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Abstract

We introduce Graph-Structured Sum-Product Networks
(GraphSPNs), a probabilistic approach to structured predic-
tion for problems where dependencies between latent vari-
ables are expressed in terms of arbitrary, dynamic graphs.
While many approaches to structured prediction place strict
constraints on the interactions between inferred variables,
many real-world problems can be only characterized using
complex graph structures of varying size, often contaminated
with noise when obtained from real data. Here, we focus on
one such problem in the domain of robotics. We demonstrate
how GraphSPNs can be used to bolster inference about se-
mantic, conceptual place descriptions using noisy topological
relations discovered by a robot exploring large-scale office
spaces. Through experiments, we show that GraphSPNs con-
sistently outperform the traditional approach based on undi-
rected graphical models, successfully disambiguating infor-
mation in global semantic maps built from uncertain, noisy
local evidence. We further exploit the probabilistic nature of
the model to infer marginal distributions over semantic de-
scriptions of as yet unexplored places and detect spatial en-
vironment configurations that are novel and incongruent with
the known evidence.

Introduction

Graph-structured data appear in a wide range of domains,
from social network analysis (Mislove et al. 2010), to com-
puter vision (Johnson et al. 2015) and robotics. Often, the
global structure of such data varies, yet dependencies cap-
tured by elements of the structure persist and can serve as a
powerful source of information for various inference tasks.
In robotics, this phenomenon is common. While exploring
their environments, robots build a growing body of knowl-
edge captured at different spatial locations, scales, and at
different levels of abstraction. However, importantly, they
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Figure 1: Learning and inference with GraphSPNs for prob-
abilistic semantic maps with topological spatial relations.

also perceive relations between such information, which be-
come invaluable in real-world settings where inference is
performed with noisy data and under partial observability.
Semantic maps are an established framework for mod-
eling relational spatial knowledge in robotics (Friedman,
Pasula, and Fox 2007; Zender et al. 2008; Pronobis and
Jensfelt 2012). They often form graph-structured environ-
ment representations by utilizing topological graphs con-
sisting of place nodes connected with local spatial rela-
tions (see Fig. 1 for an example). This enables anchor-
ing of high-level semantic information about places and
forms an accessible belief state representation for a plan-
ning algorithm (Hanheide et al. 2017). In order to integrate
the collected spatial knowledge, resolve ambiguities, and
make predictions about unobserved places, semantic map-
ping frameworks often employ structured prediction algo-
rithms (Friedman, Pasula, and Fox 2007; Mozos et al. 2007;
Pronobis and Jensfelt 2012). Unfortunately, the relations
discovered by a robot exploring a real-world environment
tend to be complex and noisy, resulting in difficult inference
problems. At the same time, topological graphs are dynamic
structures, growing as the robot explores its environment,
and containing a different number of nodes and relations for
every environment. Yet, many approaches to structured pre-
diction place strict constraints on the interactions between



inferred variables to achieve tractability (Bach and Jordan
2002) and require that the number of output latent variables
be constant and related through a similar global structure
(Belanger and McCallum 2016). This makes them either un-
suitable or impractical in robotics settings without compro-
mising on the structure complexity (Mozos et al. 2007), in-
troducing prior structural knowledge (Friedman, Pasula, and
Fox 2007), or making hard commitments about values of se-
mantic attributes (Pronobis and Jensfelt 2012). These prob-
lems are not unique to robotics and often present themselves
in other domains, such as computer vision (Schwing and Ur-
tasun 2015).

In this paper, we present Graph-Structured Sum-Product
Networks (GraphSPNs), a general probabilistic framework
for modeling graph-structured data with complex, noisy de-
pendencies between a varying number of latent variables.
Our framework builds on Sum-Product Networks (SPNs)
(Poon and Domingos 2011), a probabilistic deep archi-
tecture with solid theoretical foundations (Peharz et al.
2017). SPNs can learn probabilistic models capable of rep-
resenting context-specific independence directly from high-
dimensional data and perform fast, tractable inference on
high-treewidth models. As illustrated in Fig. 1, Graph-
SPNs learn template SPN models representing distributions
over attributes of sub-graphs of arbitrary complexity. Then,
to perform inference for a specific, potentially expanding
graph, they assemble a mixture model over multiple decom-
positions of the graph into sub-graphs, with each sub-graph
modeled by an instantiation of an appropriate template.

