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Abstract—We propose a new probabilistic framework that al-
lows mobile robots to autonomously learn deep generative models
of their environments that span multiple levels of abstraction.
Unlike traditional approaches that integrate engineered models
for low-level features, geometry, and semantic information, our
approach leverages recent advances in Sum-Product Networks
(SPNs) and deep learning to learn a generative model of a robot’s
spatial environment, from low-level input to semantic interpre-
tations. Our model is capable of solving a wide range of tasks
from semantic classification of places, uncertainty estimation and
novelty detection to generation of place appearances based on
semantic information and prediction of missing data in partial
observations. Experiments on laser range data from a mobile
robot show that the proposed single universal model obtains
accuracy or efficiency superior to models fine-tuned to specific
sub-problems, such as Generative Adversarial Networks (GANs)
or SVMs.

I. INTRODUCTION

The ability to represent knowledge about the environment

is fundamental for a mobile robot. Spatial knowledge exists

at multiple levels of abstraction, from robot’s sensory data,

through geometry and appearance, up to high level semantic

descriptions. Experiments have demonstrated that robotic sys-

tems can leverage knowledge at all levels of abstraction to

better perform real-world tasks in human environments [2].

Traditionally, robotic systems utilize an assembly of inde-

pendent spatial models [22], which exchange information in a

limited fashion. This includes engineered feature extractors and

combinations of machine learning techniques, making integra-

tion with planing and decision making difficult. However, the

recent deep learning revolution has demonstrated that replacing

multiple representations with a single integrated model can

lead to a drastic increase in performance [3][15]. As a result,

deep models have also been applied to the tasks of place

classification and semantic mapping [27][10]. However, the

problem was always framed as one of classification, where

sensory data is fed to a convolutional neural network (CNN)

to obtain semantic labels.

In contrast, in this work our goal is not only to unify multiple

levels of a representation into a single model, but also to

demonstrate that the role of a spatial model can go beyond

classification. To this end, we propose the Deep Generative

Spatial Model (DGSM), a probabilistic model which learns

a joint distribution between a low-level representation of the

geometry of local environments (places) and their semantic

interpretation. Our model leverages Sum-Product Networks

(SPNs), a novel probabilistic deep architecture [21][20].

SPNs have been shown to provide state-of-the-art results in

several domains [8][19][1]. However, their potential has not

yet been exploited in robotics. DGSM consists of an SPN

with a unique structure designed to hierarchically represent

the geometry and semantics of a place from the perspective

of a mobile robot acting in an environment. To this end, the

network represents a place as a polar occupancy grid surround-

ing the robot, where the nearby objects are represented in

more detail than objects further apart. On top of the occupancy

data, we propose a unique network structure which combines

prior knowledge about the problem with random structure

generation (as in random forests) for parts of the network

modeling complex dependencies.

DGSM is generative, probabilistic, and therefore universal.

Once learned, it enables a wide range of inferences. First, it

can be used to infer a semantic category of a place from sen-

sory input together with probability representing uncertainty.

Probabilistic output provides rich information to a potential

planning or decision-making subsystem. However, as shown in

this work, it can also be used to detect novel place categories.

Furthermore, the model reasons jointly about the geometry of

the world and its semantics. We exploit that property for two

tasks: to generate prototypical appearances of places based on

semantic information, and infer missing geometry information

in partial observations. We use laser range data to capture

the geometry of places, however the proposed model can be

easily extended to include 3D and visual information without

changing the general architecture.

Our goal is to present the potential of DGSM, and deep

generative models in general, to spatial modeling in robotics.

Therefore, we present results of four different experiments

addressing each of the inference tasks. In each experiment,

we compare our universal model to an alternative approach

that is designed for and fine-tuned to a specific task. First,

for semantic categorization, we compare to well-established

Support Vector Machine (SVM) model learned on widely

used geometrical laser range features [17][23]. Second, we

benchmark novelty detection against one-class SVM trained

on the same features. In both cases, DGSM offers superior

accuracy. Finally, we compare the generative properties of our

model to Generative Adversarial Networks (GANs) [11][24]

on the two remaining inference tasks, reaching state-of-the-art

accuracy and superior efficiency beyond real-time. This serves

as a benchmark, but also demonstrates the use of GANs for

spatial modeling in robotics.



