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Abstract— In this paper, a framework is proposed for repre-
senting knowledge about 3-D space in terms of the functional
support and containment relationships, corresponding approxi-
mately to the prepositions “on” and “in”. A perceptual model is
presented which allows for appraising these qualitative relations
given the geometries of objects; also, an axiomatic system for
reasoning with the relations is put forward.

We implement the system on a mobile robot and show how
it can use uncertain visual input to infer a coherent qualitative
evaluation of a scene, in terms of these functional relations

I. INTRODUCTION

Having already made great inroads into industrial settings,
robotics is now making an effort to enter into environments
such as homes, offices or hospitals. These kinds of spaces
are, more than anything,human-oriented, that is constructed
by and for people, used and modified by people, and occu-
pied by people.

As a result, nearly every aspect of those spaces is shaped
by the propensities, preferences and mental habits of human
beings. From this association, they take on humanseman-
tics [1], [2], semantics that must be internalized by any robot
that is to have a chance of interacting meaningfully with such
environments and their occupants.

An important part of this semantics isspatial relations.
Spatial relations are abstract, functional relationshipsbe-
tween entities in space; they show themselves in the way
humans speak about space [3], [4], albeit in a limited fashion.
Inspired by these psycholinguistic clues, this work aims to
imbue a robot with the ability to understand space in terms
of two of the most important spatial relations in the human
repertoire – “on” and “in”. It proposes computational models
as well as a first-order logic axiomatic system for the spatial
abstractions that underlie these ubiquitous expressions.We
demonstrate by experiment that the approach is suitable for
automatic extraction of scene descriptions from undertain
visual perception.

A. Functional relations

We humans speak of, and think of, reality in certain terms
because those terms are useful to us. Abstractions permit
us to make sense of the endless variability of the world,
allowing for structured learning, planning and communica-
tion. Spatial relations are no exception. They represent some
aspect of the environment that has functional relevance –
if there was none, they would not be used and thus not
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learned [3], [5]. Related is the notion of objectpersistence,
meaning that objects are expected to remain in the same
qualitative relation over time, even if the exact geometrical
positions change [6].

Functions may be things such as transporting (“groceries
in a bag”), protecting (“trophies in a display case”), allowing
to dry (“clothes on a line”), communicating a location (“the
door on your right”) – or any number of others. The variation
among these functionalities is infinite; nevertheless, studies
of different languages [7], [8] have indicated that there are
recurring patterns, clusters of abstract functionality that are
instantiated and extended in different ways for different
languages and situations.

This work centers on two such clusters: mechanical sup-
port and containment, corresponding – although not perfectly
– to the English prepositions “on” and “in” respectively. The
importance of these concepts, evident from language, as well
as their topological nature provide a hint to their potential for
organising the world in a manner that can be shared between
robots and people.

B. Related work

There has been research into quantifying spatial relations
previously. [9] uses results from brain research to isolate
geometrical factors that are important to some relations. [10]
introduces a computational model in theAttention Vector
Sum, verifying it against actual human responses. Another
model is suggested by [11] in the form of spatial templates,
prototypes which can provide a more or less accurate match
to a situation. [12] and [13] both present graphical systems
in which spatial relations are used for interaction with a user.

None of the above investigate the functionally important
topological spatial relations nor are their approaches based
on a functional conceptualization, something we believe
important as explained above.

Topological relations are surveyed in [14]. One well-
known approach isRegion connection calculusand its vari-
ants, which provide a language for expressing qualitative
relationships between regions – such as containment, tan-
gential contact etc. Although there is some overlap with
the qualitative axioms introduced below, RCC is purely
geometrical and does deal with functional relationships.

This paper builds upon initial work published in [15], [16].
These earlier efforts concentrate on only one of the topo-
logical relations (ON), whereas the present work introduces
the IN relation and proposes an axiomatic system detailing
the relationship between IN and ON, providing the means
for qualitative high-level reasoning to incorporate topological
information.



C. Organisation of this paper

In Section II the concept of topological spatial relations
is explained and the specific instances ON and IN are
introduced. Section III details a set of first-order logic
axioms structuring the relations, and Section IV shows how
those axioms can be included in a probabilistic reasoning
framework. Section V describes the system as implemented
on a mobile robot and verifies its function experimentally.
Finally, conclusions and ideas for future work are contained
in Section VI.

