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Abstract— We introduce Graph-Structured Sum-Product
Networks (GraphSPNs), a probabilistic approach to structured
prediction for problems where dependencies between latent
variables are expressed in terms of arbitrary, dynamic graphs.
While many approaches to structured prediction place strict
constraints on the interactions between inferred variables,
many real-world problems can be only characterized using
complex graph structures of varying size, often contaminated
with noise when obtained from real data. Here, we focus on
one such problem in the domain of robotics. We demonstrate
how GraphSPNs can be used to bolster inference about se-
mantic, conceptual place descriptions using noisy topological
relations discovered by a robot exploring large-scale office
spaces. Through experiments, we show that GraphSPNs consis-
tently outperform the traditional approach based on undirected
graphical models, successfully disambiguating information in
global semantic maps built from uncertain, noisy local evidence.
Further, we exploit the probabilistic nature of the model to
infer marginal distributions over semantic descriptions of as
yet unexplored places.

I. INTRODUCTION

It is essential for a mobile robot to maintain a represen-

tation of spatial knowledge, a framework that organizes the

understanding of the environment. Mobile robots have access

to information at both local and global scale. Therefore,

it is desirable for a representation to enable integration of

knowledge across spatial scales and levels of abstraction

with the help of discovered spatial relations. Topological

maps are an established framework for representing spatial

relations between local places that enables anchoring high-

level conceptual information and easy access for a planning

algorithm. As a result, several semantic mapping approaches

rely on topological graphs as part of their representation

and associate topological nodes with semantic place at-

tributes [1], [2], [3].

In order to integrate the collected spatial knowledge,

resolve ambiguities, and make predictions about unobserved

places, such frameworks often employ structured prediction

algorithms. Unfortunately, the relations discovered by a robot

exploring a real-world environment tend to be complex and

noisy, resulting in difficult inference problems. Topological

maps are dynamic structures, growing as the robot explores

its environment, and containing a different number of nodes

and relations for every environment. At the same time, many
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approaches to structured prediction place strict constraints

on the interactions between inferred variables to achieve

tractability [4] and require that the number of output la-

tent variables be constant and related through a similar

global structure [5]. This makes them either inapplicable or

impractical in robotics settings and require compromising

on the structure complexity [6], introducing prior structural

knowledge [1] or making hard commitments about values

of semantic attributes [3]. These problems are not unique to

robotics and often present themselves in other domains, such

as computer vision [7].

In this paper, we present Graph-Structured Sum-Product

Networks (GraphSPNs), a general probabilistic framework

for modeling graph-structured data with complex, noisy

dependencies between a varying number of latent variables.

Our framework builds on Sum-Product Networks (SPNs) [8],

a probabilistic deep architecture with solid theoretical foun-

dations [9]. SPNs can learn probabilistic models capable

of representing context-specific independence directly from

high-dimensional data and perform fast, tractable inference

on high-treewidth models. GraphSPNs learn template SPN

models representing distributions over attributes of sub-

graphs of arbitrary complexity. Then, to perform inference

for a specific, potentially expanding graph, they assemble a

mixture model over multiple decompositions of the graph

into sub-graphs, with each sub-graph modeled by an instan-

tiation of an appropriate template.

We apply GraphSPNs to the problem of modeling large-

scale, global semantic maps with noisy topological spatial

relations built by robots exploring multiple office environ-

ments. We make no assumptions about the structure of

the topological map that would simplify the inference over

semantic attributes. Our approach is capable of disambiguat-

ing uncertain and noisy local information about semantic

attributes of places as well as inferring distributions over

semantic attributes for yet unexplored places, for which local

evidence is not available. We compare the performance of our

model with the traditional approach based on Probabilistic

Graphical Models assembled according to the structure of

the topological graph. We show that GraphSPNs significantly

outperforms Markov Random Fields built from pairwise

and higher-order potentials relying on the same uncertain

evidence.

II. RELATED WORK

Probabilistic graphical models (PGMs) [10] provide a

flexible framework for structured prediction. Unfortunately,



inference in PGMs is generally intractable, with the excep-

tion of low treewidth models [4]. In practice, PGMs often

require approximate inference techniques with no guarantee

of convergence, such as Loopy Belief Propagation (BP) [11],

when the graph structure involves loops (as in this work).

An increasing number of structure prediction approaches

utilize deep architectures (e.g. [7], [12] [7], [12]). Unfortu-

nately, many of the deep approaches are not probabilistic and

are mostly applicable to data of the same global structure and

number of output labels as the training examples.

