approach that is designed for and fine-tuned to a specific task.

First, for semantic categorization, we compare to a well-

established Support Vector Machine (SVM) model learned

on widely used geometrical laser-range features [12][13].

Second, we benchmark novelty detection against one-class

SVM trained on the same features. In both cases, DGSM

offers superior accuracy. Finally, we compare the generative

properties of our model to Generative Adversarial Networks

(GANs) [14][15] on the two remaining inference tasks,

reaching state-of-the-art accuracy and superior efficiency

beyond real-time. This serves as a benchmark but also

demonstrates the use of GANs for spatial modeling in

robotics. Importantly, to open doors for the use of SPNs in

a broader range of applications, we introduce LibSPN [16],

a new general library for SPN learning and inference.
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II. RELATED WORK

Representing semantic spatial knowledge is a broadly

researched topic, with many solutions employing vi-

sion [17][18][2][5]. Images clearly carry rich information

about semantics; however, they are also affected by chang-

ing environment conditions. At the same time, robotics

researchers have seen advantages of using range data that

are much more robust in real-world settings and easier to

process in real time. In this work, we focus on laser-range

data, as a way of introducing and evaluating a new spatial

model as well as a recently proposed deep architecture.

Laser-range data have been extensively used for place

classification and semantic mapping, and many traditional,

handcrafted representations have been proposed. Buschka

et al. [19] contributed a simple method that incrementally

divided grid maps of indoor environments into two classes

of open spaces (rooms and corridors). Mozos et al. [12]

applied AdaBoost to create a classifier based on a set of

manually designed geometrical features to classify places

into rooms, corridors and doorways. In [20], omnidirectional

vision was combined with laser data to build descriptors,

called fingerprints of places. Finally, in [13], SVMs have

been applied to the geometrical features of Mozos et al. [12]

leading to significant improvement in performance over the

original AdaBoost. That approach has been further integrated

with visual and object cues for semantic mapping in [2].

Deep learning and unsupervised feature learning, after

many successes in speech recognition and computer vi-

sion [3], entered the field of robotics with superior per-

formance in object recognition [21][22] and robot grasp-

ing [23][4]. The latest work in place classification also

employs deep approaches. In [5], deep convolutional network

(CNN) complemented with a series of one-vs-all classifiers is

used for visual semantic mapping. In [6], CNNs are used to

classify grid maps built from laser data into 3 classes: room,

corridor, and doorway. In these works, deep models are used

exclusively for classification, and use of generative models

has not been explored. In contrast, we propose a universal

probabilistic generative model, and demonstrate its useful-

ness for multiple robotics tasks, including classification.

Several generative, deep architectures have recently been

proposed, notably Variational Autoencoders [24], Genera-

tive Adversarial Networks [14], and Sum-Product Networks

[8][7][9]. GANs have been shown to produce high-quality

generative representations of visual data [15], and have been

successfully applied to image completion [25]. SPNs, a

probabilistic model, achieved promising results for varied

applications such as speech [10] and language modeling [26],

human activity recognition [11], and image classification [9]

and completion [7], but have not been used in robotics. In this

work, we exploit the universality and efficiency of SPNs to

propose a single spatial model able to solve a wide range of

inference problems relevant to a mobile robot. Furthermore,

inspired by their results in other domains, we also evaluate

GANs (when applicable). This serves as a comparison and

a demonstration of GANs on a new application.

Fig. 1: An SPN for a naive Bayes mixture model P (X1, X2),
with three components over two binary variables. The bottom

layer consists of indicators for X1 and X2. Weighted sum

nodes, with weights attached to inputs, are marked with +,

while product nodes are marked with ×. Y1 represents a

latent variable marginalized out by the root sum.

III. SUM-PRODUCT NETWORKS

Sum-product networks are a recently proposed probabilis-

tic deep architecture with several appealing properties and

solid theoretical foundations [8][7][9]. One of the primary

limitations of probabilistic graphical models is the complex-

ity of their partition function, often requiring complex ap-

proximate inference in the presence of non-convex likelihood

functions. In contrast, SPNs represent joint or conditional

probability distributions with partition functions that are

guaranteed to be tractable and involve a polynomial number

of sum and product operations, permitting exact inference.

