DVMS v3.0 User Guide

DHARMESH M. MANIYAR (V1.8, 2007)
JOoHN R. OWEN (v2.4, 2009)
SHAHZAD MumTAzZ (v3.0, 2011)

NEURAL COMPUTING

NCRG

RESEARCH GROUP

ASTON UNIVERSITY
June 2011

Copyright (c) 2011 Tan T. Nabney (NCRG, Aston University)



ASTON UNIVERSITY

DVMS v3.0 User Guide

DHARMESH M. MANIYAR (V1.8, 2007)
JOHN R. OWEN (v2.4, 2009)
SHAHZAD MuUMTAZ (v3.0, 2011)

Preface

The data available to tackle many scientific challenges is vast in quantity and diverse in structure.
With the continuous advance of science and computers, datasets will not in the future become smaller
or less common. The exploration of heterogeneous datasets requires suitable mining algorithms as
well as effective visual interfaces. DVMS is a software system which combines advanced projection
algorithms (developed in the machine learning domain) and visualisation techniques (developed in the
information visualisation domain). DVMS enables to the user to become directly involved in the data
mining process. Principled projection methods, such as Generative Topographic Mapping (GTM), and
Hierarchical GTM (HGTM), are integrated with powerful visualisation techniques, such as magnifica-
tion factors, directional curvatures, and parallel coordinates, to provide a visualisation environment.
DVMS also includes Principal Component Analysis (PCA) the most commonly-encountered visuali-
sation technique, the variants of GTM (such as GTM (log-version), GTM with simultaneous feature
saliency (GTM-FS), GTM-FS (log-version)), Gaussian Process Latent Variable Model (GPLVM), and
also NeuroScale (NSC) the one lesser-known visualisation technique.

This guide, the DVMS User Guide, provides an overview of DVMS, gives installation details, and
describes how to create a statistical model of a dataset. DVMS is easy to use — the user will need only
a basic knowledge of the statistical techniques it implements.

Keywords: dvms, user, guide, ncrg, aston, university, uk, data, visualisation, modelling, system

ii



Contents

1 Introduction
1.1 About DVMS . . . . . e
1.2 Why DVMS? . . . . e
1.3 The Visual Data Mining Framework . . . . . . . .. ... ... .. ... . .......
1.4 Steps to Install DVMS . . . . . . . . ..

2 Using DVMS
2.1 DVMS’s Configuration and Data Files . . . . . ... ... ... ... ... ....
2.1.1 Format of the Configuration File . . . . . ... ... . ... ... ... .
2.1.2 Format of the Data File . . . . . . . .. ... .. .. o
2.2 Data Selection and Preprocessing . . . . . . . . . ... oo

3 Creating and Visualising Models
3.1 Training a Model . . . . . . . . ..
3.1.1 High-Level Network-Architecture Parameters . . . . . . . ... ... ... ...
3.1.2 Interactive HGTM Training . . . . . . . . . . . ... oo
3.2 Visualising Trained Models . . . . . . . . . .. . L Lo
3.2.1 Model Visualisation (Non-HGTM) . . . . . . ... ... . .. ..
3.2.2 Model Visualisation (HGTM) . . . . . . ... ... . .. ...

O N =

SIS BTN

3.2.3 Model Evaluation . . . . . . . . . . . . . ...

Plotting MDL166 Fingerprints with NeuroScale

4.1 Fingerprint Generation with Pipeline Pilot . . . . . . . ... .. .. ... ..
4.2  Configuration and Data Files for Fingerprint Plotting . . . . .. ... ...
4.3 The Distance Matrix Used for Fingerprint Plotting . . . . . . .. ... ...
4.4 An Example NSC-Based Fingerprint Plot . . . . .. ... ... ... ....

Plotting MDL166 Fingerprints with the Latent Trait Model

5.1 Introduction to the Latent Trait Model . . . . .. ... ... ... .....
5.2 Configuration and Data Files for LTM . . . . . . ... ... ... ......
5.3 An Example LTM-Based Fingerprint Plot . . . . ... ... ... ... ...