We apply GraphSPNs to the problem of modeling large-
scale, global semantic maps with noisy topological spatial
relations built by robots exploring multiple office environ-
ments. We make no assumptions about the structure of the
topological map that would simplify the inference over se-
mantic attributes. Our approach is capable of disambiguat-
ing uncertain and noisy local information about semantic at-
tributes of places as well as inferring distributions over se-
mantic attributes for yet unexplored places, for which local
evidence is not available. Furthermore, we illustrate the ben-
efits of the probabilistic representation by relying on likeli-
hood of global semantic maps to detect novel and incongru-
ent spatial configurations. We compare the performance of
our model with the traditional approach based on Probabilis-
tic Graphical Models assembled according to the structure
of the topological graph. We show that GraphSPNs signifi-
cantly outperforms Markov Random Fields built from pair-
wise and higher-order potentials relying on the same uncer-
tain evidence. Finally, we contribute a dataset! of topolog-
ical graphs associated with evidence about semantic place
attributes with different levels of uncertainty and varying
amount of noise. We hope that the dataset will become a use-
ful benchmark for evaluating approaches to modeling graph-
structured data.

Related Work

Probabilistic graphical models (PGMs) (Koller and Fried-
man 2009) provide a flexible framework for structured pre-
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diction. PGMs express the conditional dependence between
random variables in terms of a graph. This results in a fac-
torization of the joint distribution into a normalized products
of factors, with factors defined over subsets of variables. The
factors can be considered templates from which a distribu-
tion over an arbitrary number of variables can be assem-
bled. As a result, PGMs were used in the past for model-
ing graph-structured data (Friedman, Pasula, and Fox 2007,
Pronobis and Jensfelt 2012). Unfortunately, inference in
PGMs is generally intractable, with the exception of low
treewidth models (Bach and Jordan 2002). Even models
with pairwise potentials require approximate inference tech-
niques with no guarantee of convergence, such as Loopy Be-
lief Propagation (BP) (Murphy, Weiss, and Jordan 1999),
when the graph structure involves loops (as in this work).
Higher-order models can pose a challenge even to the ap-
proximate methods. Additionally, many distributions which
can be represented compactly, cannot be represented in
terms of the factorization performed by PGMs (Poon and
Domingos 2011).

An increasing number of structure prediction approaches
utilize deep architectures. Several approaches build on
graphical models for representing dependencies between
output variables, while relying on deep models to realize the
factors (Schwing and Urtasun 2015; Chen et al. 2015). Other
types of models focus specifically on sequential data by
combining local convolutions with classification (Collobert
et al. 2011) or by building sequence to sequence predic-
tors based on multiple LSTM layers (Sutskever, Vinyals, and
Le 2014). Finally, fully convolutional models exist for such
problems as pixel-wise segmentation (Shelhamer, Long, and
Darrell 2017). Other deep models rely on deep architectures
to define an energy function over candidate labels and then
predictions are produced by using backpropagation to itera-
tively optimize the energy with respect to the labels. Struc-
tured Prediction Energy Networks (SPENs) (Belanger and
McCallum 2016) take that approach and can capture depen-
dencies that would lead to intractable graphical models. Un-
fortunately, many of the deep approaches are not probabilis-
tic and are mostly applicable to data of the same global struc-
ture and number of output labels as in the training examples.

Sum-Product Networks (SPNs) are unique in being a deep
and probabilistic architecture capable of representing high-
treewidth models that would result in unmanageable PGMs.
Yet, they provide tractable exact inference by exploiting
context-specific independence and determinism (Gens and
Domingos 2012). In contrast to SPENs and approximate in-
ference over PGMs, marginal and MPE inference in SPNs
does not require iterations and can be achieved using a sin-
gle pass through the network (Poon and Domingos 2011).
SPNs are expressive and have been used to solve difficult
problems in several domains (Poon and Domingos 2011;
Gens and Domingos 2012; Amer and Todorovic 2015), in-
cluding semantic place classification in robotics (Pronobis
and Rao 2017). These benefits resulted in several approaches
to structured prediction using SPNs. In (Ratajczak, Tschi-
atschek, and Pernkopf 2014), Linear-chain Conditional Ran-
dom Fields (LC-CRFs) extended with local factors mod-
eled using SPNs were used to model sequences. In (Nath



and Domingos 2015), Relational-SPNs were proposed that
model graph-based relational data based on first-order logic.
This method models graphs with potentially varying sizes by
summarizing multiple variables with an aggregate statistic.
In contrast, we directly model each output variable associ-
ated with nodes of the graph, and construct an SPN structure
specific to each graph instance.