SPNs are a deep, hierarchical representation, capable of

representing context-specific independence and performing

fast, tractable inference on high-treewidth models. While not

all probability distributions can be encoded by polynomial-

sized SPNs, recent experiments in several domains show that

the class of distributions modeled by SPNs is sufficient for

many real-world problems, offering real-time efficiency.

As shown in Fig. 1, on a simple example of a naive Bayes

mixture model, an SPN is a generalized directed acyclic

graph composed of weighted sum and product nodes. The

sums can be seen as mixture models over subsets of vari-

ables, with weights representing mixture priors. Products can

be viewed as features or mixture components. The latent

variables of the mixtures can be made explicit and their

values inferred. This is often done for classification models,

where the root sum is a mixture of sub-SPNs representing

classes. The bottom layers effectively define features reacting

to certain values of indicators1 for the input variables.

Formally, following Poon & Domingos [7], we can define

an SPN as follows:

Definition 1: An SPN over variables X1, . . . , XV is a

rooted directed acyclic graph whose leaves are the indicators

(X1
1 , . . . , X

I
1 ), . . . , (X

1
V , . . . , X

I
V ) and whose internal nodes

are sums and products. Each edge (i, j) emanating from a

sum node i has a non-negative weight wij . The value of a

product node is the product of the values of its children. The

1Indicator is a binary variable set to 1 when the corresponding categorical
variable takes a specific value. For using continuous input variables, see [7].
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value of a sum node is
∑

j∈Ch(i) wijvj , where Ch(i) are the

children of i and vj is the value of node j. The value of an

SPN S[X1, . . . , XV ] is the value of its root.

Not all architectures consisting of sums and products result

in a valid probability distribution. However, following simple

constraints on the structure of an SPN will guarantee validity

(see [7], [8]). When the weights of each sum node are nor-

malized to sum to 1, the value of a valid SPN S[X1
1 , . . . , X

I
V ]

is equal to the normalized probability P (X1, . . . , XV ) of the

distribution modeled by the network [8].

A. Generating SPN structure

The structure of the SPN determines the group of dis-

tributions that can be learned. Therefore, most previous

works [9][11][26] relied on domain knowledge to design the

appropriate structure. Furthermore, several structure learning

algorithms were proposed [27][28] to discover indepen-

dencies between the random variables in the dataset, and

structure the SPN accordingly. In this work, we experiment

with a different approach, originally hinted at in [7], which

generates a random structure, as in random forests. Such an

approach has not been previously evaluated. Our experiments

demonstrate that it can lead to very good performance and

can accommodate a wide range of distributions. Additionally,

after parameter learning, the generated structure can be

pruned by removing edges associated with weights close to

zero. This can be seen as a form of structure learning.

To obtain the random structure, we recursively generate

nodes based on multiple random decompositions of a set

of random variables into multiple subsets until each subset

is a singleton. As illustrated in Fig. 2 (middle, Level 1),

at each level the current set of variables to be decomposed

is modeled by multiple mixtures (green nodes), and each

subset of the decomposition is also modeled by multiple

mixtures (green nodes one level below). Product nodes

(blue) are used as an intermediate layer and act as features

detecting particular combinations of mixtures representing

each subset. The top mixtures of each level mix outputs of

all product nodes at that level. The same set of variables can

be decomposed into subsets in multiple random ways (e.g.

there are two decompositions at the top of Fig. 2).