II. TOPOLOGICAL SPATIAL RELATIONS

Spatial relations represent the configuration of a focus
object, or trajector, relative to one or more other objects
termedlandmarks. In language, spatial relations are typically
divided into different groups based on the salient geometric
relationship:Projectivespatial relations constrain the trajec-
tor’s location within an essentiallydirected region relative
to the landmark. The direction may depend on many factors,
such as intrinsic properties of either object, or the frame of
reference of an onlooker. Examples in English include “to
the left of”, “behind” and “past”.

Topological relations, in contrast, locate the trajector in
some manner that is independent of direction and the location
of an observer. Typical examples are “on”, “at” and “inside”.
Topological relations seem to be among the first to be learned
in humans [17]. Topology is very useful for structuring space
in a systematic, hierarchical way, allowing us to put together
sentences such as “my keys are in a briefcase on the desk in
my office on the second floor at our branch in New York”.
This hierarchical property makes for efficient storage and
inference. For this reason, this paper focuses on the arguably
most significant topological relations, “on” and “in”.

A. ON

1) Ideal schema:The word “on” in English carries a
central functional meaning:support against gravity. This
encompasses for example “the book on the table”, “the fly on
the wall”, “the ring on the finger”. Other languages extend
the concept differently [18], but the support criterion remains
central.

Support goes together with other functional aspects, such
as location control. Location control imposed by one object
on another means that the latter moves together with the
former, such as is the case with e.g. trays, plates, buses and
trains. Other connotations such as attachment or “weighing
down” also overlap with the central “support” notion.

2) Computational model:Although mechanical support
provides an objective criterion for defining a spatial relation,
it is not typically possible for a robot to ascertain that
one object is in fact supporting another. Even humans use
perceptual models to estimate this, and those models may
sometimes fail (see Fig. 1). We have previously suggested a
computational model for a robot to be able to make such an
estimate from vision [16] – briefly, three numerical criteria
are weighed together to produce a quantitative function
ON estimating how well one object supports another:

• Distance: Since the objects must touch in order for
one to support the other, apparent separation between
objects (as well as apparent interpenetration) penalizes
the function.

• Stability: As the (apparent) center of mass of an object
moves beyond the area of contact with its support (as
in Fig. 1(b)), the function value is decreased.

• Verticality: When the contact surface between objects is
horizontally oriented, the function is high, dropping off
as the surface becomes more vertical.

Using this computational model, it is possible both to
evaluate a perceived configuration of objects in terms of how
well they correspond to the support relation, and to estimate
the most likely configuration if the support relation is given.

This model is restricted to cases when an object is being
supported “on top of” another, as opposed to hanging or ad-
hesive support; the latter entail entirely different geometries
and would need a separate perceptual model.

(a) Obvious support relation (b) Incongruent-seeming sup-
port relation

Fig. 1. Estimation of support through vision is imperfect

B. IN

1) Ideal schema:“In” as a word has a wider variety of
connotations than “on” does. Besides location control and
object persistence, “in” often entails aspects of concealment,
protection, constraint among others. This variety of meanings
is difficult to pin down precisely, but a robust approximation
can be found in the idea ofcontainment.

Containment signifies the inclusion of most or all of an
object within the interior of another object or group of
objects. “Interior” is not itself unambiguous, but even with
a simple interpretation such as the convex hull, many if not
most situations represented by “in” can be covered; Fig. 2
shows two examples of this.

(a) Shape “in” box (b) Circle “in” group

Fig. 2. Convex hull defining “in”



2) Computational model:Containment is computed di-
rectly as the proportion of an objectO that falls within the
convex hull of the container objectC (see Fig. 3(a)). This
proportion is termed INcon ∈ [0, 1].

(a) Shape partly “in” box (b) Shape and box inter-
penetrating

Fig. 3. Penalties on “in” estimate

However, if this were the only factor determining degree of
containment, cases whereO andC overlap in space – which
is not physically plausible (Figure 3(b)) – would be evaluated
the same as realistic configurations. Because such cases are
bad examples of the relation, the model is supplemented with
a penalty function on apparent object interpenetration:

INpen ,

{

1 d ≥ 0
ed/k d < 0

(1)

where d is the minimum distance betweenO and C (as
defined in Sec. II-A.2) andk a falloff constant.