There have been numerous attempts to employ struc-
tured prediction to modeling semantic maps with topologi-
cal spatial relations. In (Mozos et al. 2007), Hidden Markov
Models were used to smooth sequences of AdaBoost clas-
sifications of place observations into semantic categories.
(Friedman, Pasula, and Fox 2007) proposed Voronoi Ran-
dom Fields (VRFs) which are CRFs constructed according
to a Voronoi graph extracted from an occupancy grid map.
VRFs utilize pairwise potentials to model dependency be-
tween neighboring graph nodes and 4-variable potentials to
model junctions. In (Pronobis and Jensfelt 2012), Markov
Random Fields were used to model pairwise dependencies
between semantic categories of rooms according to a topo-
logical map. The categorical variables were connected to
Bayesian Networks that reasoned about local environment
features, forming a chain graph. This approach relied on a
door detector to segment the environment into a topological
graph with only one node per room. While these approaches
are probabilistic, they rely on approximate inference using
Loopy BP leading to problems with convergence (Friedman,
Pasula, and Fox 2007). Moreover, in both cases, additional
prior knowledge or hard commitments about the semantics
of some places were employed in order to obtain a clean
and manageable topological graph structure. In contrast, in
this work, we rely on a graph built primarily to support nav-
igation and execution of actions by the robot. Such graph
provides a better coverage, but results in more noisy struc-
ture. Furthermore, we make no hard commitments about the
semantics of the places at time of structure creation and de-
fer such inference to the final model. Our experiments show,
that under such conditions, graphical models with pairwise
or higher-order potentials deteriorate quickly.

Preliminaries

We begin by giving a brief introduction to SPNs. For de-
tails, the reader is referred to (Peharz et al. 2017; Poon and
Domingos 2011). Then, we describe the structure of the se-
mantic maps for which we learn GraphSPNs.

Sum-Product Networks

SPNs are a new promising architecture which combines the
advantages of deep learning and probabilistic modeling. One
of the primary limitations of traditional probabilistic graph-
ical models is the complexity of their partition function, of-
ten requiring complex approximate inference in the presence
of non-convex likelihood functions. In contrast, SPNs rep-
resent joint or conditional distributions with partition func-
tions that are guaranteed to be tractable and involve a poly-
nomial number of sum and product operations, permitting
exact inference. They are capable of learning probabilistic
models directly from high-dimensional, noisy data.
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Figure 2: A simple SPN for a naive Bayes mixture model
P(X;, X5), with 3 components over 2 binary variables.

As shown in Fig. 2, an SPN is a directed acyclic graph
composed of weighted sum and product operations. The
sums can be seen as mixture models over subsets of vari-
ables, with weights representing mixture priors. Products
can be viewed as combinations of features. SPNs can be
defined for both continuous and discrete variables, with ev-
idence for categorical variables often specified in terms of
binary indicators.

Formally, following (Poon and Domingos 2011), we can
define an SPN as follows:

Definition 1 An SPN over variables Xi,...,Xy is a
rooted directed acyclic graph whose leaves are the indica-
tors (X, ..., XT), ..., (X, ..., XL) and whose internal
nodes are sums and products. Each edge (i,j) emanating
Sfrom a sum node i has a non-negative weight w;;. The value
of a product node is the product of the values of its children.
The value of a sum node is 3 ;¢ o ;) Wizvj, where Ch(i)
are the children of i and v; is the value of node j. The value
of an SPN S[X1, ..., Xv] is the value of its root.

Not all architectures consisting of sums and products re-
sult in a valid probability distribution. While a less con-
straining condition on validity has been derived in (Poon
and Domingos 2011), a simpler condition, which does not
limit the power of the model is to guarantee that the SPN is
complete and decomposable (Peharz et al. 2017):

Definition 2 An SPN is complete iff all children of the same
sum node have the same scope.

Definition 3 An SPN is decomposable iff no variable ap-
pears in more than one child of a product node.

The scope of a node is defined as the set of variables that
have indicators among the descendants of the node.