B. Inference and Learning

Inference in SPNs is accomplished by a single pass

through the network. Once the indicators are set to represent

the evidence, the upward pass will yield the probability of the

evidence as the value of the root node. Partial evidence (or

missing data) can easily be expressed by setting all indicators

for a variable to 1. Moreover, since SPNs compute a network

polynomial [29], derivatives computed over the network can

be used to perform inference for modified evidence without

recomputing the whole SPN. Finally, it can be shown [8] that

MPE inference in a certain class of SPNs (selective) can be

performed by replacing all sum nodes with max nodes while

retaining the weights. Then, the indicators of the variables

for which the MPE state is inferred are all set to 1 and a

standard upward pass is performed. A downward pass then

Fig. 2: The structure of the SPN implementing our spatial

model. The bottom images illustrate a robot in an environ-

ment and a robot-centric polar grid formed around the robot.

The SPN is built on top of the variables representing the

occupancy in the polar grid.

follows, which recursively selects the highest valued child

of each sum (max) node and all children of a product node.

The indicators selected by this process indicate the MPE state

of the variables. In general SPNs, this algorithm yields an

approximation of the MPE state.

SPNs lend themselves to be learned generatively [7] or

discriminatively [9] using Expectation Maximization (EM) or
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(a) Corridor (b) Doorway

(c) Small Office (d) Large Office

Fig. 3: Local environment observations used in our experi-

ments, expressed as Cartesian and polar occupancy grids, for

examples of places of different semantic categories.

gradient descent. In this work, we employ hard EM to learn

the weights, which was shown to work well for generative

learning [7]. As is often the case for deep models, the gradi-

ent quickly diminishes as more layers are added. Hard EM

overcomes this problem, permitting learning of SPNs with

hundreds of layers. Each iteration of the EM learning consists

of an MPE inference of the implicit latent variables of each

sum with training samples set as evidence (E step), and an

update of weights based on the inference results (M step,

for details, see [7]). We achieved best results by modifying

the MPE inference to use sums instead of maxes during the

upwards pass, while selecting the max valued child during

the downward pass. Furthermore, we performed additive

smoothing when updating the weights corresponding to a

Dirichlet prior and terminated learning after 300 iterations.

No additional learning parameters are required.

IV. DEEP GENERATIVE SPATIAL MODEL (DGSM)

A. Representing Local Environments

DGSM is designed to support real-time, online spatial

reasoning on a mobile robot. A real robot almost always has

access to a stream of observations of the environment. Thus,

as the first step, we perform spatio-temporal integration of

the sensory input. We rely on laser-range data, and use a

particle-filter grid mapping [30] to maintain a robot-centric

map of 5m radius around the robot. During acquisition of the

dataset used in our experiments, the robot was navigating a

fixed path through a new environment, while continuously

integrating data gathered using a single laser scanner with

180◦ FOV. This still results in partial observations of the sur-

roundings (especially when the robot enters a new room), but

helps to assemble a more complete representation over time.

Our goal is to model the geometry and semantics of a local

environment only. We assume that larger-scale spatial model

will be built by integrating multiple models of local places.

Thus, we constrain the observation of a place to the informa-

tion visible from the robot (structures that can be raytraced

from the robot’s location). As a result, walls occlude the view

and the local map mostly contains information from a single

room. In practice, additional noise is almost always present,

but is averaged out during learning of the model. Examples

of such local environment observations can be seen in Fig. 3.

Next, each local observation is transformed into a robot-

centric polar occupancy grid (compare polar and Cartesian

grids in Fig. 3). The resulting observation contains higher-

resolution details closer to the robot and lower-resolution

context further away. This focuses the attention of the model

on the nearby objects. Higher resolution of information

closer to the robot is important for understanding the se-

mantics of the robot’s exact location (for instance when the

robot is at a doorway). However, it also relates to how spatial

information is used by a mobile robot when planning and

executing actions. It is in the vicinity of the robot that higher

accuracy of spatial information is required. A similar princi-

ple is exploited by many navigation components, which use

different resolution of information for local and global path

planning. Additionally, such a representation corresponds to

the way the robot perceives the world because of the limited

resolution of its sensors. Our goal is to use a similar strategy

when representing 3D and visual information, by extending

the polar representation to 3 dimensions. Finally, a high-

resolution map of the complete environment can be largely

recovered by integrating stored or inferred polar observations

over the path of the robot. We built polar grids of radius of

5m, with an angle step of 6.4 degrees and grid resolution

decreasing with the distance from the robot.