The total estimate function for the containment spatial
relation is taken to be:

IN , INcon · INpen (2)

Both “on” and “in” carry a plethora of additional,
metaphorical and indirect meanings that transfer some of the
concrete aspects mentioned above into other domains than
space by analogy: “on my side”, “in theory”. Although these
are illustrative of the thought processes that support spatial
relations and interesting in their own right, the present work
shall restrict itself to concrete, spatial usage.

III. AXIOMATIC SYSTEM

One of the main uses for a model that can translate
a geometrical relationship between perceived objects into
qualitative spatial relations (and back) is to perform high-
level reasoning. In order to permit that, a set of rules, or
axioms, for the relational predicates is required.

Here follows a suggestion for such an axiomatic system,
involving the predicates On(x, y) and In(x, y), which are
first-order symbols corresponding to the support and contain-
ment relations described in Section II. As is inevitable with
abstract reasoning, the axioms represent an idealization that
will not always apply to the real world. They are reasonable
approximations, however, and may be included selectively
depending on the application.

Support tends to betransitive: if z supportsy and y

supportsx, then z supportsx as well. This is obviously

not covered by the computational model in Sec. II-A; there-
fore, a third relation symbol is introduced, termed Ont (for
“transitive On”), the properties of which are derived from
the axioms.

A. Basic axioms

Ont(x, y) → ¬Ont(y, x) (3)

In(x, y) → ¬In(y, x) (4)

• (3): Support is antisymmetric
• (4): Containment is antisymmetric

The above also entail irreflexivity (¬Ont(x, x), ¬In(x, x))

B. Transitivity axioms

On(x, y) → Ont(x, y) (5)

Ont(x, y) ∧ Ont(y, z) → Ont(x, z) (6)

In(x, y) ∧ In(y, z) → In(x, z) (7)

• (5): Direct support implies transitive support.
• (6): Support is transitive – ify takes the weight ofx,

andz the weight ofy, then that will includex as well.
• (7): Containment is transitive; this is a reasonable as-

sumption given simple geometry and the definition of
ON.

C. Interchangeability axioms

Ont(x, y) ∧ In(y, z) → In(x, z) (8)

In(x, y) ∧ Ont(y, z) → Ont(x, z) (9)

Ont(x, y) → On(x, y)

∨ ∃z. ((On(x, z) ∧ Ont(z, y)) (10)

∨ (In(x, z) ∧ Ont(z, y)))

∃y. (Ont(x, y) ∨ In(x, y)) (11)

• (8): “Generous containment”. Typically containment
will physically prevent objects from sticking out. This
means supported objects will also be contained.
One consequence of this axiom is that geometrical
containment may be violated for In in some cases.
Figure 4(a) illustrates, however, that even in such cases
functional aspects such as location control, confinement
and so forth are often largely preserved and so we tend
to extend the use of the word “in” to these cases as
well. The axiom is thus intuitively justifiable.

• (9): “Containment provides support”. When an object
is contained by another, as a rule it is prevented from
contact with outside objects and so must receive its sup-
porting force directly or indirectly from the container,
as illustrated in Figure 4(b).

• (10): “Support requirement”. This is the necessary con-
dition that corresponds to the sufficient conditions in
Eqs. (5), (6) and (9), and asserts that an object must



be supported directly bysomeobject in order to be
indirectly supported.

• (11): “Base requirement”. Every object must be sup-
ported by some other object.

(a) The ball is “in” the bowl (b) The balls are “on” the table

Fig. 4. Effect of interchangeability axioms

D. Hierarchy axioms

On(x, y) ∧ (y 6= z) → ¬On(x, z) (12)

Ont(x, y) ∧ Ont(x, z) → Ont(y, z) ∨ Ont(z, y) (13)

In(x, y) ∧ In(x, z) → In(y, z) ∨ In(z, y) (14)

The hierarchy axioms ensure that the spatial relations form
a tree-like structure, which is useful for representation and
reasoning.