Configuration File (Using Text Editor)

A.1 Format of the Configuration File . . . . .. ... ... ... ... .....

Glossary of Acronyms

iii

18
18
18
18
19

21
21
21
21

23
23

26



List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2

5.1

DVMS graphical interface. . . . . . . . . ... Lo
Configuration file graphical interface. . . . . . . . . . . ... ... L.
(a) Configuration file for OilFlow dataset. (b) Configuration file for Gaia678 dataset
(FingerPrint data only). (c) Configuration file for Rathbonel97 dataset (continuous
data as well as FingerPrint data). . . . . . . . . ... ... o o

Train new model graphical interface. . . . . . . . ... ... oo oL
Train PCA window. . . . . . . .. .. ...
Training Neuroscale (NSC) window. . . . . . .. .. ... . ... ... .. ...,
Training GTM window. . . . . . . . . . .
GTM Visualization space. . . . . . . . . . . . .
GTM Visualization (a) 2D Space Visualization. (b) LPC windows. . . . . .. ... ..
(a) Magnification Factors for GTM. (b) Directional Curvature for GTM. . . . . . . ..
(a) HGTM Mode Latent Space Visualization (b) HGTM childs. (c¢) Magnification
Factors for HGTM childs. (d) Directional Curvature for HGTM childs. . . . . . . . ..

Train new model graphical interface. . . . . . . . . . . .. ... ... .. ...,
NSC visualization. (a) FingerPrints data only i.e. Gaia678. (b) FingerPrints and
descriptor dataset combined i.e. Rathbonel97. . . . . .. .. ... ... ... .....

An LTM-based fingerprint plot visualization (A dataset of Gaia678). . . . . ... . ..

iv

19

22



List of Tables

1.1 DVMS’s installation files. . . . . . . . . . . . ... 3
2.1 Row-types of the datafile. . . . . . . . . . .. ... 6
2.2 Column-type identifiers of the data file. . . . . ... ... ... ... ... ... .. 7
2.3 Column and data combinations for each model. . . . . . . . ... .. ... ... .... 7
A.1 The complete set of config. file tags. . . . . . .. .. ... ... ... .. 25



Chapter 1

Introduction

This introduction gives: some background on DVMS’s development; a discussion on DVMS’s overall
design ethos; instructions for the installation of DVMS.

1.1 About DVMS

A program, the Data Visualisation and Modelling System (DVMS), has been developed in the Neural
Computing Research Group (NCRG), Aston University. DVMS provides an easy-to-use interface
to useful visualisation and modelling algorithms (some of which were invented by the NCRG). The
following algorithms have been included in DVMS: PCA, GTM, GTM (log-space version), GTM-FS,
GTM-FS (log-space version), GPLVM, HGTM, , LTM, and NSC. DVMS has been designed to help
the user understand and investigate datasets. The software can be used to probe more or less any
dataset (providing the dataset can be submitted in the required format, as given in Chapter 2).

DVMS is written in MATLAB and is highly dependent on the MATLAB-based toolbox, NETLAB.
(NETLAB was written by Professor Ian T. Nabney of the NCRG.) The original DVMS, version 1.8,
was written by Dharmesh M. Maniyar, a PhD student in the NCRG during 2005-08. An upgraded
version, version 2.3, was released in June 2009 by John R. Owen, also a PhD student in the NCRG.
The main new additions in version 2.3 were: algorithms to produce NSC plots of MDL166 molecular-
fingerprint data; an improved NSC-training GUI; the column-type row. Molecular-fingerprint plotting
was requested by Pfizer Ltd. (who co-funded, along with the BBSRC, the PhD project supporting
DVMS). In August 2009, version 2.4 of DVMS was released, the main enhancement being the inclusion
of the Latent Trait Model (LTM). The current updated version, version 3.0, was released in December
2011 by Shahzad Mumtaz, also a PhD student in the NCRG during 2009-2012. The whole structure
of the DVMS is revised in the current version to make it more simpler and easy to use by using object
oriented features of MATLAB. This revised version includes use of object oriented features provided by
MATLAB for managing the classes of configuration file, data files and training algorithms. Moreover,
some of the major changes have also been done in GUI as well. Furthermore log-space versions of
GTM and GTM-FS have also been incorporated in this version. Log-space version of GTM is based
on the code that computes log probabilities of Gaussian mixture model. The original code to compute
log probabilities was written by Alexander G. Dimitrov as contribution to NETLAB and is available
on NCRG website!. We made some changes in the code to enable it to compute log probabilities of
Gaussian mixture model in high-dimensional data space to avoid numerical problems. Furthermore,
an internee (i.e. Yigit Yildrim) working with Prof. Tan Nabney have included GPLVM in the current
version of DVMS.

