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Mobile Robots in Indoor Spaces
Motivation (Robotics)
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Semantic Maps
Motivation (Robotics)



Semantic Mapping
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Motivation (Robotics)

places spatial

relations

• Model semantic
map as a whole

• This is Structured
Prediction (SP)

Problelm:

Learn general spatial relations 
between things in the world

Estimate semantic attributes in 
specific environment?



Probabilistic Graphical Models

Pros: 

• Probabilistic

• Generative

• Interpretable

Motivation (Machine Learning)
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Cons:

• Intractable exact 
inference 

Examples:

Bayesian Network, Markov Random Field,
Chain Graph [Pronobis&Jensfelt ICRA’12]



• End-to-end 

• Remarkable results for visual data

Motivation (Machine Learning)
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Figure from [Shelhamer et. al. PAMI’16]

[Schwing & Urtasun, ICML’15, 

Belanger & McCallum, ICML’16,

Shelhamer et. al. PAMI’16]

Recent Deep Structured 
Prediction Approaches



• But…

• Strict constraints on 
variable interactions

• Fixed number of variables

• Static global structure

• Often not probabilistic
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Motivation (Machine Learning)

[Schwing & Urtasun, ICML’15, 

Belanger & McCallum, ICML’16,

Shelhamer et. al. PAMI’16]

Recent Deep Structured 
Prediction Approaches



Sum-Product Networks

• Viewed in 2 ways: 

• Deep architecture

• Graphical model

• Structure semantics: 

• Hierarchical mixture of parts
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Latent Variable

Input Variables



Sum-Product Networks

[Poon & Domingos, UAI’11, 

Friesen & Domingos, ICML’16]

Naïve Bayes Mixture Model
• 3 components
• 2 binary variables
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• Learn conditional or joint distributions

• Tractable partition function, exact inference

Sum-Product Networks

[Poon & Domingos, UAI’11, 

Friesen & Domingos, ICML’16]



• Template-based approach

• Defined as a set of template SPN models

• Template models represent general,
higher-order relations between latent variables

• Applied to form a single distribution for a 
specific structured problem for inference
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Proposed Method

Graph-Structured
Sum-Product Networks



GraphSPN

Graph-Structured
Sum-Product Networks
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Learning General Knowledge

Sub-graphs

Annotated

training data

(graph-structured)

Partition

Template 1
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Template 1
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Template SPNs
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Graph-Structured
Sum-Product Networks

Instantiation for Specific Problem
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GraphSPN for Semantic Mapping
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Experiments

Observed local 

evidence
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Observed local 

evidence
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Observed local 

evidence

Inferred distribution

of latent variables

(Semantic place 

categories)

P(Yi)



Dataset
• 99 semantic maps of 11 floors in 3 buildings 

in different cities

• Cross-validation:
• Trained on graphs from 2 buildings

• Tested on graphs from remaining building
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Experiments



Infer Latent Semantics 
based on Noisy Evidence
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Experiment 1

Node associated 

with incorrect

evidence (20%)

Node associated with 
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Infer Latent Semantics 
based on Noisy Evidence
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Experiment 1

Correction of

incorrect information 

(20%)

Strengthen correct

information (80%)
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output
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Noisified GraphSPN Groundtruth

Results: Inference Behavior
Experiment 1

Similar results even without local evidence

for some places
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Results: Increasing Noise
Experiment 1
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See paper for more details
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Experiment 2



Conclusions

• Introduced GraphSPNs

• Leverages Sum-Product Networks

• Applied GraphSPNs to model semantic maps
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General approach 

to model arbitrary 

dynamic graphs

Complex, noisy 

variable 

dependencies

Inference based 

on instantiaion of 

template models



Unified Model

Unified Model for Spatial Knowledge
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Ongoing Work

Sensory

information

Local place 

semantics

Global topology

Semantics in 

global context

DGSM

(Pronobis

and Rao,

IROS 2017)

GraphSPN

This work!
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