• (12): Asserts uniqueness of (direct) support. The intu-
itive justification for this assumption is that an object
often is substantially supported by only one other object,
and themajority of its support nearly always comes
from one source.

• (13): Extends the unique-support assumption to the
indirect support Ont.

• (14): Although situations can be constructred wherein
two containers overlap such that each contains an object,
while neither contains the other, such situations are
uncommon in practice. Factors such as location control
are also unlikely to be present in such cases1.

E. Using the relational axioms

The axioms proposed in the preceding sections are valu-
able when processing spatial knowledge on a qualitative
level.

A few examples:
• Transitivity and interchangeability axioms allow for

deducing In and Ont relations even where not directly
given by the computational models.

• Incomplete and qualitative knowledge can be used to
guide active search for an object; for example, learning
from different sources that “the bowl is on the table”
and that “the apple is in the bowl”, the robot can search
for the table in order to help find the apple.

• Concrete-support and hierarchy constraints provide the
possibility of learning about spatial relations through the

1Eqn. (14) implies that, in Fig. 4(a), Ont(Ball, Bowl) must hold. While
this rings true as regards mechanical support, one would not likely say that
“The ball is on the bowl”. Here, “in” takes linguistic precedence. However;
while this paper gets inspiration from language, it is not primarily about
modeling languageper se.

on(o1, o2) on(o2, o3)

on(o1, o3)

f1 f2

f3

(a)

on(o1, o2) on(o2, o3)

on(o1, o3)

� = f1 f2 f3

(b)

Fig. 5. Factor graph representing “on” object relations connected with a
transitivity axiom (a) and a corresponding undirected graphical model (b).

process of elimination, given a closed-world assump-
tion.

• Hierarchy constraints furthermore ensure that relations
form a tree-like structure and thus make for compact
storage (only a few relations need be stored whereas
the rest can be deduced), as well as the potential for
effectivizing algorithms operating on this knowledge.

In a practical application, obviously a great deal of in-
stance knowledge will apply in addition to the axioms. Many
pairs of objects will be patently impossible in the context of
On and In; a room cannot be “in” a desk, and that desk
can probably not be “on” an apple. Such commmonsense
knowledge can be added to the knowledge base to reduce the
space of possibilities. Also, for practical applications some
objects (such as the floor or the room) must be exempt from
Eqns. 10 and 11, as an infinite number of objects would be
required otherwise.

IV. PROBABILISTIC INFERENCE

In real-world scenarios, the information about objects
perceived by a robot is inherently uncertain. This makes
it important to provide the ability to transform the axioms
defining object relations into a form that permits probabilistic
reasoning and integration with probabilistic models such
as directed or undirected probabilistic graphs [19]. Here,
we introduce a probabilistic representation of axioms and
show that such representation can be automatically generated
according to the uncertain perception of a scene.

A. Factor-based Representation of Axioms

There is no straightforward way of defining a probabilistic
interpretation of the axiomatic system presented above. Ex-
cept for the fact that configurations contradicting the axioms
perforce must have probability 0, nothing is said about the
relative likelihoods of permitted configurations. Expressing
the axioms through conditional probabilities as in e.g. a
Bayes Net [19] will be non-trivial and potentially inefficient,
since the relationships expressed are not causal in nature and
introduce a great deal of circular cross-dependencies.

One way of introducing probabilities is to usefactor
graphs [20]. Factor graphs are bipartite graphical models,
where random variables are represented using variable nodes,
connected to each other not directly but viafactor nodes–



see Fig. 5(a). Each factor nodej defines a functionfj on its
connected variablesXj ; the joint probability is expressed as

p(x1, . . . , xn) =
∏

j

fj(Xj)

This factorization makes it easy to encode the various
constraints provided by the axioms. For example, ifO is
the set of objects, Eqn. (5) becomes

∀〈o1, o2〉 ∈ {O ×O} : f(5) =







0,
Ont(o1, o2)

∧¬On(o1, o2)
1, otherwise

Similarly, each axiom can be modeled as a factor on every
applicable tuple with a value of 0 or 1. The tuples may
prove intractable in some cases, such as Eqn. (10). Here, it
may be necessary to reduce the set of tuples by heuristically
excluding combinations that are impossible, depending on
the domain. A typical example would be to divide objects
into a group of base objects (e.g. a table) and mobile objects
(e.g. a book) and exclude the cases when a base object is
On or In any of the mobile objects.