1.2 Why DVMS?

The wide availability of datasets from different domains has created a need for effective knowledge
discovery and data mining. Data mining is most effective when the user can use machine learning and
visualisation algorithms interactively. No algorithm to date can reproduce the insight or flexibility of

Thttp://wwwl.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/contributions,/



CHAPTER 1. INTRODUCTION

a human expert. The principal purpose of visual data-exploration is to gain insight into a dataset, to
draw conclusions, and to understand the structure of a dataset.

The exploration of heterogeneous information spaces requires suitable mining algorithms, as well as
effective visual interfaces. Visual techniques alone cannot entirely replace analytic non-visual mining
algorithms to represent large high-dimensional datasets in an easy-to-interpret way. Instead, it is useful
to combine multiple methods from different domains for effective data exploration. DVMS integrates
both mining algorithms, and visualisation methods (from information visualisation theory), in such a
way that the results of a visualisation can be explored in detail, and intermediate steps of the mining
algorithms can be visualised and guided by the expert. So within DVMS the user can interact with
the data mining process, guided by visualisations.

The projection of high-dimensional data to a low-dimensional space (usually 2D) is an important
step in obtaining effective clustering of large high-dimensional datasets. Here the term projection is
used to mean any method of mapping data into a low-dimensional space in such a way that the pro-
jected data retains most of its structure. Projection methods include Principal Component Analysis
(PCA), Gaussian Process Latent Variable Model (GPLVM) [5] and NeuroScale (NSC) [7]. (PCA is a
well-known method and has been common in data mining since the 1980s.) For many real-life large-
scale datasets, Generative Topographic Mapping (GTM) [3], developed in Aston University’s NCRG,
provides better projections than those of the traditional methods [10]. Moreover, since GTM provides
a probabilistic representation of the projection manifold, it is possible to analytically describe (local)
geometric properties at any point on the manifold. Details of how these geometric properties can be
used in visual data mining are given in Section 3.2.1.

It has been argued that a single 2D projection, even if it is a non-linear projection, is not usually
sufficient to capture all of the interesting structure in a large high-dimensional dataset. Hierarchical
extensions of visualisation methods allow the user to “drill down” into the data; each plot contains a
smaller region making the plot more interpretable. Instructions for creating hierarchical visualisation
models with DVMS are given in Chapter 3.

1.3 The Visual Data Mining Framework

The visual data mining framework combines principled projection algorithms with visual techniques
to allow the user to gain insight into a dataset. The framework conforms to Shneiderman’s mantra
[12] (“Overview first, zoom and filter, details on demand”) to provide a useful piece of software.

To support the “overview first” stage of Shneiderman’s mantra, output of the projection algorithms
and basic visualisation aids, such as highlight and rotate, are provided for exploring a large high-
dimensional dataset. For the second stage, “zoom and filter”, visualisation aids such as zooming, and
filtering with the aid of magnification factors, are provided. This enables the user to identify and
concentrate on interesting subsets of the projections from the first stage. The third stage, “details
on demand”, is provided by plots of local parallel coordinates, and the ability to save subsets of the
data. Integration with other visualisation tools is also possible at some stages.

