Learning Graph-Structured Sum-Product Networks for Probabilistic Semantic Maps

Kaiyu Zheng, Andrzej Pronobis, Rajesh Rao

University of Washington

Motivation (Robotics) Mobile Robots in Indoor Spaces

Motivation (Robotics) Semantic Maps

Motivation (Robotics) Semantic Mapping

Motivation (Robotics) Problelm:

Learn general spatial relations between things in the world

Estimate semantic attributes in specific environment?

- Model semantic map as a whole
- This is Structured Prediction (SP)

Motivation (Machine Learning) Probabilistic Graphical Models

Pros:

- Probabilistic
- Generative
- Interpretable

Cons:

• Intractable exact inference

Examples:

Bayesian Network, Markov Random Field, Chain Graph [Pronobis&Jensfelt ICRA'12]

Motivation (Machine Learning) Recent Deep Structured Prediction Approaches

- End-to-end
- Remarkable results for visual data

Figure from [Shelhamer et. al. PAMI'16]

[Schwing & Urtasun, ICML'15, Belanger & McCallum, ICML'16, Shelhamer et. al. PAMI'16]

Motivation (Machine Learning) Recent Deep Structured Prediction Approaches

- But...
 - Strict constraints on variable interactions
 - Fixed number of variables
 - Static global structure
 - Often not probabilistic

[Schwing & Urtasun, ICML'15, Belanger & McCallum, ICML'16, Shelhamer et. al. PAMI'16]

Sum-Product Networks

- Viewed in 2 ways:
 - Deep architecture
 - Graphical model
- Structure semantics:
 - Hierarchical mixture of parts

Learning Graph-Structured Sum-Product Networks for Probabilistic Semantic Maps

Sum-Product Networks

[Poon & Domingos, UAI'11, Friesen & Domingos, ICML'16]

Sum-Product Networks

- Learn conditional or joint distributions
- **Tractable** partition function, exact inference

[Poon & Domingos, UAI'11, Friesen & Domingos, ICML'16]

Proposed Method Graph-Structured Sum-Product Networks

- Template-based approach
- Defined as a set of template SPN models
- Template models represent **general**, higher-order relations between latent variables

YX

• Applied to form a single distribution for a **specific** structured problem for inference

Learning General Knowledge Graph-Structured Sum-Product Networks GraphSPN

Instantiation for Specific Problem Graph-Structured Sum-Product Networks

Experiments GraphSPN for Semantic Mapping

Experiments Dataset

- 99 semantic maps of 11 floors in 3 buildings in different cities
- Cross-validation:
 - Trained on graphs from 2 buildings
 - Tested on graphs from remaining building

Experiment 1 Infer Latent Semantics based on Noisy Evidence

Experiment 1 Infer Latent Semantics based on Noisy Evidence

Experiment 1 Results: Inference Behavior

Similar results even **without local evidence** for some places

Experiment 1 Results: Increasing Noise

Experiment 2 Novelty Detection

See paper for more details

Conclusions

- Introduced GraphSPNs
 - Leverages Sum-Product Networks

General approach to model arbitrary dynamic graphs Complex, noisy variable dependencies

Inference based on instantiaion of template models

Applied GraphSPNs to model semantic maps

Ongoing Work Unified Model for Spatial Knowledge

Learning Graph-Structured Sum-Product Networks for Probabilistic Semantic Maps

Kaiyu Zheng, Andrzej Pronobis, Rajesh Rao University of Washington

> http://www.kaiyuzh.me http://www.pronobis.pro

> > Thank you