Apart from these axiomatic factors, “probabilistic” factors
can be introduced on relations and tuples of relations for
which probability needs to be modeled.

An example:

∀〈o1, o2〉 ∈ {O ×O} : f⋆ =















α1,

In(o1, o2)
∧ BOOK(o1)
∧ L IBRARY(o2)

α2, . . .
(15)

The above encodes the likelihood, all other things be-
ing equal, that objects of different categories are inside
containers of different categories. Note that theα:s are
not probabilitiesper se; rather they are parameters that, in
conjunction with other factors, influence the probabilities of
their associated tuples in a systematic way. These parameters
are prime candidates for learning. They might also be influ-
enced by other sources of knowledge such as commonsense
knowledge about typical man-made environments.

B. Automatic Generation of the Factor-based Representation

We have shown that it is possible to establish a direct
correspondence between object relations and factor graph
variables as well as relation axioms and factor graph factors.
This can be used to design an automatic procedure converting
an uncertain perception of a visual scene into a probabilistic
model performing scene understanding. In the sequel, we
propose such a procedure.

Our method takes as input the set of objects, enumerates
all object pairs and posits a relation for each pair and
relation type. In order to make the reasoning more efficient,
it is possible to additionally exclude certain relations which
are a priori impossible, such asOn(A,A). The algorithm
subsequently incorporates observations of given object rela-
tions, obtained by analysing the visual input as outlined in
Section II. Those observations are provided in the form of
values in the range[0, 1] quantifying each of the perceived
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Fig. 6. Data flow through the scene description estimation system.

on(o1, o2)

fobs

on(o1, o2)

ϕobs

Fig. 7. An excerpt from an undirected graphical model and a corresponding
factor graph illustrating the way the uncertain observations of object
relations are included.

relations. The data flow through the system is presented in
Fig. 6.

The algorithm iterates over the possible relations and gen-
erates factor graph variables accordingly. Then, it analyses
all relation sets matching any of the axioms specified in
Section III and introduces an axiom factor for each of them.
Finally, factors representing observations are generatedfor
those relations for which the observations are available, as
presented in Fig. 7. The following section show that the
resulting representation may be successfully applied to the
problem of understanding real-world scenes in the presence
of uncertain perception.

V. EXPERIMENTS

In order to show how the system proposed in the preceding
sections could be used in robotics applications we have
implemented it on a mobile robot. The platform used is a
Pioneer III wheeled robot, equipped with a a camera mounted
at 1.4 m above the floor. In this experiment the robot was
controlled manually so as to place the objects within the view
of the camera. We assume the geometries of the objects are
known in advance, but not their positions nor the qualitative
relations between them.

A. Vision

For detection and pose estimation of objects, we are using
a system developed at Vienna University [21]. In it, objects
are detected using SIFT features trained from a variety of
view points; this also provides an initial pose estimate. The
pose is refined and tracked using edges and textures.

Given the estimated poses and the known geometries of
the detected objects, the perceived values for the functions
ON and IN were computed as described in Section II. Be-
cause of noise in the pose estimates, the values obtained fell



(a) Example 1: “A on B on C”

(b) Example 2: “A on B in C”

Fig. 8. Examples of consistent scene evaluation

within the continuous range[0, 1]. Figure 8 shows examples
of scenes and Table I the extracted relation values.

B. Inference

Using the set of detected objects and their perceived
relation values, the scene was instantiated as a factor graph
(Section IV). Each possible relation pair In(x, y), On(x, y),
Ont(x, y) was instantiated as a node in the graph, as were
the axioms – except that the box “C” was considered a “base
object”, exempting it from appearing as the first argument in
any relation and from needing a support.

The observed values of ON and IN were included as
well, as unary factors working on the corresponding nodes.
Inference was then performed and the maximuma posteriori
(MAP) estimate obtained.

C. Results

Figure 8 shows two examples of scenes for which visual
processing and inference were performed. The wireframe
boxes indicate the object tracker’s estimated pose of each
object. Table I shows the perceived as well as the inferred
values for the relations.