II. RELATED WORK

Representing semantic spatial knowledge is a broadly

researched topic, with many solutions employing vi-

sion [18][25][22][27]. Images clearly carry rich information

about semantics; however, they are also affected by changing

environment conditions. At the same time, robotics researchers

have seen advantages of using range data that are much more

robust in real-world settings and easier to process in real time.

In this work, we focus on laser range data, as a way of

introducing and evaluating a new spatial model, employing

a recently proposed deep architecture.

Laser range data have been extensively used for place

classification and semantic mapping, and many traditional,

handcrafted representations have been proposed. Buschka et

al. [4] contributed a simple method that incrementally di-

vided grid maps of indoor environments into two classes

of open spaces (rooms and corridors). Mozos et al. [17]

applied AdaBoost to create a classifier based on a set of

manually designed geometrical features to classify places in

into rooms, corridors and doorways. In [28], omnidirectional

vision was combined with laser data to build descriptors,

called fingerprints of places. Finally, in [23], SVMs have been

applied to the geometrical features of Mozos et al. [17] leading

to improved performance over the original AdaBoost. That

approach has been further integrated with visual and object

cues for semantic mapping in [22].

Deep learning and unsupervised feature learning, after many

successes in speech recognition and computer vision [3], en-

tered the field of robotics with superior performance in object

recognition [14][7] and robot grasping [16][15]. The latest

work in place categorization also employs deep approaches.

In [27], deep convolutional network (CNN) complemented

with a series of one-vs-all classifiers is used for visual semantic

mapping. In [10], CNNs are used to classify grid maps built

from laser data into 3 classes: room, corridor, and doorway. In

these works, the deep model is used exclusively for classifica-

tion, and use of generative models has not been explored. In

contrast, we propose a universal probabilistic generative model

and demonstrate its usefulness in a wide range of robotics

tasks, including classification.

Several generative, deep architectures have recently been

proposed, notably Variational Autoencoders [13], Genera-

tive Adversarial Networks [11], and Sum-Product Networks

[20][21][8]. GANs have been shown to produce high-quality

generative representations of visual data [24], and have been

successfully applied to image completion [29]. SPNs, a prob-

abilistic model, achieved promising results for such varied

applications as speech [19] and language modeling [5], hu-

man activity recognition [1], and image classification [8] and

completion [21], but have not been used in robotics. In this

work, we exploit the universality and efficiency of SPNs to

propose a single spatial model able to solve a wide range of

inference problems relevant to a mobile robot. Furthermore,

inspired by their results in other domains, we also evaluate

GANs (when applicable). This serves as a comparison and a

demonstration of GANs on a new application.

Fig. 1: An SPN for a naive Bayes mixture model P (X1, X2),
with three components over two binary variables. The bottom

layer consists of indicators for each of the two variables.

Weights are attached to inputs of sums. Y1 represents a latent

variable marginalized out by the top sum node.

III. SUM-PRODUCT NETWORKS

Sum-product networks are a recently proposed probabilistic

deep architecture with several appealing properties and solid

theoretical foundations [20][21][8]. One of the primary limi-

tations of probabilistic graphical models is the complexity of

their partition function, often requiring complex approximate

inference in the presence of non-convex likelihood functions.

In contrast, SPNs represent probability distributions with par-

tition functions that are guaranteed to be tractable, involve a

polynomial number of sums and product operations, permitting

exact inference. While not all probability distributions can

be encoded by polynomial-sized SPNs, recent experiments in

several domains show that the class of distributions modeled

by SPNs is sufficient for many real-world problems, offering

real-time efficiency. SPNs can perform fast, tractable inference

on high-treewidth models.

SPNs model a joint or conditional probability distribution

and can be learned both generatively [21] and discrimina-

tively [8]. They are a deep, hierarchical representation, capable

of representing context-specific independence. As shown in

Fig. 1 on a simple example of a naive Bayes mixture model, the

network is a generalized directed acyclic graph of alternating

layers of weighted sum and product nodes. The sum nodes

can be seen as mixture models, over components defined

using product nodes, with weights of each sum representing

mixture priors. The latent variables of such mixtures can be

made explicit and their values inferred. This technique is

often used for classification models where the root sum is a

mixture of sub-SPNs representing multiple classes. The bottom

layers effectively define features reacting to certain values of

indicators1 for the input variables.