B. Architecture of DGSM

The architecture of DGSM is based on a generative SPN

illustrated in Fig. 2. The model learns a probability distri-

bution P (Y,X1, . . . , XC), where Y represents the semantic

category of a place, and X1, . . . , XC are input variables rep-

resenting the occupancy in each cell of the polar grid. Each

occupancy cell is represented by three indicators in the SPN

(for empty, occupied and unknown space). These indicators

constitute the bottom of the network (orange nodes).

The structure of the model is partially designed based

on domain knowledge and partially generated according to

the algorithm described in Sec. III-A. The resulting model

is a single SPN assembled from three levels of sub-SPNs.

We begin by splitting the polar grid equally into 8 45-

degree views. For each view, we generate a random sub-

SPN by recursively building a hierarchy of decompositions

of subsets of polar cells in the view. Then, on top of all

the sub-SPNs representing the views, we generate an SPN

representing complete place geometries for each place class.

Finally, the sub-SPNs for place classes are combined by a

sum node forming the root of the network. The latent variable

associated with that sum node is made explicit as Y and

represents the semantic class of a place.
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Sub-dividing the representation into views allows us to

use networks of different complexity for representing lower-

level view features and high-level structure of a place. In

our experiments, when representing views, we recursively

decomposed the set of polar cells using a single random

decomposition, into 2 cell sub-sets, and generated 4 mixtures

to model each such subset. This procedure was repeated

until each subset contained a single variable representing a

single cell. To increase the discriminative power of each view

representation, we used 14 sums at the top level of the view

sub-SPN. These sums are considered input to a randomly

generated SPN structure representing a place class. To ensure

that each class can be associated with a rich assortment

of place geometries, we increased the complexity of the

generated structure and performed 4 random decompositions

of the sets of mixtures representing views into 5 subsets.

The performance of the model does not vary greatly with

the structure parameters as long as the generated structure is

sufficiently expressive to support learning of dependencies

in the data.

Several straightforward modifications to the architecture

can be considered. First, the latent variables in the mixtures

modeling each view can be made explicit and considered a

view or scene descriptor discovered by the learning algo-

rithm. Second, the weights of the network could be shared

across views, potentially simplifying the learning process.

C. Types of Inference

As a generative model of a joint distribution between

low-level observations and high-level semantic phenomena,

DGSM is capable of various types of inferences.

First, the model can simply be used to classify observa-

tions into semantic categories, which corresponds to MPE

inference of y: y∗ = argmaxyP (y|x1, . . . , xC). Second, the

likelihood of an observation can be used as a measure of

novelty and thresholded:
∑

y P (y, x1, . . . , xC) > t. We use

this approach to separate test observations of classes known

during training from observations of unknown classes.

If instead, we condition on the semantic information, we

can perform MPE inference over the variables representing

occupancy of polar grid cells:

x∗

1, . . . , x
∗

C = argmax
x1,...,xC

P (x1, . . . , xC |y).

This leads to generation of prototypical examples for each

class. Finally, we can use partial evidence about the occu-

pancy and infer the most likely state of a subset of polar grid

cells for which evidence is missing:

x∗

J , . . . , x
∗

C = argmax
xJ ,...,xC

∑

y

P (y, x1, . . . , xJ−1, xJ , . . . , xC)

We use this technique to infer missing observations in our

experiments.

V. GANS FOR SPATIAL MODELING

Recently, Generative Adversarial Networks [14] have re-

ceived significant attention for their ability to learn complex

visual phenomena in an unsupervised way [15], [25]. The

idea behind GANs is to simultaneously train two deep

networks: a generative model G(z; θg) that captures the

data distribution and a discriminative model D(x; θd) that

discriminates between samples from the training data and

samples generated by G. The training alternates between

updating θd to correctly discriminate between the true and

generated data samples and updating θg so that D is fooled.