A valid SPN will compute unnormalized probability of
evidence expressed in terms of indicators. However, the
weights of each sum can be normalized, in which case the
value of the SPN S[X{, ..., X{] is equal to the normalized
probability P(X1,...,Xy) of the distribution modeled by
the network.

Partial or missing evidence can be expressed by setting the
appropriate indicators to 1. Inference is then accomplished
by an upwards pass which calculates the probability of the
evidence and a downwards pass which obtains gradients for
calculating marginals or MPE state of the missing evidence.
The latter can be obtained by replacing sum operations with
weighted max operations (Peharz et al. 2017).



Parameters of an SPN can be learned generatively (Poon
and Domingos 2011) or discriminatively (Gens and Domin-
gos 2012) using Expectation Maximization (EM) or gradi-
ent descent. Additionally, several algorithms were proposed
for simultaneous learning of network parameters and struc-
ture (Hsu, Kalra, and Poupart 2017; Gens and Domingos
2013). In this work, we use a simple structure learning tech-
nique (Pronobis and Rao 2017) to build template SPNs. We
begin by initializing the SPN with dense structure by recur-
sively generating nodes based on multiple random decom-
positions of the set of variables into multiple subsets until
each subset is a singleton. The resulting structure consists of
products combining the subsets in each decomposition and
sums mixing different decompositions at each level. Then,
we employ hard EM to learn the model parameters, which
was shown to work well for generative learning (Prono-
bis and Rao 2017) and overcomes the diminishing gradient
problem. After parameter learning, the generated structure
can be pruned by removing edges associated with weights
close to zero.

Semantic Maps

GraphSPNs are applicable to data structured by arbitrary
graphs. However, in this work, we apply them specifically
to semantic maps employing topological graphs built by a
mobile robot exploring a large-scale environment (Pronobis,
Riccio, and Rao 2017). The primary purpose of our topolog-
ical graph is to support the behavior of the robot. As a re-
sult, nodes in the graph represent places the robot can visit,
and edges represent navigability. Each graph node is associ-
ated with a latent variable representing semantic place cate-
gory and the edges can be seen as spatial relations forming
a global semantic map. Local evidence providing informa-
tion about the semantics of a place might be available and
we assume that such evidence is inherently uncertain and
noisy. Additional nodes in the graph represent exploration
frontiers, i.e. possible places the robot has not yet visited,
but can potentially navigate to. We call such nodes place-
holders, and assume that the robot has not yet obtained any
local evidence about their semantics.

The topological graph is assembled incrementally based
on dynamically expanding 2D occupancy map. The 2D map
is built from laser range data captured by the robot using
a Rao-Blackwellized particle filter grid mapping approach
(Grisetti, Stachniss, and Burgard 2007). Given the current
state of the 2D map, placeholders are added at neighbor-
ing, reachable, but unexplored locations and connected to
already existing places. Then, once the robot performs an
exploration action and navigates to a placeholder, it is con-
verted into a place with local evidence attached.

We formulate the problem of finding new placeholder
locations in the 2D occupancy map as continuous sam-
pling from a distribution that models relevance and suitabil-
ity of the locations. Specifically, the distribution is spec-
ified as: P(E|G,&) = %[, ¢s(Ei|G)on(Ei|E), where
E; € {0,1} represents the existence of a new placeholder
at location 7 in the occupancy map, G is the occupancy grid,
and & is the set of locations of all places that have been added
previously. The potential ¢g ensures that placeholders are

located in areas that are safe and preferred for navigation
(are within safe distance from obstacles, with the preference
towards centrally located places). The potential ¢ models
the neighborhood of a place, and guarantees sufficient cov-
erage of the environment by promoting positions at a certain
distance d,, from existing places. Final location of a new
placeholder is chosen through MPE inference in P(E|G, £).
An edge is then created to represent navigability. It connects
the placeholder to an existing place in the graph based on A*
search directly over the potential ¢s. An example of such se-
mantic map is shown in Fig. 1.