Example 1 Example 2
Per Inf Per Inf

On(A,B) 92.5% TRUE 98.9% TRUE

Ont(A,B) TRUE1 TRUE1

In(A,B) 0% FALSE 0% FALSE

On(A,C) 4.4% FALSE 95.2% FALSE4

Ont(A,C) TRUE2 FALSE

In(A,C) 0% FALSE 16.2% TRUE3

On(B,A) 0% FALSE 2.1% FALSE

Ont(B,A) FALSE FALSE

In(B,A) 0% FALSE 0% FALSE

On(B,C) 96.4% TRUE 1.7% FALSE

Ont(B,C) TRUE1 FALSE

In(B,C) 0% FALSE 99.9% TRUE

TABLE I

EXAMPLE 1, 2 EVALUATION . “PER” STANDS FOR PERCEIVED VALUE,

“I NF” FOR INFERRED TRUTH VALUE.

1Using Eqn. 5.2Using Eqn. 6.3Using Eqn. 8.4Using Eqn. 13.

Fig. 9. Example 3: an ambiguous scene

Note that the resulting maximum-a-posteriori solutions
obey the axioms. In Example 1, it can be seen thatOnt

is deduced in accordance with Eqs. 5, 6. Example 2 shows
the effect of the interchangeability and hierarchy axioms.
Here, bothOn(A,B) and On(A,C) are indicated by vision,
but Eqn. 13 forbids them to be true simultaneously, unless
Ont(B,C). Since A already has a support, B,On(A,C) is
inferred to be false rather than settingOn(B,C) to true. Note
also thatIn(A,C) is made true by Eqn. 8.

In Example 3 (Figure 9), failure to recognize an object
means that the object B is seemingly without a proper
support. Nevertheless, Eqn. 11 causesOn(B,C) to be inferred
as the only consistent explanation.

It is seen that the proposed method does indeed produce

Example 3
Per Inf

On(B,C) 36.9% TRUE

Ont(B,C) TRUE

In(B,C) 0% FALSE

TABLE II

EXAMPLE 3 EVALUATION



consistent qualitative descriptions of a scene, even in the
presence of uncertainty, helping to bridge the gap between
sensors and metric representations on the one hand and high-
level reasoning on the other.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have suggested the use of functional,
topological relations based on the notions of support and
containment in order to structure spatial knowledge for
autonomous robots. An axiomatic system was suggested,
consisting of rules that model the first-order logical prop-
erties of the abstract relations and that will aid in high-level
cognitive activities concerning space. We have demonstrated
an implementation of the theory on a real robot and shown
that it yields consistent results.

Spatial relations have already been put to use in object
search [16], [22], wherein the relations were assumed to be
given in advance. A natural next step is to use the axioms to
infer the relations likely to hold in a scene and thus create
priors for unseen objects, or to aid in tracking.

Another avenue of inquiry is integrating the concepts with
computational linguistics, which is appropriate since thethis
work draws inspiration from language. Spatial relations are
important for giving instructions or asking questions about
objects; this work should help a robot determine which
questions to ask and how to incorporate the answers into
its knowledge.

The use of factor graphs to represent the relations and
axioms permits their integration with more complete and
expressive models directly indicating the type of the modeled
relationships between random variables and clearly repre-
senting conditional independence between them. As future
work, we intend to integrate the factor graph representation
of axioms with a complete conceptual spatial knowledge
representation within a single chain graph model [23]. Chain
graphs are probabilistic graphical models providing a gen-
eralization of directed (Bayesian Networks) and undirected
(Markov Random Fields) graphical models. As such, chain
graphs allow for modeling both “directed” causal as well
as “undirected” symmetric or associative relationships, in-
cluding circular dependencies. In the context of the chain
graphs, the presented representation becomes a powerful
tool for reasoning about object relations that can easily be
incorporated into a more complete probabilistic environment
models such as the one presented in [24].

Obviously, this paper has only scratched the surface of the
rich repertoire of spatial relations that humans use. Though
the schemata of support and containment are doubtless very
important, many others as important remain unmodeled out
there. It is our belief that the function-based treatment given
the relations in this paper can successfully be applied to them
as well, helping to build understanding of the world that
surrounds us and our robots.
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