Interactive visual methods support the construction of HGTM models and allow the user to explore
interesting regions in magnified detail. Visual aids are provided at each stage of HGTM model
development. First a base/root GTM is trained and used to visualise the data. Then the user can
identify interesting regions on the visualisation plot for further exploration. After training a child
GTM and seeing the lower-level visualisation plot, the user is given the ability to explore the lower-
level plot in greater detail. Thus HGTM allows the user to interactively segment the input space.

With particularly large datasets (> 3,000 points), the higher-level plots produced may be rather
cluttered. This will make it difficult for the user to select subregions of the plot to build submodels. In
such cases a semi-automatic submodel-initialisation algorithm [8], based on minimum message length
(MML) criteria, can be used. This algorithm will enable the user to guide the lower-level projections.
Further details of the overall framework provided by DVMS are given in [9].

1.4 Steps to Install DVMS

DVMS has been compiled with the MATLAB compiler to run as a standalone application under Win-
dows. It can be installed by following the steps below.



CHAPTER 1. INTRODUCTION

1. Create a directory on your hard disk to hold DVMS — this section assumes the directory is
named dvms_hold. Copy all files and directories from the DVMS CD-ROM to dvms_hold (after
this copy the CD-ROM is not required again). Enter dvms_hold — you should be able to find
DVMS’s two main distribution directories distrib and src. Enter the distrib directory and
click on dvms_pkg.exe. This will unzip the main DVMS executable and some associated files.

2. The program VCREDIST_X86 should install automatically during the unzip. This installation
will take around 10 minutes depending on the speed of your computer.

3. The MATLAB Compiler Runtime (MCR) should also install automatically during the unzip.
(You should be able to click “Next” to all/most of the installation options.) DVMS is written
in MATLAB and the MCR is the underlying MATLAB interpreter.

4. The files in Table 1.1 should now be present.

5. Once VCREDIST_X86 and the MCR have been installed on your computer, DVMS can be
started by clicking on the executable dvms.exe. DVMS can now always be started by clicking
on this executable; it won’t be necessary to repeat the installation of VCREDIST _X86 or the
MCR.

File Description

dvms_pkg.exe The three files below zipped-up.

MCRInstaller.exe | The program that installs the MCR.

dvms . exe The MATLAB-compiled DVMS executable.

readme.txt A minor file created by MATLAB.

Table 1.1: DVMS’s installation files.



Chapter 2

Using DVMS

This chapter describes how to use DVMS. The process of building a statistical model with DVMS can
be divided into four main steps:

1. Creation of the configuration file (mostly metadata on the data file).
2. Creation of the data file (the dataset to be analysed).

3. Model training (e.g. NSC model training).

4. Model visualisation and interpretation.

The initial interface provided with DVMS to support above stated process is shown in Figure ?7.

.
B ovms 3.0 =SACN X

File Model Plot Help

Set Configuration and Data Files

Configuration file: Set Config. File
Diatta file: Set Data File
FingerPrirts (FP: NOT PRESENT Set NSC Dist. Parameters

Train a Hew Model or Visualize on a Trained Model

FStatus

Figure 2.1: DVMS graphical interface.

Sections A.1 and 2.1.2 describe steps (1) and (2) respectively. Steps (3) and (4) are covered in
Chapter 3.

2.1 DVMS’s Configuration and Data Files

Two files are central to building a model with DVMS — the configuration file and the data file.
The configuration file contains mostly metadata on the data file; the data file contains the dataset
itself. To understand the format of these two files is to inspect the example files supplied with
DVMS — the reader is advised to look at these files whilst reading this chapter. Configuration
files (extension .cfg) can be read with any text editor. Data files (extension .csv) are best read



CHAPTER 2. USING DVMS

with a spreadsheet. Loading a data file in the current version of DVMS brings up the progress
bar (Progress bar code was originally written by Ohad Gal in 2003 and available on website i.e.
http://www.mathworks.com/matlabcentral /fileexchange/3607-progressbar).