GraphSPNs

GraphSPNs build probabilistic models over arbitrary graph-
structured data, with local evidence X; and latent variables
Y, associated with each graph node or edge ¢ and depen-
dencies between the latent variables expressed in terms of
the graph structure. A GraphSPN is a template model that is
learned from a set of graph-structured data samples, possibly
of different global structure. The GraphSPN is then instan-
tiated for a specific data structure D = (G, X,Y"), where
G = (V,E) is a graph with vertices V' and edges F, and
X ={X,:i€ VUE}LY ={Y,;:i € VUE}.Inour spe-
cific implementation of GraphSPNs for semantic maps, G is
assumed to be the current topological graph, X is the local
evidence about the semantics of each place, and Y; captures
the latent semantic place category.

In order to learn a GraphSPN, we begin by specifying a set
G of sub-graph templates, which are used to decompose any
data structure D. We define such decomposition as follows:

Definition 4 A decomposition of a data structure D
(G, X,Y) using sub-graph templates G is a set of com-
ponents Dy = (Gk,Xk,Yk), with Gj, = (W,Ek), such
that Gy, is isomorphic with any G € G, |, Gr = G,
Vi 1Gr NGy = 0, and the variables X, and Yy, correspond
to vertices and edges of Gi: X, = {X; : i € V;, U E},
lfk:{Yz:iEVkUEk}.

A GraphSPN is a template model consisting of femplate
SPNs, one for each sub-graph template, with structure and
parameters learned from training samples. Specifically:

Definition 5 GraphSPN S 9 is a set of template SPNs
S9[X,Y]) € 89 corresponding to sub-graph templates
G € G, with X and Y representing local evidence and latent
variables associated with vertices and edges of G = (V, £):
X={X;:ie€VUELY={Y,:ieVUE}.

A GraphSPN S9 is instantiated for a specific data struc-
ture D = (G, X,Y) to obtain an SPN S%[X, Y] model-
ing the distribution Pg(X,Y"). The process is formalized
in Alg. 1 and the resulting SPN is illustrated in Fig. 3. First,
the data structure is decomposed multiple times, each time
differently, into multiple components using the sub-graph
templates G. The process of generating the decompositions
in our implementation is shown in Alg. 2. We generate dif-
ferent decompositions randomly, each time prioritizing sub-
graph templates of higher complexity (larger size). For each
decomposition and each component, the corresponding tem-
plate SPN is instantiated for random variables associated
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Figure 3: An instantiation of GraphSPN for data structured
by a 5-node graph (gray) with variables X; and Y; associ-
ated with graph nodes. Two different decompositions of the
graph structure with two sub-graph templates are shown.

with the component. This results in multiple sub-SPNs shar-
ing weights and structure. The instantiated sub-SPNs for a
single graph decomposition are combined with a product
node, and the product nodes for all decompositions become
children of the root sum node. This forms a complete dis-
tribution, which can be seen as a mixture model over the
different decompositions. Since components of each decom-
position do not overlap and cover the complete graph struc-
ture, the instantiation of GraphSPN is guaranteed to be de-
composable and complete, therefore valid. Additionally, due
to the way the SPN is constructed, it is easy to perform an
incremental update reflecting a possible change in the data
structure. The resulting joint distribution P§(X,Y’) can be
used to perform various types of inferences over the evi-
dence X and latent variables Y.

The structures and parameters of template SPNs can be
learned directly from training data samples decomposed into
components. Each template SPN is then trained separately,
using only its corresponding components. In order to incor-
porate the latent variables Y; = [Y;], we include a fixed
intermediate layer of product nodes into the structure of tem-
plate SPNs. As shown in Fig. 3, each such product node
combines an arbitrary distribution PZIE(Xl) with an indica-

tor )‘Yij:c’? for a specific value cf of Y;;. The structure of

the templajte SPN built on top of the product nodes can be
learned from data and the distributions PY (X;) can be arbi-
trary, e.g. realized with an SPN with data-driven structure.
In our experiments, we assumed only one latent vari-
able (semantic place category) Y; per graph node ¢, with
Val(Y;) = {c',...,cL}, and we defined PF(X;) for a sin-
gle hypothetical binary local observation z;, which we as-

Algorithm 1: InstantiateGraphSPN(D, G, S9)

1 R + Sum node without children;

2 foreach d € {1,2,...,Np} do

3 ﬁd < Product node without children;

4 D < DecomposeDataStructure(D, G);

5 foreach D, = (Gi, X, Y)) € D do

6 G < Sub-graph template isomorphic with Gy;
7 891X, )] < Template SPN for G from SY;

8 SY9[X}., Y] « Instantiate SY for X}, Yy;

9 Add SY9[ X}, Yz] as a child of Py

10 end
11 | Add P, as achild of R;
12 end

13 return SPN S9[X, Y] rooted in R;