Sum-Product Networks (SPNs) are a class of deep and

probabilistic architecture capable of performing tractable

inference on high-treewidth models. In [13], Relational-

SPNs were proposed that model graph-based relational data

based on first-order logic. This method models graphs with

potentially varying sizes by summarizing multiple variables

with an aggregate statistic. In contrast, we directly model

each output variable associated with nodes of the graph, and

construct an SPN structure specific to each graph instance.

There have been numerous attempts to employ structured

prediction to modeling semantic maps with topological spa-

tial relations. [1] proposed Voronoi Random Fields (VRFs)

which are CRFs constructed according to a Voronoi graph ex-

tracted from an occupancy grid map. In [3], Markov Random

Fields were used to model pairwise dependencies between

semantic categories of rooms according to a topological

map. The categorical variables were connected to Bayesian

Networks that reasoned about local environment features,

forming a chain graph. This approach relied on a door

detector to segment the environment into a topological graph

with only one node per room. These approaches rely on

approximate inference using Loopy BP leading to problems

with convergence [1]. Moreover, in both cases, additional

prior knowledge or hard commitments about the semantics

of some places were employed in order to obtain a clean

and manageable topological graph structure. In contrast, in

this work, we rely on a graph built primarily to support

navigation and execution of actions by the robot. Such

graph provides a better coverage, but results in more noisy

structure. Furthermore, we make no hard commitments about

the semantics of the places at time of structure creation and

defer such inference to the final model. Our experiments

show, that under such conditions, graphical models with

pairwise or higher-order potentials deteriorate quickly.

III. PRELIMINARIES

We begin by giving a brief introduction to SPNs. For

details, the reader is referred to [9], [8]. Then, we describe

the topological mapping framework we used to build the

topological graphs.

A. Sum-Product Networks

One of the primary limitations of probabilistic graphical

models is the complexity of their partition function, often

requiring complex approximate inference in the presence of

non-convex likelihood functions. In contrast, SPNs represent

joint or conditional distributions with partition functions that

Fig. 1: An simple SPN for a naive Bayes mixture model P (X1, X2), with
three components over two binary variables. The bottom layer consists of
indicators for X1 and X2. Weighted sum nodes, with weights attached to
inputs, are marked with +, while product nodes are marked with ×.

are guaranteed to be tractable and involve a polynomial

number of sum and product operations, permitting exact

inference.

As shown in Fig. 1, an SPN is a directed acyclic graph

composed of weighted sum and product operations. The

sums can be seen as mixture models over subsets of vari-

ables, with weights representing mixture priors. Products can

be viewed as combinations of features. SPNs can be defined

for both continuous and discrete variables, with evidence

for categorical variables often specified in terms of binary

indicators.

Formally, following [8], we can define an SPN as follows:

Definition 1: An SPN over variables X1, . . . , XV is a

rooted directed acyclic graph whose leaves are the indicators

(X1
1 , . . . , X

I
1 ), . . . , (X

1
V , . . . , X

I
V ) and whose internal nodes

are sums and products. Each edge (i, j) emanating from a

sum node i has a non-negative weight wij . The value of a

product node is the product of the values of its children. The

value of a sum node is
∑

j∈Ch(i) wijvj , where Ch(i) are the

children of i and vj is the value of node j. The value of an

SPN S[X1, . . . , XV ] is the value of its root.

Not all architectures consisting of sums and products result

in a valid probability distribution. While a less constraining

condition on validity has been derived in [8], a simpler

condition, which does not limit the power of the model is to

guarantee that the SPN is complete and decomposable [9].

Definition 2: A sum-product network is complete iff all

children of the same sum node have the same scope.

Definition 3: A sum-product network is decomposable iff

no variable appears in more than one child of a product node.

The scope of a node is defined as the set of variables that

have indicators among the descendants of the node.

A valid SPN will compute unnormalized probability of

evidence expressed in terms of indicators. However, the

weights of each sum can be normalized, in which case the

value of the SPN S[X1
1 , . . . , X

I
V ] is equal to the normalized

probability P (X1, . . . , XV ) of the distribution modeled by

the network.

Partial or missing evidence can be expressed by setting the

appropriate indicators to 1. Inference is then accomplished

by an upwards pass which calculates the probability of the

evidence and a downwards pass which obtains gradients for

calculating marginals or MPE state of the missing evidence.

The latter can be obtained by replacing sum operations with

weighted max operations [9].