2.1.1 Format of the Configuration File

The first thing to do when building a new model is to write a DVMS configuration file. This file,
commonly called the config. file, is mostly metadata about the dataset. The easiest way to generate
the configuration file is to use the graphical interface (see Figure 2.2) provided with the current version
of DVMS. However, a configuration file can also be generated using any of the text editor as supported
by the previous versions of the DVMS and details are provided in Appnendix 2.2. Some examples for
using the graphical interface to generate configuration files are shown in Figure 2.3.

n Configuration File [ — | Lih_J |

— Configuration File Options

Databasze Mame
Mo. of Yariables

M. of Labelz ||

-~
Label Mames Add Label Name
2 Remove Selected

Lakel Column Inde:x
Title Rovy Index | Mo x|
Instances ID |0 il
Mormalization | Mo Transforamtion x|

Target Calumn | No 1-'.

Target Bin Limit=

Fingerprint Column Inde:x

Load Existing | ‘ Generate New |

Sawve Configuration ‘ 0K |

Figure 2.2: Configuration file graphical interface.



CHAPTER 2. USING DVMS

. = N &
B configuration File o I Configuration File el B Configuration File S

— Configuretion File

— Configuration File Opti

— Configuration Fie: Opti

Database Nare:
Ditabase Name OiFbw Database Nare Geis678 Rathbone197

No.of Variables 2 o, of Varisbes 0 o, of Varisbies & |
No. of Labels 3 | No. of Labels 0 | No_of Labeis 0 b

: B Label Names A =

Homogenzous - Lakel Names R

tabellanes Add Label Name dd Label Name.
et )" [Remove Seiected| | [Remove Seiected L~ |Remove Sekecied
0
Lakel Column Index: 1 Label Colurn Index 0 Label Column Indexc
- I . -
I T Row Index | Yes v The Row Index | Yes - ! Tile Row Index: | Yes
hstancesip | YES hetances D Y5 " Dindex | 1

] v| |
Instences D | 7€ Y Dindex | 1 i I . Dindex | 1 f I'

|
Normslizetion Data ormalization . = Nermizatin N0 Transforsmion > Mormalzation Data Nomalzatn (. ‘

Target Column | No - Target Column | Yes - Terget Column Vs -
Terget Ein Limits Torgel BnLinits 100-90-80-50-0 [ oot g 1 Target BnLings  100-80-70-50-0 [ oot gin Limits
Fingerprint Column Index: 0 Fingerprint Column Index 3 Fingerprint Column Index iz
l | LosdExisting ‘ | Generats New l Load Existing Generale New

Load Existing l l Generate New

(a) (b) (©)

Figure 2.3: (a) Configuration file for OilFlow dataset. (b) Configuration file for Gaia678 dataset
(FingerPrint data only). (c¢) Configuration file for Rathbonel97 dataset (continuous data as well as
FingerPrint data).

2.1.2 Format of the Data File

The data file contains the dataset — the data to be processed by DVMS. This file should contain one
record per row, and each field in a row should be separated by a comma. The file should be saved
as comma separated values with the extension (.csv). There are exactly three possible row-types in a
data file (Table 2.1): the title row, the column-type row, and a data row.

Row-Type Description

Title A title (label) for each column.

If present must be row 1 (i.e. the first row).

This row is optional but recommended.
Column-Type | Entries specify type of each column.

Must always be present as either row 1 or 2
(depending on absence/presence of title row).
Data A data row holds the data values for each column.

Table 2.1: Row-types of the data file.

The title row contains name labels for each column. Its inclusion is recommended but it can be
omitted by setting the configuration file. The column-type row must always be present as either row
1 or 2 depending on the absence/presence of the title row. A data row contains the data entries for
each column.

The column-type identifiers (Table 2.2) are used in the fields of the column-type row. Columns can
be present in any order. The ID column must occur exactly once. V column can occur any number of
times. The LABEL, TARGET, and FINGERPRINT columns can occur either once or not at all.