Algorithm 2: DecomposeDataStructure(D, G)

D « 0

D' =(G', X', Y’) + Copy of D;

foreach G € G in decreasing level of complexity do

while 3¢, cq' G isomorphic with G do

Gy = (Vj, Ey) < Random sub-graph of G’
isomorphic with G;

X {X,L' 11 € VkUEk};

Yk%{EZiEVkUEk};

Dy, < (G, Xy, Yr);

D« DUDy;

G+ G'\ Gg;

o 0 AN R W N

-
]

end

-
N

end
return Decomposition D

—
W

sumed to be observed:
k o
Pf(X;) = {ai S

1—04? X, =17

(D

Such simplification allows us to thoroughly evaluate Graph-
SPNss for the problem of learning semantic maps by directly
simulating hypothetical local evidence about the semantic
category of varying uncertainty and under various noise con-
ditions. Furthermore, it allows us to compare GraphSPNs
with Markov Random Fields using the same o as the value
of local potentials, i.e. ¢;(Y; = c¥) = aF. The proposed ap-
proach naturally extends to the case where a more complex
distribution is used to model semantic place categories based
on robot observations, such as the SPN-based approach pre-
sented in (Pronobis and Rao 2017). Note, that we still learn
the structure and parameters of the template SPNs built on
top of the distributions PF(X).

Experimental Procedure
Dataset

The semantic maps used in our experiments were ob-
tained by deploying our semantic mapping framework
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0.991 (+/-0.001) 0.0

0.913 (+/-0.015)  0.085 (+/- 0.056)
0.720 (+/-0.040)  0.090 (+/- 0.061)
0.434 (+/-0.054)  0.092 (+/-0.062)
0.316 (+/-0.030)  0.154 (+/-0.055)
0.154 (+/-0.021)  0.217 (+/-0.074)

NN AW =

Table 1: Noise levels used in our experiments.

on sequences of laser range data and odometry captured
by a mobile robot exploring multiple large-scale environ-
ments (Pronobis and Caputo 2009). The dataset contains 99
sequences, and as a result 99 topological graphs, captured
on 11 floors of 3 buildings in different cities. We identified
10 semantic place classes that are common for all buildings
(e.g. a corridor, a doorway, a 1-person office, see Fig. 8 for
a complete list) and annotated each topological graph node
with its groundtruth class.

Our goal in this work is to evaluate the ability of Graph-
SPNs to disambiguate semantic place classes despite noisy
and uncertain local evidence by exploiting spatial relations
captured in a noisy topological graph. Probabilistic place
classification algorithms, such as the SPN-based approach
in (Pronobis and Rao 2017) associate decisions based on
local observations with probability estimates. However, the
certainty of a decision can be low or the decision can be
incorrect. In order to measure how sensitive the evaluated
approaches are to such noise, we simulate local evidence
attached to topological graph nodes by adding increasing
noise to groundtruth information.

To this end, for each node ¢ in each topological graph, we
generated a local evidence distribution with values P(Y; =
c*, X; = ;) = oF. For each graph, we first randomly se-
lected 20% of all nodes for which the most likely local result
should be incorrect. For those, we selected a random incor-
rect class to be associated with the highest probability value.
Then, we randomized the value D, correct, Which is a dif-
ference between the highest probability and the probability
of the groundtruth class, from a uniform distribution in a
range depending on the noise level. For the remaining 80%
of nodes, we ensured that the groundtruth class is associated
with the highest probability. However, we simulated uncer-
tainty by randomizing the value Dy, oundtruth, Which is a
difference between the probability of the groundtruth class
and the second highest probability. With these constraints,
we used random values for the remaining likelihoods and
made sure that each distribution is normalized. Intuitively,
lower Dgroundtruth indicates higher uncertainty and higher
Dincorrect indicates stronger noise. The statistics of the val-
ues of Dincorrect and Dgroundtrutn for the final evidence at
different noise levels are shown in Tab. 1.

Learning GraphSPNs

We learned GraphSPNs from a simple set of sub-graph tem-
plates shown in Fig. 4, matching from 1 to 5 nodes and sim-
ple edge configurations. We assumed that each node is as-
sociated with a single latent variable Y; representing the se-
mantic place class. For each sub-graph template with at least

2-node template  1-node template

o0 O
OO0

3-node template 5-node template

Figure 4: Sub-graph templates used in our experiments.