Parameters of an SPN can be learned generatively [8] or

discriminatively [14] using Expectation Maximization (EM)

or gradient descent. Additionally, several algorithms were

proposed for simultaneous learning of network parameters

and structure [15], [16]. In this work, we use a simple

structure learning technique [17] to build template SPNs

representing each sub-graph. We begin by initializing the

SPN with dense structure by recursively generating nodes

based on multiple random decompositions of the set of vari-

ables into multiple subsets until each subset is a singleton.

The resulting structure consists of products combining the

subsets in each decomposition and sums mixing different

decompositions at each level. Then, we employ hard EM to

learn the model parameters, which was shown to work well

for generative learning [17] and overcomes the diminishing

gradient problem. After parameter learning, the generated

structure can be pruned by removing edges associated with

weights close to zero.

B. Topological Graphs

GraphSPNs are applicable to arbitrary graphs. However, in

this work, we apply them specifically to topological graphs

built by a mobile robot exploring a large-scale environment

[18]. The primarily purpose of our topological graph is to

support the behavior of the robot. As a result, nodes in the

graph represent places the robot can visit and the edges

represent navigability. The graph nodes are associated with

latent variables representing semantics and the edges can be

seen as spatial relations forming a global semantic map.

Local evidence about the semantics of a place might be

available and we assume that such evidence is inherently

uncertain and noisy. Additional nodes in the graph are

created to represent exploration frontiers, possible places the

robot has not yet visited, but can navigate to. We call such

nodes placeholders, and assume that the robot has not yet

obtained any evidence about their semantics.

The topological graph is assembled incrementally based

on dynamically expanding 2D occupancy map. The 2D

map is built from laser range data captured by the robot

using a grid mapping approach based on Rao-Blackwellized

particle filters [19]. Placeholders are added at neighboring,

reachable, but unexplored locations and connected to existing

places. Then, once the robot performs an exploration action,

a placeholder is converted into a place and local evidence

captured by the robot about the semantic place category is

anchored to the graph node.

We formulate the problem of finding placeholder locations

as sampling from a distribution that models location rele-

vance and suitability. Specifically, the distribution is specified

as: P (E|G, E) = 1
Z

∏

i φS(Ei|G)φN (Ei|E), where Ei ∈
{0, 1} represents the existence of a new place at location

i in the occupancy map, G is the occupancy grid, and E
is the set of locations of all existing places. The potential

φS ensures that placeholders are located in areas that are

safe and preferred for navigation (are within safe distance

from obstacles, with the preference towards centrally located

places). The potential φN models the neighborhood of a

Fig. 2: An instance GraphSPN modeling a simple 5-node graph (red) with
variables Xi and Yi associated with graph nodes. Solid lines illustrate one
decomposition of the graph based on two template sub-graphs and SPNs
(green and blue), while dashed lines illustrate another decomposition.

place, and guarantees sufficient coverage of the environment

by promoting positions at a certain distance dn from existing

places. Final location of a new placeholder is chosen through

MPE inference in P (E|G, E). An edge is then created to

represent navigability. It connects the placeholder to an

existing place in the graph based on A* search directly over

the potential φS . An example of such semantic-topological

map is shown in Fig. 4.

IV. GRAPHSPNS

GraphSPNs learn a template model over arbitrary graph-

structured data, with local evidence Xi and latent variables

Yi = {Yi1, · · · , YiM} for each graph node or edge i, with

dependencies between the latent variables expressed in terms

of the graph structure. Then, an instance GraphSPN distri-

bution P (X1,Y1, . . . ,XN ,YN ) is assembled for a specific

graph to perform inference.

To this end, we define a set S of template sub-graphs, and

associate each template sub-graph S ∈ S with a separate

template SPN modeling the distribution over variables Xi

and Yi corresponding to the nodes and edges of the template

sub-graph. The structure and parameters of each template

SPN can be learned directly from data obtained by decom-

posing training graphs into sub-graphs corresponding to S.

Given a set of trained template SPNs, and a specific

graph to be modeled, an instance GraphSPN is assembled

as illustrated in Fig. 2. First, the graph is decomposed

multiple times, each time differently, into sub-graphs using

sub-graph templates S in descending order of the template



size (i.e. more complex templates have priority). The sub-

graphs should not overlap in each decomposition and the

corresponding template SPNs should cover all variables

Xi,Yi in the model. This condition guarantees completeness

and decomposability resulting in a valid instance GraphSPN.