The generator is defined as a function of noise variables

z, typically distributed uniformly (values from -1 to 1 in

our experiments). For every value of z, a trained G should

produce a sample from the data distribution.

Although GANs have been known to be unstable to

train, several architectures have been proposed that result

in stable models over a wide range of datasets. Here, we

employ one such architecture called DC-GAN [15], which

provides excellent results on datasets such as MNIST, LSUN,

ImageNet [15] or CelebA [25]. Specifically, we used 3

convolutional layers (of dimensions 18×18×64, 9×9×128,

5×5×256) with stride 2 and one fully-connected layer for

D2. We used an analogous architecture based on fractional

strided convolutions for G. We assumed z to be of size 100.

DC-GANs do not use pooling layers, perform batch normal-

ization for both D an G, and use ReLU and LeakyReLU

activations for D and G, respectively. We used ADAM to

learn the parameters.

Since DC-GAN is a convolutional model, we could not

directly use the polar representation as input. Instead, we

used the Cartesian local grid maps directly. The resolution

of the Cartesian maps was set to 36×36, which is larger then

the average resolution of the polar grid, resulting in 1296
occupancy values being fed to the DC-GAN, as compared to

1176 for DGSM. We encoded input occupancy values into a

single channel2 (0, 0.5, 1 for unknown, empty, and occupied).

A. Predicting Missing Observations

In [25], a method was proposed for applying GANs to

the problem of image completion. The approach first trains

a GAN on the training set and then relies on stochastic

gradient descent to adjust the value of z according to a loss

function L(z) = Lc(z) + λLp(z), where Lc is a contextual

loss measuring the similarity between the generated and true

known input values, while Lp is a perceptual loss which

ensures that the recovered missing values look real to the

discriminator. We use this approach to infer missing observa-

tions in our experiments. While effective, it requires iterative

optimization to infer the missing values. This is in contrast

to DGSM, which performs inference using a single up/down

pass through the network. We selected the parameter λ to

obtain the highest ratio of correctly reconstructed pixels.

VI. EXPERIMENTS

We conducted four experiments corresponding to the infer-

ence types described in Sec. IV-C. Importantly, DGSM was

2We evaluated architectures consisting of 4 conv. layers and layers of
different dimensions (depth of the 1st layer ranging from 32 to 256). We also
investigated using two and three channels to encode occupancy information.
The final architecture results in significantly better completion accuracy.
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(a) DGSM (b) SVM + Geometric Features

Fig. 4: Normalized confusion matrices for the task of

semantic place categorization.

trained only once and the same instance of the model was

used for all inferences. For each experiment, we compared

to a baseline model fine-tuned to the specific sub-problem.

A. Experimental Setup

Our experiments were performed on laser-range data from

the COLD-Stockholm dataset [2]. The dataset contains mul-

tiple data sequences captured using a mobile robot navigating

with constant speed through four different floors of an

office building. On each floor, the robot navigates through

rooms of different semantic categories. There are 9 different

large offices, 8 different small offices (distributed across

the floors), 4 long corridors (1 per floor, with varying

appearance in different parts), and multiple examples of

places in doorways. The dataset features several other room

categories: an elevator, a living room, a meeting room, a large

meeting room, and a kitchen. However, with only one or

two room instances in each category. Therefore, we decided

to designate those categories as novel when testing novelty

detection and used the remaining four categories for the

majority of the experiments. To ensure variability between

the training and test sets, we split the data samples four times,

each time training the DGSM model on samples from three

floors and leaving one floor out for testing. The presented

results are averaged over the four splits.

The experiments were conducted using LibSPN [16]. SPNs

are still a new architecture, and only few, limited domain-

specific implementations exist at the time of writing. In

contrast, our library offers a general toolbox for struc-

ture generation, learning and inference, and enables quick

application of SPNs to new domains. It integrates with

TensorFlow, which leads to an efficient solution capable of

utilizing multiple GPUs, and enables combining SPNs with

other deep architectures. The presented experiments are as

much an evaluation of DGSM as they are of LibSPN.