2 nodes, we learned a template SPN of specific structure and
parameters from components of annotated training semantic
maps corresponding to the sub-graph template (Y; was set
to the groundtruth). Each training graph was decomposed in
10 different ways to obtain components. For a single-node
template we simply assumed a uniform SPN. During test-
ing, we built the instance GraphSPN based on 5 different
graph decompositions (see Fig. 8). In our experiments, we
always learned GraphSPN from all graphs from two build-
ings in the dataset and tested on graphs with different evi-
dence noise levels from the remaining building. GraphSPNs
were implemented using LibSPN (Pronobis, Ranganath, and
Rao 2017).

Constructing Markov Random Fields

We compared GraphSPNs to a traditional approach based
on MRFs structured according to the represented graph. The
MREF was constructed from two types of potentials: potential
#i(Y; = c¥) = oF used to provide local evidence, and po-
tentials modeling latent variable dependencies. For the latter,
we tried two models: using pairwise potentials for each pair
of variables associated with connected nodes or defined over
three variables for three connected nodes in any configura-
tion. In each case, the potentials were obtained by generat-
ing co-occurrence statistics of variable values in the training
graphs used for learning GraphSPNs. Inference in the MRF
was performed using Loopy BP implemented in the libDAI
library (Mooij 2010).

Experimental Results

We performed several experiments comparing the learned
GraphSPN model to the MRF models with pairwise po-
tentials (marked as MRF-2) and three-variable potentials
(marked as MRF-3). First, we tasked all models with dis-
ambiguating noisy local evidence about semantic place
class for places visited by the robot. For each topological
graph in the test set, we performed marginal inference?,
based on which we selected the final classification result as
argmax, Pg(V; = c¥| X = z).

The percentage of correctly classified nodes in the graph
averaged over all test graphs is shown in Fig. 5 and a visual-
ization of results for a single graph together with the decom-
positions used to build the instance GraphSPN is shown in
Fig. 8. We evaluated all assignments of the three buildings
into training and test sets as well as different noise levels
listed in Tab. 1. Each test set consisted of 5 topological maps,

2We experimented with MPE inference over all latent variables
achieving inferior results with all models.
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Figure 5: Semantic place classification accuracy for all models and test buildings, and at different noise levels.
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Figure 6: Visualization of results for the experiment involv-
ing placeholders without local evidence, at noise level 2.
Left, bottom: the semantic map with groundtruth seman-
tic place classes (including for placeholders). Left, top: the
20% of nodes for which the most likely evidence indicates
an incorrect class (black) and placeholders with no evidence
(gray). Right: inferred marginal distributions over semantic
classes of placeholders (pie charts).

each with 3 random sets of noisy local evidence resulting in
15 different test graphs. Since the local evidence for 20% of
nodes in each graph indicates an incorrect class as the most
likely one, only accuracy greater than 80% demonstrates that
the model was able to recover from the noise using learned
spatial relations. Lower accuracy suggests that the incorrect
evidence was too strong or that the correct evidence was too
uncertain to influence the semantic class of a place.

Analyzing the performance reported in Fig. 5, we see that
pairwise MRF performs well when there is little noise in
the evidence, however it deteriorates quickly with increas-
ing noise levels. At the same time, GraphSPN generates ro-
bust results (accuracy greater than 80%) despite substantial
noise and uncertainty. With substantial noise, approximate
Loopy BP inference for MRF converges to a solution con-
sisting primarily of the dominant class (the corridor). At the
same time, we see that using higher-order potentials with
MREF actually hurts performance.

In the second experiment, we tasked the models with in-
ferring marginal distributions over the semantic classes of
places not yet visited by the robot (placeholders) for which
local evidence is unavailable. We used the same setup as in
the previous experiment, with local evidence for explored
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Figure 7: ROC curve for the novelty detection task with cer-
tain semantic label assignments.

places including noise and uncertainty. Examples of such
marginal distributions are shown in Fig. 6, while the clas-
sification accuracy when considering the most likely class
is reported in Tab. 2. Again, GraphSPN significantly outper-
formed the MRF for this inference task. If we analyze the
marginal distributions for three representative placeholders
shown in Fig. 6, we see that GraphSPN is confident about
the correct class for the two placeholders for which nearby
nodes provide correct (albeit uncertain) evidence. For the
placeholder connected to nodes for which evidence indi-
cates an incorrect class the marginal distribution is almost
uniform. This indicates the ability of GraphSPN to generate
useful confidence signal in presence of noisy inputs.