For each decomposition and each sub-graph, we instantiate

the corresponding template SPN resulting in multiple SPNs

sharing weights and structure. The instantiations for a single

graph decomposition are combined with a product node and

the product nodes for all decompositions become children of

a root sum node realizing the complete mixture model.

In order to incorporate the latent variables Yij , we include

an intermediate layer of product nodes into the template

SPNs. As shown in Fig. 2, each such product node combines

an arbitrary distribution Dk
ij(Xi) with an indicator λYij=ck

j

for a specific value ckj of Yij . The template SPN built on

top of the product nodes can be learned from data and

the distributions Dk
ij(Xi) can be arbitrary, potentially also

realized with an SPN with data-driven structure.

In our experiments, we assumed only one latent vari-

able (semantic place category) Yi per graph node i, with

V al(Yi) = {c1, . . . , cL}, and we defined Dk
i (Xi) for a

single hypothetical binary observation xi, which we assumed

to be observed:

Dk
i (Xi) =

{

αk
i Xi = xi

1− αk
i Xi = x̄i

(1)

Such simplification allows us to thoroughly evaluate Graph-

SPNs for the problem of learning topological semantic

maps by directly simulating hypothetical evidence about the

semantic category of varying uncertainty and under vari-

ous noise conditions. Furthermore, it allows us to compare

GraphSPNs with Markov Random Fields using the same αk
i

as the value of local potentials, i.e. φi(Yi = ck) = αk
i .

The proposed approach naturally extends to the case where

a more complex distribution is used to model semantic place

categories based on robot observations, such as the SPN-

based approach presented in [17]. Note, that we still learn the

structure of the template SPNs built on top of distributions

Dk
i (Xi).

V. EXPERIMENTAL PROCEDURE

A. Dataset

The semantic maps with topological relations used in

our experiments were obtained by deploying the topological

mapping on sequences of laser range data and odometry

captured by a mobile robot exploring multiple large-scale

environments [20]. The dataset contains 99 sequences, and

as a result 99 topological graphs, captured on 11 floors of 3

buildings in different cities. We identified 10 semantic place

classes that are common for all buildings (e.g. a corridor, a

doorway, a 1-person office, see Fig. 4 for a complete list) and

annotated each topological graph node with its groundtruth

class.

Our goal in this work is to evaluate the ability of Graph-

SPNs to disambiguate semantic place classes despite noisy

and uncertain local evidence by exploiting spatial relations

NL Dgroundtruth Dincorrect

1 0.991 (+/-0.001) 0.0
2 0.913 (+/-0.015) 0.085 (+/- 0.056)
3 0.720 (+/-0.040) 0.090 (+/- 0.061)
4 0.434 (+/-0.054) 0.092 (+/-0.062)
5 0.316 (+/-0.030) 0.154 (+/-0.055)
6 0.154 (+/-0.021) 0.217 (+/-0.074)

TABLE I: Noise levels used in our experiments.

Fig. 3: Sub-graph templates used in our experiments. Dashed edges are
ignored when matching the template.

captured in a noisy topological graph. Probabilistic place

classification algorithms, such as the SPN-based approach

in [17] associate decisions based on local observations with

probability estimates. However, the certainty of a decision

can be low or the decision can be incorrect. In order to

measure how sensitive the evaluated approaches are to such

noise, we simulate local evidence attached to topological

graph nodes by adding increasing noise to groundtruth in-

formation.

To this end, for each node i in each topological graph, we

generated a local evidence distribution with values P (Yi =
ck, Xi = xi) = αk

i . For each graph, we first randomly

selected 20% of all nodes for which the most likely local

result should be incorrect. For those, we selected a random

incorrect class to be associated with the highest probability

value. Then, we randomized the value Dincorrect, which is a

difference between the highest probability and the probability

of the groundtruth class, from a uniform distribution in a

range depending on the noise level. For the remaining 80%

of nodes, we ensured that the groundtruth class is associated

with the highest probability. However, we simulated uncer-

tainty by randomizing the value Dgroundtruth, which is a

difference between the probability of the groundtruth class

and the second highest probability. With these constraints,

we used random values for the remaining likelihoods and

made sure that each distribution is normalized. Intuitively,

lower Dgroundtruth indicates higher uncertainty and higher

Dincorrect indicates stronger noise. The statistics of the

values of Dincorrect and Dgroundtruth for the final evidence

at different noise levels are shown in Tab. I.