Formally, following Poon & Domingos [21], we can define

an SPN as follows:

Definition 1: An SPN over variables X1, . . . , XV is a

rooted directed acyclic graph whose leaves are the indicators

(X1
1 , . . . , X

I
1 ), . . . , (X

1
V , . . . , X

I
V ) and whose internal nodes

are sums and products. Each edge (i, j) emanating from a

1Indicator is a binary variable set to 1 when the corresponding categorical
variable takes a specific value. For using continuous input variables, see [21].



sum node i has a non-negative weight wij . The value of a

product node is the product of the values of its children. The

value of a sum node is
∑

j∈Ch(i) wijvj , where Ch(i) are the

children of i and vj is the value of node j. The value of an

SPN S[X1, . . . , XV ] is the value of its root.

Not all possible architectures consisting of sums and prod-

ucts will result in a valid probability distribution. However,

following simple constraints on the structure of an SPN will

guarantee validity (see [21, 20] for details). When the weights

of each sum node are normalized to sum to 1, the value

of a valid SPN S[X1
1 , . . . , X

I
V ] is equal to the normalized

probability P (X1, . . . , XV ) of the distribution modeled by the

network [20].

A. Generating SPN structure

The structure of the SPN determines the group of dis-

tributions that can be learned. Therefore, most previous

works [8][1][5] relied on domain knowledge to design the

appropriate structure. Furthermore, several structure learning

algorithms were proposed [9][26] to discover independencies

between the random variables in the dataset and structure

the SPN accordingly. In this work, we experiment with a

different approach, originally hinted at in [21], which generates

a random structure, as in random forests. Such approach has

not been previously evaluated and our experiments demon-

strate that it can lead to very good performance and can

accommodate a wide range of distributions.

The algorithm recursively generates nodes based on multiple

decompositions of a set of random variables into multiple

subsets until each subset is a singleton. As illustrated in Fig. 3,

at each level the set to be decomposed is modeled by multiple

mixtures (green nodes), and each subset in each decomposition

is also modeled by multiple mixtures (green nodes one level

below). Product nodes (blue) are used as an intermediate layer

and act as features detecting particular combinations of mix-

tures representing each subset in a particular decomposition

(e.g., in each of the two decompositions at the top of Fig. 3,

the first product node is a feature based on the first mixture

for each subset, while the last product node combines the last

mixture for each subset). The top mixtures of each level mix

outputs of all product nodes at that level with independent

weights.

B. Inference and Learning

Inference in SPNs is accomplished by an upward pass

through the network. Once the indicators are set to represent

the evidence, the upward pass will yield the probability of the

evidence as the value of the root node. Partial evidence (or

missing data) can easily be expressed by setting all indicators

for a variable to 1. Moreover, since SPNs compute a network

polynomial [6], derivatives computed over the network can

be used to perform inference for modified evidence without

recomputing the whole SPN. Finally, it can be shown [21]

that MPE inference can be performed by replacing all sum

nodes with max nodes, while retaining the weights. Then, the

indicators of the variables for which the MPE state is inferred

are all set to 1 and a standard upward pass is performed.

(a) Corridor (b) Doorway

(c) Small Office (d) Large Office

Fig. 2: Comparison of local environment observations used in

our experiments, expressed as Cartesian and polar occupancy

grids for places of different semantic categories.

A downward pass then follows which recursively selects the

highest valued child of each sum (max) node, and all children

of a product node. The indicators selected by this process

indicate the MPE state of the variables.

SPNs lend themselves to be learned generatively or discrim-

inatively using Expectation Maximization (EM) or gradient

descent. In this work, we employ hard EM, which was shown

to work well for generative learning [21]. As is often the

case for deep models, the gradient quickly diminishes as more

layers are added. Hard EM overcomes this problem, permitting

learning of SPNs with hundreds of layers. Each iteration of the

EM learning consists of an MPE inference of the implicit latent

variables of each sum with training samples set as evidence

(E step), and an update of weights based on the inference

results (M step, for details see [21]). We achieved best results

by modifying the MPE inference to use sums instead of

maxes during the upwards pass, while selecting the max valued

child during the downward pass. Furthermore, we performed

additive smoothing when updating the weights corresponding

to a Dirichlet prior and terminated learning after 300 iterations.

No additional learning parameters are required.