B. Semantic Place Categorization

First, we evaluated DGSM for semantic place categoriza-

tion and compared it to a well-established model based on

an SVM and geometric features [12], [13]. The features

were extracted from 360◦ virtual laser scans raytraced in

the original, high-resolution (2cm/pixel) Cartesian grid maps

used to form the polar grids for DGSM. To ensure the

best SVM result, we used an RBF kernel and selected the

Fig. 5: ROC curves for novelty detection. Inliers are

considered positive, while novel samples are negative.

kernel and learning parameters directly on the test sets. While

early attempts to solve a similar classification problem with

deep conv nets exist [6], it is not clear whether they offer

performance improvements compared to the SVM-based

approach. Additionally, using SVMs allows us to evaluate

not only classification, but also novelty detection.

The models were trained on the four room categories and

evaluated on observations collected in places belonging to

the same category, but on different floors. The normalized

confusion matrices are shown in Fig. 4. We can see that

DGSM obtains superior results for all classes. The classifi-

cation rate averaged over all classes (giving equal importance

to each class) and data splits is 85.9% ± 5.4 for SVM and

92.7%±6.2 for DGSM, with DGSM outperforming SVM for

every split. Most of the confusion exists between the small

and large office classes. Offices in the dataset often have

complex geometry that varies greatly between the rooms.

C. Novelty Detection

The second experiment evaluated the quality of the un-

certainty measure produced by DGSM and its applicability

to detecting outliers from room categories not known during

training. We used the same DGSM model and relied on the

likelihood produced by DGSM to decide if a test sample is

from a known or novel category. The cumulative ROC curve

over all data splits is shown in Fig. 5.

We compared to a one-class SVM with an RBF kernel

trained on the geometric features. The ν parameter was

adjusted to obtain the largest area under the curve (AUC) on

the test sets. We can observe that DGSM offers a significantly

more reliable novelty signal, with AUC of 0.81 compared

to 0.76 for SVM. This result is significant, since to the

best of our knowledge, it demonstrates for the first time the

usefulness of SPN-based models for novelty detection.

D. Generating Observations of Places

In this qualitative experiment, our aim was to assess and

compare the generative properties of DGSM and GANs

by inferring complete, prototypical appearances of places
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(a) Corridor (b) Doorway (c) Small Office (d) Large Office (e) GAN Samples

Fig. 6: Results of MPE inference over place appearances conditioned on each semantic category for DGSM ((a)-(d)); and

place appearance samples generated using GAN (e).

(a) Corridor (b) Doorway (c) Small Office (d) Large Office (e) GAN

Fig. 7: Examples of successful and unsuccessful completions of place observations with missing data: grouped by true

semantic category for DGSM ((a)-(d)) and for GAN (e). For each example, a pair of grids is shown, with the true complete

grid on the left, and the inferred missing data on the right. The part of the grid that was masked and inferred is highlighted.

knowing only semantic categories. For DGSM, we con-

ditioned on the semantic class variable and inferred the

MPE state of the observation variables. The generated polar

occupancy grids are illustrated in Fig. 6a-d. For GANs,

we plot samples generated for random values of the noise

variables z in Fig. 6e.

We can compare the plots to the true examples depicted in

Fig. 3. We can see that each polar grid is very characteristic

of the class from which it was generated. The corridor is

an elongated structure with walls on either side, and the

doorway is depicted as a narrow structure with empty space

on both sides. Despite the fact that, as shown in Fig. 3, large

variability exists between the instances of offices within the

same category, the generated observations of small and large

offices clearly have a distinctive size and shape.

While the GAN architecture used for predicting missing

observations in unlabeled samples cannot generate samples

conditional on semantic category, we still clearly see exam-

ples of different room classes and intra-class variations.

