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Motivation (Robotics)

Mobile Robots in Indoor Spaces
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Motivation (Robotics)

Semantic Maps
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Motivation (Robotics)

Semantic Mapping
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Motivation (Robotics)

Problelm:

Learn general spatial relations
between things in the world

Estimate semantic attributes in
specific environment?

e Model semantic
map as a whole

e This is Structured
Prediction (SP)

spatial
relations
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Motivation (Machine Learning)

Probabilistic Graphical Models

Pros: Cons:
 Probabilistic e Intractable exact
« Generative inference

* Interpretable

Examples:

Bayesian Network, Markov Random Field,
Chain Graph [Pronobis&Jensfelt ICRA’12]
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Motivation (Machine Learning)

Recent Deep Structured
Prediction Approaches

e End-to-end
e Remarkable results for visual data

forward /inference

backward /learning

2

[Schwing & Urtasun, ICML’15,

. , Belanger & McCallum, ICMIL/’16,
Figure from [Shelhamer et. al. PAMI'16] Shelhamer of. a1 PRMI16]
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Motivation (Machine Learning)

Recent Deep Structured
Prediction Approaches

. Butlll
e Strict constraints on :..0..0..:
variable interactions ..‘.... .

0.0, t.}.
'0 .'0 '0 .'0

* Fixed number of variables
* Static global structure
e Often not probabilistic

[Schwing & Urtasun, ICML’15,
Belanger & McCallum, ICML/'16,
Shelhamer et. al. PAMI’16]
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Sum-Product Networks

* Viewed in 2 ways:
* Deep architecture
* Graphical model

e Structure semantics:
e Hierarchical mixture of parts

Input Variables
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Sum-Product Networks

P(X1, X2)

Sum (Mixture Model)

Weights (Priors)

Product
(Compositions of Parts)

Low-level Features

Naive Bayes Mixture Model
3 components

Input Variables . .
2 binary variables

[Poon & Domingos, UAI'11,
Friesen & Domingos, ICML’'16]



Sum-Product Networks

* Learn conditional or joint distributions
* Tractable partition function, exact inference

Sum (Mixture Model)

Weights (Priors)

(Compositions of Parts)

Low-level Features |———-P

Naive Bayes Mixture Model
3 components

Input Variables — . .
2 binary variables

[Poon & Domingos, UAI'11,
Friesen & Domingos, ICML’'16]



Proposed Method
Graph-Structured

Sum-Product Networks

* Template-based approach
* Defined as a set of template SPN models

* Template models represent general,
higher-order relations between latent variables

* Applied to form a single distribution for a
specific structured problem for inference



Learning General Knowledge

Graph-Structured
Sum-Product Networks crapnsen
Template 1 Template 1
/
®
Partition © Train
Template N Template N
o ©
®
Annotated °o ¢ ,
training data Sub-graphs Template SPNs

(graph-structured)
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Instantiation for Specific Problem

Graph-Structured
Sum-Product Networks
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X1 Xz
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PE(X)Y)
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Experiments

GraphSPN for Semantic Mapping
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Observed local
X1 | d— evidence X Ly
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Inferred distribution
of latent variables Y
(Semantic place
categories)

Observed local
X1 | d— evidence X Ly
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Experiments
Dataset

* 99 semantic maps of 11 floors in 3 buildings
in different cities

* Cross-validation:
 Trained on graphs from 2 buildings
* Tested on graphs from remaining building
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Experiment 1

Infer Latent Semantics
based on Noisy Evidence

Node associated local evidence
with
evidence (20%)

correctclass  jncorrect class

Node associated with
evidence (80%)

local evidence

correct class
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Experiment 1

Infer Latent Semantics
based on Noisy Evidence

of

incorrect information
(20%)

correctclass  jncorrect class

correct
information (80%)

output

correct class
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Experiment 1
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Experiment 1

Results: Increasing Noise
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Experiment 2

Novelty Detection

See paper for more details
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Conclusions

* Introduced GraphSPNs
* Leverages Sum-Product Networks

General approach Complex, noisy Inference based
to model arbitrary variable on instantiaion of
dynamic graphs dependencies template models

* Applied GraphSPNs to model semantic maps
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Ongoing Work

Unified Model for Spatial Knowledg
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