IV. DGSM SPATIAL MODEL

A. Representing Local Environments

DGSM is designed to support real-time, online spatial

reasoning on a mobile robot. To represent an observation of

the local environment (a place), the model relies on local

occupancy grids generated from laser range data. A real

mobile robot almost always has access to more than one

observation of a place. Thus, we use a particle filter grid

mapping [12] to integrate the incoming laser scans into local

robo-centric maps of 5m radius. This technique allows us

to assemble more complete representations of places. During

our experiments, the robot was exploring a new environment



driving with a constant speed, while continuously gathering

data and performing inference based on the current state of

the local map. This will still result in partial maps (especially

when the robot enters a new room), but will help to accumulate

observations over time.

Our goal is to model the geometry and semantics of a local

environment only. We assume that larger-scale space model

will be built by integrating multiple models of places. Thus,

we constrain the observation to the parts of the environment

that are visible from the robot (can be raytraced from the

robot’s location). As a result, walls occlude the view and

the local map will mostly contain objects in a single room.

In practice, additional noise is almost always present, but is

averaged out during learning of the model. Examples of such

local representations can be seen in Fig. 2.

Next, every local observation is transformed into a robo-

centric polar occupancy grid representation (compare polar

and Cartesian grids in Fig. 2). The resulting observation

contains higher-resolution details closer to the robot and lower-

resolution information further away. This focuses the attention

of the model to the nearby objects. Higher resolution of

information closer to the robot is important for understanding

the semantics of the exact robot’s location (for instance when

the robot is in a doorway). However, it also relates to how

spatial information is used by a mobile robot when planning

and executing actions. It is in the vicinity of the robot that

higher accuracy of spatial information is required. A similar

principle is exploited by many navigation components, which

use different resolution of information for local and global

path planning. Additionally, such representation corresponds

to the way the robot perceives the world because of the limited

resolution of its sensors. Our goal is to use a similar strategy

when representing 3D and visual information in the future, by

extending the polar representation to 3 dimensions. Finally,

a high-resolution map of the complete environment can be

largely recovered by integrating the polar observations over the

path of the robot. The polar grids in our experiments assumed

radius of 5m, with angle step of 6.4 degrees and resolution

decreasing with the distance from the robot.

B. Architecture of DGSM

The architecture of DGSM is based on a generative SPN

illustrated in Fig. 3. The model learns a probability distribution

P (Y,X1, . . . , XC), where Y represents the semantic category

of a place, and X1, . . . , XC are input variables representing

the occupancy in each cell of the polar grid. Each occupancy

cell is represented by three indicators in the SPN (for empty,

occupied and unknown space). These indicators constitute the

bottom of the network (orange nodes).

The structure of the model is partially static and partially

generated randomly according to the algorithm described

in III-A. We begin by splitting the polar grid equally into 8

views (45 degrees each). For each view, we randomly generate

an SPN by recursively building a hierarchy of decomposi-

tions of subsets of polar cells. Then, on top of all the sub-

SPNs representing the views, we randomly generate an SPN

representing complete place geometries for each place class.

Fig. 3: The structure of the SPN implementing our spatial

model. The bottom images illustrate a robot in an environment

and a robocentric polar grid formed around the robot. The SPN

is built on top of the variables representing the occupancy in

the polar grid.

The sub-SPNs for place classes are combined by a sum node

forming the root of the network. The latent variable associated

with the root sum node is made explicit as Y and is set to the

appropriate class label during learning. Similarly, we infer its

value when classifying observations.

Sub-dividing the representation into views allows us to use

networks of different complexity for representing lower-level

features and geometry of each view, as well as for modeling the

top composition of views into a place class. In our experiments,

when representing views, we recursively decomposed the set



of polar cells using a single decomposition at each level, into

2 random cell sub-sets, and generated 4 mixtures to model

each such subset. This procedure was repeated until each

subset contained a single variable representing a single cell. To

increase the discriminative power of each view representation,

we used 14 sums at the top level of the view sub-SPN.

Then, all sums modeling views were considered input to a

randomly generated SPN structure representing place classes.

To ensure that each class can be associated with a rich

assortment of place geometries, we increased the complexity of

the generated structure and at each level performed 4 random

decompositions of the sets of mixtures representing views into

5 subsets. The performance of the model does not vary greatly

with the structure parameters as long as the random sub-SPNs

are sufficiently complex to capture the dependencies in the

data.

Several straightforward modifications to the architecture can

be considered. First, the weights of the sum nodes for each

view could be shared, potentially simplifying the learning

process. Second, the latent variables in the mixtures modeling

each view can be accessed to explicitly reason about types of

views discovered by the learning algorithm.