B. Learning GraphSPNs

We learned GraphSPNs from a simple set of sub-graph

templates shown in Fig. 3, matching from 1 to 5 nodes

and simple edge configurations. We assumed that each node

is associated with a single latent variable Yi representing

the semantic place class. For each template with at least

2 nodes, we learned a template SPN of specific structure

and parameters from sub-graph examples in the training set

in a supervised fashion (Yi was set to the groundtruth).



Each training graph was partitioned in 10 different ways

to obtain sub-graphs. For a single-node template we simply

assumed a uniform SPN. During testing, we built the instance

GraphSPN based on 5 different graph decompositions (see

Fig. 4). In our experiments, we always learned GraphSPN

from all graphs from two buildings in the dataset and

tested on graphs with different evidence noise levels from

the remaining building. GraphSPNs are implemented using

LibSPN [21].

C. Constructing Markov Random Fields

We compared GraphSPNs to a traditional approach based

on MRFs structured according to the represented graph. The

MRF was constructed from two types of potentials: potential

φi(Yi = ck) = αk
i used to provide local evidence, and

potentials modeling latent variable dependencies. For the

latter, we tried two models: using pairwise potentials for

each pair of variables associated with connected nodes or

defined over three variables for three connected nodes in

any configuration. In each case, the potentials were obtained

by generating co-occurrence statistics of variable values in

the training graphs used for learning GraphSPNs. Inference

in the MRF was performed using Loopy BP implemented in

the libDAI library [22].

VI. EXPERIMENTAL RESULTS

We performed several experiments comparing the learned

GraphSPN model to the MRF models with pairwise po-

tentials (marked as MRF-2) and three-variable potentials

(marked as MRF-3). First, we tasked all models with disam-

biguating noisy local evidence about semantic place class for

places visited by the robot. For each topological graph in the

test set, we performed marginal inference1, based on which

we selected the final classification result argmaxkP (Yi =
ck|X = x).

The percentage of correctly classified nodes in the graph

averaged over all test graphs is shown in Tab. II and a

visualization of results for a single graph together with

the decompositions used to build the instance GraphSPN

is shown in Fig. 4. We evaluated all assignments of the

three buildings into training and test sets as well as different

noise levels listed in Tab. I. Each test set consisted of 5

topological maps, each with 3 random sets of noisy local

evidence resulting in 15 different test graphs. Since the

local evidence for 20% of nodes in each graph indicates

an incorrect class as the most likely one, only accuracy

greater than 80% demonstrates that the model was able to

recover from the noise using learned spatial relations. Lower

accuracy suggests that the incorrect evidence was too strong

or that the correct evidence was too uncertain to influence

the semantic class of a place.

Analyzing the performance reported in Tab. II, we see that

pairwise MRF performs well when there is little noise in

the evidence, however it deteriorates quickly with increasing

noise levels. At the same time, GraphSPN generating robust

1We experimented with MPE inference over all latent variables achieving
inferior results with all models.

GraphSPN

NL Freiburg Saarbrücken Stockholm

1 96.13%(+/-2.41) 95.45%(+/-3.05) 93.98%(+/-1.90)
2 96.63%(+/-2.39) 96.37%(+/-3.03) 94.01%(+/-2.12)
3 92.45%(+/-2.43) 93.43%(+/-2.85) 92.04%(+/-2.57)
4 91.88%(+/-2.76) 92.91%(+/-2.72) 86.31%(+/-2.06)
5 90.13%(+/-3.47) 90.12%(+/-3.56) 83.51%(+/-3.13)
6 80.83%(+/-5.21) 80.08%(+/-3.95) 69.49%(+/-5.69)

MRF-2

NL Freiburg Saarbrücken Stockholm

1 91.54%(+/-6.89) 82.32%(+/-15.74) 72.71%(+/-13.42)
2 78.37%(+/-10.03) 76.15%(+/-16.63) 53.09%(+/-10.22)
3 59.91%(+/-12.99) 56.05%(+/-17.10) 28.74%(+/-4.89)
4 44.17%(+/-10.54) 50.77%(+/-17.35) 24.84%(+/-5.04)
5 44.74%(+/-8.92) 47.09%(+/-14.41) 23.20%(+/-2.90)
6 44.30%(+/-10.53) 50.07%(+/-15.19) 22.98%(+/-4.42)

MRF-3

NL Freiburg Saarbrücken Stockholm

1 45.27%(+/-7.43) 50.61%(+/-15.03) 28.65%(+/-4.90)
2 48.70%(+/-7.30) 49.50%(+/-15.23) 26.58%(+/-3.75)
3 43.27%(+/-8.75) 55.47%(+/-21.02) 26.17%(+/-5.13)
4 47.24%(+/-9.81) 49.18%(+/-12.27) 24.18%(+/-4.47)
5 45.23%(+/-9.98) 49.76%(+/-17.81) 25.48%(+/-5.34)
6 47.80%(+/-10.37) 51.85%(+/-17.54) 25.25%(+/-5.19)

TABLE II: Semantic place classification accuracy for all models and test
buildings, and at different noise levels.