E. Predicting Missing Observations

Our final experiment provides a quantitative evaluation

of the generative models on the problem of reconstructing

missing values in partial observations of places. To this

end, we masked a random chunk of 25% of the grid cells

for each test sample in the dataset. In case of DGSM, we

masked a random 90-degree view, which corresponds to a

rectangular mask in polar coordinates. For GANs, since we

use a Cartesian grid, we used a square mask in a random

position around the edges of the grid map3. For DGSM, all

indicators for the masked polar cells were set to 1 to indicate

missing evidence and MPE inference followed. For GANs,

we used the approach in Sec. V-A.

Fig. 7 shows examples of grids filled with predicted

occupancy information to replace the missing values for both

models. While the predictions are often consistent with the

true values, both models do make mistakes. Analyzing the

DGSM results more closely, we see that this typically occurs

when the mask removes information distinctive of the place

category. Interestingly, in some cases, the unmasked input

grid might itself be partial due to missing observations during

laser range data acquisition. When the missing observations

coincide with a mask, the model will attempt to reconstruct

them. Such example can be seen for a polar grid captured in

a corridor shown in the bottom left corner of Fig. 7.

Overall, when averaged over all the test samples and

data splits, DGSM correctly reconstructs 77.14% ± 1.04 of

masked cells, while GANs recover 75.84% ± 1.51. This

3We considered polar masks on top of Cartesian grid maps. However, this
provided a significant advantage to GANs, since most of the masked pixels
lay far from the robot, often outside a room, where they are easy to predict.
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demonstrates that the models have comparable generative

potential, confirming state-of-the-art performance of DGSM.

F. Discussion and Model Comparison

The experiments clearly demonstrate the potential of

DGSM. Its generative abilities match (and potentially sur-

pass) those of GANs on our problem, while being sig-

nificantly more computationally efficient. DGSM naturally

represents missing evidence and requires only a single up-

wards and downwards pass through the network to infer

missing observations, while GANs required hundreds of

iterations, each propagating gradients through the network.

Additionally, DGSM in our experiments used a smaller

network than GANs, requiring roughly a quarter of sum

and product operations to compute a single pass, without

the need for any nonlinearities. This property makes DGSM

specifically well suited for real-time robotics applications.

DC-GANs, being a convolutional model, lend themselves

to very efficient implementations on GPUs. DGSM uses a

more complicated network structure. However, in our current

implementation in LibSPN, DGSM is real-time during infer-

ence and very efficient during learning, obtaining much faster

inference than GANs. As a result, extending the model to

include additional modalities and capture visual appearance

or 3D structure is computationally feasible with DGSM.

The experiments with different inference types were all

performed on the same model after a single training phase

(separately for each dataset split). This demonstrates that

our model spans not only multiple levels of abstraction,

but also multiple tasks. In contrast, SVMs and GANs were

optimized to solve a specific task. In particular, the model

retains high capability to discriminate, outperforming a dis-

criminative SVM. Yet, it is trained generatively to represent

a joint distribution over low-level observations. Additionally,

as demonstrated in the novelty detection experiments, it

produces a useful, probabilistic uncertainty signal. Neither

GANs nor SVMs explicitly represent likelihood of the data.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents DGSM, a unique generative spatial

model, which to our knowledge, is the first application of

Sum-Product Networks to the domain of robotics. Our results

demonstrate that DGSM provides an efficient framework

for learning deep probabilistic representations of robotic

environments, spanning low-level features, geometry, and

semantic representations. We have shown that DGSM has

great generative and discriminative potential, and can be used

to predict latent spatial concepts and missing observations.

It can solve a variety of important robotic tasks, from se-

mantic classification of places and uncertainty estimation, to

novelty detection and generation of place appearances based

on semantic information. DGSM has appealing properties

and offers state-of-the-art performance. Our future efforts

will focus on extending DGSM to include more complex

perception provided by visual and depth sensors, as well as

exploit the resulting deep representations for probabilistic

reasoning and planning at multiple levels of abstraction.
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