C. Types of Inference

As a generative model of a joint distribution between low-

level observations and high-level semantic phenomena, DGSM

is capable of various types of inferences.

First, the model can simply be used to classify observations

into semantic categories, which corresponds to MPE inference

of y: y∗ = argmaxyP (y|x1, . . . , xC). Second, the probability

of an observation can be used as a measure of novelty and

thresholded:
∑

y P (y, x1, . . . , xC) > t. We use this approach

to separate test observations of classes known during training

from observations of unknown classes.

If instead, we condition on the semantic information, we

can perform MPE inference over the variables representing

occupancy of polar grid cells:

x∗

1, . . . , x
∗

C = argmax
x1,...,xC

P (x1, . . . , xC |y).

This leads to generation of most likely, prototypical examples

for each class. Finally, we can use partial evidence about the

occupancy and infer most likely state of a subset of polar grid

cells for which evidence is missing:

x∗

J , . . . , x
∗

C = argmax
xJ ,...,xC

∑

y

P (y, x1, . . . , xJ , . . . , xC)

We use this technique to infer missing observations in our

experiments.

V. GANS FOR SPATIAL MODELING

Recently, Generative Adversarial Networks [11] have re-

ceived significant attention for their ability to learn complex

visual phenomena in an unsupervised way [24, 29]. The idea

behind GANs is to simultaneously train two deep networks: a

generative model G(z; θg) that captures the data distribution

and a discriminative model D(x; θd) that discriminates be-

tween samples from the training data and samples generated

by G. The training alternates between updating θd to correctly

discriminate between the true and generated data samples and

updating θg so that D is fooled. The generator is defined as a

function of noise variables z, typically distributed uniformly

(values from -1 to 1 in our experiments). For every value of z a

trained G should produce a sample from the data distribution.

Although, GANs have been known to be unstable to train,

several architectures have been proposed that result in stable

models over a wide range of datasets. Here, we employ one

such architecture called DC-GAN [24], which provides excel-

lent results on such datasets as MNIST, LSUN, ImageNet [24]

or CelebA [29]. Specifically, we used 3 convolutional layers

(of dimensions 18×18×64, 9×9×128, 5×5×256) with stride 2

and one fully-connected layer for D2. We used an analogous

architecture based on fractional strided convolutions for G. We

assumed z to be of size 100. DC-GANs do not use pooling

layers, perform batch normalization for both D an G, and use

ReLU and LeakyReLu activations for D and G, respectively.

We used ADAM to learn the parameters.

Since DC-GAN is a convolutional model, we could not

directly use the polar representation as input. Instead, we

used the Cartesian local grid maps directly. The resolution of

the Cartesian maps was set to 36×36, which is larger then

the average resolution of the polar grid, resulting in 1296
occupancy values being fed to the DC-GAN, as compared to

1176 for DGSM. We encoded input occupancy values into a

single channel2 (0, 0.5, 1 for unknown, empty, and occupied).

A. Predicting Missing Observations

In [29], a method was proposed for applying GANs to

the problem of image completion. The approach first trains a

GAN on the training set and then relies on stochastic gradient

descent to adjust the value of z according to a loss function

L(z) = Lc(z) + λLp(z), where Lc is a contextual loss

measuring the similarity between the generated and true known

input values, while Lp is a perceptual loss which ensures that

the recovered missing values look real to the discriminator.

We use this approach to infer missing observations in our

experiments. While effective, it requires iterative optimization

to infer the missing values. This is in contrast to DGSM, which

performs inference using a single up/down pass through the

network. We selected the parameter λ to obtain the highest

ratio of correctly reconstructed pixels.

VI. EXPERIMENTS

We conducted four types of experiments corresponding to

the types of inference described in Sec. IV-C. The same

instance of a DGSM model was used for all inferences.

A. Experimental Setup

Our experiments were performed on laser range data from

the COLD-Stockholm database [22]. The database contains

2We evaluated architectures consisting of 4 conv. layers and layers of
different dimensions (depth of the 1st layer ranging from 32 to 256). We also
investigated using two and three channels to encode occupancy information.
The final architecture results in significantly better completion accuracy.