GraphSPN

NL Freiburg Saarbrücken Stockholm

2 67.58%(+/-10.42) 78.15%(+/-9.95) 67.57%(+/-11.11)
5 40.59%(+/-12.22) 55.18%(+/-19.67) 37.56%(+/-10.44)

MRF-2

NL Freiburg Saarbrücken Stockholm

2 28.32%(+/-7.53) 39.85%(+/-19.42) 12.44%(+/-3.46)
5 24.23%(+/-11.40) 30.58%(+/-5.57) 10.04%(+/-2.59)

MRF-3

NL Freiburg Saarbrücken Stockholm

2 28.71%(+/-5.43) 31.94%(+/-5.26) 10.11%(+/-0.51)
5 18.02%(+/-7.49) 28.86%(+/-6.16) 8.96%(+/-1.19)

TABLE III: Accuracy of semantic class inference for placeholders without
local evidence, for all models and test buildings, and at two representative
noise levels.

results (accuracy greater than 80%) despite substantial noise

and uncertainty. With substantial noise, approximate Loopy

BP inference for MRF converges to a solution consisting

primarily of the dominant class (the corridor). At the same

time, we see that using higher-order potentials with MRF

actually hurts performance.

In the second experiment, we tasked the models with

inferring marginal distributions over the semantic classes

of places not yet visited by the robot (placeholders) for

which local evidence is unavailable. We used the same

setup as in the previous experiment, with local evidence for

explored places including noise and uncertainty. Examples

of such marginal distributions are shown in Fig. 5, while

the classification accuracy when considering the most likely

class is reported in Tab. III. Again, GraphSPN significantly

outperformed the MRF for this inference task. If we analyze

the marginal distributions for three representative placehold-

ers shown in Fig. 5, we see that GraphSPN is confident about

the correct class for the two placeholders for which nearby



Fig. 4: Visualization of the results for a graph from Freiburg at noise level 4. The top row shows: the semantic map with groundtruth semantic place
classes; the 20% of nodes for which the most likely evidence indicates an incorrect class (black nodes); the semantic classes inferred by the GraphSPN and
the MRF-2. The place classes are: 1-person office (1PO), 2-person office (2PO), bathroom (BA), corridor (CR), doorway (DW), kitchen (KT), laboratory
(LAB), large office (LO), meeting room (MR), utility room (UT). The bottom row illustrates the 5 decompositions used when assembling the instance

GraphSPN (different colors indicate different sub-graph templates applied).

Fig. 5: Visualization of results for the experiment involving placeholders
without local evidence, at noise level 2. Left, bottom: the semantic map
with groundtruth semantic place classes (including for placeholders). Left,
top: the 20% of nodes for which the most likely evidence indicates an
incorrect class (black) and placeholders with no evidence (gray). Right:
inferred marginal distributions over semantic classes of placeholders (pie
charts).

nodes provide correct (albeit uncertain) evidence. For the

placeholder connected to nodes for which evidence indicates

an incorrect class the marginal distribution is almost uniform.

This is an indication of the ability of GraphSPN to generate

useful confidence signal in presence of noisy evidence.

VII. CONCLUSIONS

We presented GraphSPNs, a probabilistic deep model

for graph-structured data that learns a template distribution

allowing for making inferences about graphs of different

global structure. While existing works applied SPNs to data

organized as fixed-size grids or sequences, this paper presents

a novel attempt at deploying SPNs on arbitrary graphs of

varying size. Based on GraphSPNs, we proposed a method

for learning topological spatial relations in semantic maps

constructed by a mobile robot. Our method is robust to

noise and uncertainty inherent in real-world problems where

information about the environment is captured with robot

sensors. Our framework is universal and compatible with

any distributions defined over local evidence. However, it

is particularly well suited for integration with other SPN-

based models. In the future, by combining a GraphSPN

learned over semantic maps with the generative place model

proposed in [17], we intend to achieve a unified, deep, and hi-

erarchical representation of spatial knowledge spanning from

local sensory observations to global conceptual descriptions.
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