Our final experiment was designed to evaluate the qual-
ity of likelihood produced by GraphSPN instantiated over
a graph of arbitrary size. In this experiment, we tasked the
models with detecting novel spatial environment configura-
tions that are incongruent with the evidence available during
training. To this end, we produced novel semantic maps by
swapping groundtruth semantic class labels between corri-
dors and doorways as well as cooridors and 1-person offices.
We contrasted these graphs with the original groundtruth
as well as swaps that are consistent with the training data
(swapping 1-person offices with 2-person offices). To de-
tect novel configurations, we measured the likelihood of
the complete graph with certain label assignments (without
any noise) and thresholded the obtained likelihood to decide
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Figure 8: Visualization of the results for a graph from Freiburg at noise level 4. The top row shows: the semantic map with
groundtruth semantic place classes; the 20% of nodes for which the most likely evidence indicates an incorrect class (black
nodes); the semantic classes inferred by the GraphSPN and the MRF-2. The place classes are: 1-person office (1PO), 2-person
office (2PO), bathroom (BA), corridor (CR), doorway (DW), kitchen (KT), laboratory (LAB), large office (LO), meeting room
(MR), utility room (UT). The bottom row illustrates the 5 decompositions used when assembling the instance GraphSPN

(different colors indicate different sub-graph templates applied).

GraphSPN
NL Freiburg Saarbriicken Stockholm
2 67.58%(+/-10.42)  78.15%(+/-9.95)  67.57%(+/-11.11)
5  40.59%(+/-12.22)  55.18%(+/-19.67)  37.56%(+/-10.44)

MREF-2
Saarbriicken Stockholm
39.85%(+/-19.42)  12.44%(+/-3.46)
30.58%(+/-5.57) 10.04%(+/-2.59)

MRF-3
NL Freiburg Saarbriicken Stockholm
2 28.71%(+/-5.43) 31.94%(+/-5.26)  10.11%(+/-0.51)
5 18.02%(+/-7.49)  28.86%(+/-6.16)  8.96%(+/-1.19)

NL Freiburg
2 28.32%(+/-7.53)
S5 24.23%(+/-11.40)

Table 2: Accuracy of semantic class inference for placehold-
ers without local evidence, for all models and test buildings,
and at two representative noise levels.

whether a graph is likely to be generated from the distribu-
tion. Since the likelihood depends on the size of the graph,
we normalized it by the number of variables in the test graph
before performing thresholding. We used the models learned
in the previous experiments and produced false and true pos-
itive rates for various threshold values over all trained mod-
els and test sets.

The results for such detection task are shown as ROC
curves in Fig. 7. All three models perform well on this
task (as measured by the area under the curve). We see
that GraphSPN performs comparably to the MRF models
demonstrating its ability to produce useful likelihood val-
ues. At the same time, MRFs perform slightly better on this
task. This is a result of lack of noise and uncertainty in the
provided evidence. It shows that MRFs can capture relevant
spatial relations and suggests that their performance deteri-
orates due to the limitations of approximate inference.

Conclusions

We presented GraphSPNs, a probabilistic deep model for
graph-structured data that learns a template distribution al-
lowing for making inferences about graphs of different
global structure. While existing works applied SPNs to
data organized as fixed-size grids or sequences, this paper
presents a novel attempt at deploying SPNs on arbitrary
graphs of varying size. Based on GraphSPNs, we proposed
a method for learning topological spatial relations in seman-
tic maps constructed by a mobile robot. Our method is ro-
bust to noise and uncertainty inherent in real-world prob-
lems where information about the environment is captured
with robot sensors. Our framework is universal and compat-



ible with any distributions defined over local evidence. How-
ever, it is particularly well suited for integration with other
SPN-based models. In the future, by combining a Graph-
SPN learned over semantic maps with the generative place
model proposed in (Pronobis and Rao 2017), we intend to
achieve a unified, deep, and hierarchical representation of
spatial knowledge spanning from local sensory observations
to global conceptual descriptions.
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