(a) DGSM (b) SVM + Geometric Features

Fig. 4: Normalized confusion matrices for the task of semantic

place categorization.

multiple data sequences captured using a mobile robot navigat-

ing with constant speed through four different floors of an of-

fice building. On each floor, the robot navigates through rooms

of different semantic categories. Four of the room categories

contain multiple room instances, evenly distributed across

floors. There are 9 different large offices, 8 different small

offices, 4 long corridors (1 per floor, with varying appearance

in different parts), and multiple examples of observations

captured when the robot was moving through doorways. The

dataset features several other room categories: an elevator, a

living room, a meeting room, a large meeting room, and a

kitchen. However, with only one or two room instances in

each. Therefore, we decided to use the four categories with

multiple room instances for the majority of the experiments

and designated the remaining classes as novel when testing

novelty detection.

To ensure variability between the training and testing sets,

we split the samples from the four room categories four times,

each time training the model on samples from three floors and

leaving one floor out for testing. The presented results are

averaged over the four splits.

The experiments were conducted using LibSPN, a new

general-purpose library implementing various SPN architec-

tures on GPUs. SPNs are still a new architecture, and only few,

limited or domain-specific implementations exist at the time

of writing. In contrast, our library offers a general toolbox

for structure generation, learning and inference and enables

quick application of SPNs to new domains. It integrates with

TensorFlow, which leads to an efficient solution capable of

utilizing multiple GPUs, and enables combining SPNs with

other deep architectures. The presented experiments are as

much an evaluation of DGSM as they are of LibSPN.

B. Semantic Place Categorization

First, we evaluated DGSM for semantic place categorization

and compared it to a well-established model based on an SVM

and geometric features [17, 23]. The features were extracted

from laser scans raytraced in the same local Cartesian grid

maps used to form polar grids for DGSM. We raytraced the

scans in high-resolution maps (2cm/pixel), to obtain 362 beams

around the robot. To ensure the best SVM result, we used an

RBF kernel and selected the kernel and learning parameters

directly on the test sets.

Fig. 5: ROC curves for novelty detection. Inliers are consid-

ered positive, while novel samples are negative.

The models were trained on the four room categories and

evaluated on observations collected in places belonging to

the same category, but on different floors. The normalized

confusion matrices are shown in Fig. 4. We can see that DGSM

obtains superior results for all classes. The classification rate

averaged over all classes (giving equal importance to each

class) and data splits is 85.9%±5.4 for SVM and 92.7%±6.2
for DGSM, with DGSM outperforming SVM for every split.

Most of the confusion exists between the small and large office

classes. Offices in the dataset often have complex geometry

that varies greatly between room instances.

C. Novelty Detection

The second experiment, evaluated the quality of the un-

certainty measure produced by DGSM and its applicability

to detecting outliers from room categories not known during

training. We used the same DGSM model and compared the

marginal probability for samples in the test set and from novel

categories. The cumulative ROC curve over all data splits is

shown in Fig. 5.

We compared to a one-class SVM with an RBF kernel

trained on the geometric features. The ν parameter was ad-

justed to obtain the largest area under the curve (AUC) on

the test sets. We can observe that DGSM offers a significantly

more reliable novelty signal, with AUC of 0.81 compared to

0.76 for SVM. This result is significant, since to the best of

our knowledge, it demonstrates for the first time the usefulness

of SPN-based models for novelty detection.

D. Generating Observations of Places

In this qualitative experiment, our aim was to assess prop-

erties of the generative models by examining generated place

appearances. For DGSM, we conditioned on the semantic

class variable and inferred the MPE state of the observation

variables. The generated polar occupancy grids can be seen

as prototypical appearances of places from each semantic

category and are illustrated in Fig. 6a-d. For GANs, we plot

samples generated for random values of the noise variables z

in Fig. 6e.



(a) Corridor (b) Doorway (c) Small Office (d) Large Office (e) GAN Samples

Fig. 6: Results of MPE inference over place appearances conditioned on each semantic category for DGSM ((a)-(d)); and

place appearance samples generated using GAN (e).

We can compare the plots to the true examples depicted in

Fig. 2. We can see that each polar grid is very characteristic

of the class from which it was generated. The corridor is

an elongated structure with walls on either side, and the

doorway is depicted as a narrow structure with empty space

on both sides. Despite the fact that, as shown in Fig. 2, large

variability exists between the instances of offices within the

same category, the generated observations of small and large

offices clearly indicate a distinctive size and shape.

While the GAN architecture used for predicting missing

observations in unlabeled samples cannot generate samples

conditional on semantic category, we still clearly see examples

of different room classes, including intra-class variations.

E. Predicting Missing Observations

Our final experiment provides a quantitative evaluation

of the generative models on the problem of reconstructing

missing values in partial observations of places. To this end, we

masked a random chunk of 25% of the grid cells for each test

sample in the dataset. In case of DGSM, we masked a random

90-degree view, which corresponds to a rectangular mask in

polar coordinates. For GANs, since we use a Cartesian grid,

we used a square mask in a random position around the edges

of the grid map3. For DGSM, all indicators for the masked

polar cells were set to 1 to indicate missing evidence and

MPE inference followed. For GANs, we used the approach

in Sec. V-A.

Fig. 7 shows examples of grids filled with predicted oc-

cupancy information to replace the missing values for both

models. While the predictions are often consistent with the

true values, both models do make mistakes. Analyzing the

DGSM results more closely, we see that this typically occurs

when the mask removes information distinctive of the place

category. Interestingly, in some cases, the unmasked input grid

might itself be partial due to missing observations during laser

range data acquisition. When the missing observations coincide

with a mask, the model will attempt to reconstruct them. Such

example can be seen for a polar grid captured in a corridor

shown in the bottom left corner of Fig. 7.

Overall, when averaged over all the test samples and data

splits, the DGSM model correctly reconstructs 77.14%± 1.04
of masked cells, while the GAN model recovers 75.84%±1.51.

3We considered polar masks on top of Cartesian grid maps. However, this
provided a significant advantage to GANs, since most of the masked pixels
laid far from the robot, often outside a room, where they are easy to predict.

This demonstrates that the models have comparable generative

potential, confirming state-of-the-art performance of DGSM.

F. Discussion and Model Comparison

The experiments clearly demonstrate the potential of

DGSM. Its generative abilities match (and potentially surpass)

those of GANs on our problem, while being significantly more

computationally efficient. DGSM naturally represents missing

evidence and requires only a single upwards and downwards

pass through the network to infer missing observations, while

GANs required hundreds of iterations, each propagating gra-

dients through the network. Additionally, DGSM in our exper-

iments used a smaller network than GANs, requiring roughly

a quarter of sum and product operations to compute a single

pass, without the need for any nonlinearities. This property

makes DGSM specifically well suited for real-time robotics

applications.

DC-GANs, being a convolutional model, lend themselves

to very efficient implementations on GPUs. DGSM uses a

more complicated network structure. However, in our current

implementation in LibSPN, DGSM is real-time during infer-

ence and very efficient during learning, obtaining much faster

inference than GANs. As a result, extending the model to

include additional modalities and capture visual appearance

as well as 3D structure seems computationally feasible with

DGSM.

The experiments with different inference types were all

performed on the same model after a single training phase

(separately for each dataset split). This demonstrates that our

model spans not only multiple levels of abstraction, but also

multiple tasks and applications. In contrast, SVMs and GANs

were optimized to solve a specific task. In particular, the model

retains high capability to discriminate, while being trained

generatively to represent a joint distribution over low-level

observations. Yet, as demonstrated in the novelty detection

experiments, it produces a useful uncertainty signal in the form

of marginal probability. Neither GANs nor SVMs explicitly

represent marginal probability of the data.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents DGSM, a unique generative spatial

model, which to our knowledge, is the first application of

sum-product networks to the domain of robotics. Our results

demonstrate that DGSM provides an efficient framework for



(a) Corridor (b) Doorway (c) Small Office (d) Large Office (e) GAN

Fig. 7: Examples of successful and unsuccessful completions of place observations with missing data: grouped by true semantic

category for DGSM ((a)-(d)) and for GAN (e). For each example, a pair of grids is shown, with the true complete grid on the

left, and the inferred missing data on the right. The part of the grid that was masked and inferred is highlighted.

learning deep probabilistic representations of robotic environ-

ments, spanning low-level features, geometry, and semantic

representations. We have shown that DGSM can be used

to solve a variety of important robotic tasks, from semantic

classification of places and uncertainty estimation to nov-

elty detection and generation of place appearances based on

semantic information. DGSM has appealing properties and

offers state-of-the-art performance. While our results were

based on laser range data, the approach is readily applicable

to learning rich hierarchical representations from RGBD or

2D visual data. Our future efforts will explore such learning

of robot environments as well as exploit the resulting deep

representations for probabilistic reasoning and planning at

multiple levels of abstraction.
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