It is often possible to classify a dataset by attaching a label to each point. Classification is used to
colour data points — this helps to highlight any clustering present in a dataset. It also helps the user
to see if the different classes are clearly separated. (This is a useful criterion for determining whether
the training process is complete during the creation of hierarchical visualisation models.) Labels in
the label column should be consecutive integers, starting from 1; these integers correspond to the class



CHAPTER 2. USING DVMS

Column-Type Identifier | Description No. Occurrences
ID ID column. 1 (Must occur once.)
Column of IDs (strings or integers).
\Y Variable column. Any no.
Column of data values for a variable (reals).
LABEL Label column. Oor1l
Column of label values (must be integers).
Values correspond to labels in config. file.
TARGET Target column. Oorl
Column of target values (reals).
Used to produce NSC plots.
FINGERPRINT Fingerprint column. Oorl
Column of fingerprints (FP-strings).
Used to produce NSC plots.

Table 2.2: Column-type identifiers of the data file.

labels specified in the config. file.

Not all models can use a target and/or label column, and not all models can process descriptor
and/or fingerprint data. (Note that it makes no sense to plot against a target column and a label
column simultaneously — so a data file can contain either a target column or a label column but not
both.) Table 2.3 summarises the input combinations available to each model. Attempting to input

data not allowed by this table will generate a runtime error in DVMS.

Model Target Col.? | Label Col.? | Descriptors? | Fingerprints?
HGTM No Yes Yes No
GTM Yes Yes Yes No
GTM (log-version) Yes Yes Yes No
GTM-FS Yes Yes Yes No
GTM-FS (log-version) | Yes Yes Yes No
GPLVM Yes Yes Yes No
LTM Yes Yes No Yes
NSC Yes Yes Yes Yes

Table 2.3: Column and data combinations for each model.

2.2 Data Selection and Preprocessing

Data selection is an important process because if the variables that are chosen do not contain useful
information, it will be impossible to get any insight from a visualisation model. This does not mean,
however, that every variable should be included in a dataset. If too many variables are included, the
important relationships/structures in the dataset may become obscured. Visualisation, by its very
nature, will help the user explore a dataset, which in turn will help with variable selection.



CHAPTER 2. USING DVMS

DVMS, in its current form, requires all variables to be continuous variables; DVMS cannot currently
process discrete variables.

Scaling-related weightings can occur if variables are measured on widely-different scales. Say, for
example, one variable is in the range —10, 000.....10, 000, and another is in the range —1.0.....1.0, then
the first variable will dominate results. A common way around this is to normalise the dataset so that
each variable has a mean of 0 and a standard deviation of 1. Setting the Normalization property in
the config. file allows the user to normalise a dataset. Dataset normalisation should always be used,
unless there is a good reason not to do so.

Normalisation works well for most datasets, but problems can still arise if there are significant
outliers (data values which are very different to the norm). This may prevent the model from being
properly trained, but more often will lead to a plot with most points in one large cluster, and a small
number of outliers a long way from the cluster. Visualisation will help the user identify outliers and
exclude them from the analysis. (The user must be very careful here: it is unexplained outlying data
that can lead to mew scientific theories!) If HGTM is being used, the user will be able to create
submodels to split the outliers from the main data.

DVMS needs every entry in the data matrix to have a value (i.e. no data fields should be
empty/null). (It is actually possible to train GTM and HGTM models on datasets where some
values are missing, and this is a possible future modification to DVMS.) If a value is missing, then
the data point should be removed altogether, or the value should be replaced by the variable’s mean
value.

Before training a model the user will need to load both the config. file and the data file — this is
done from the main GUI of DVMS. Once a model has been successfully trained the next steps are:
save it (with a carefully chosen filename); load it back in; visualise it.



Chapter 3

Creating and Visualising Models

This chapter discusses different issues one should consider during the development of a visualisation
model. There is more to developing a good-quality visualisation model than simply running a training
code. Model development is a process, and each stage must be carefully considered if the end result
is to be useful. Two important issues in creating a good-quality model are data selection, and data
preprocessing. These are discussed in Section 2.2. Two other important steps, model training and
model evaluation, are now discussed.

3.1 Training a Model

The purpose of training a model is to adjust the model’s parameters (sometimes known as “weights”)
so that the model fits the data as well as possible. The quality of fit is measured using an error
function: the smaller the value of the error function (which in some cases can be negative), the better
the fit. Note that the error function for GTM and HGTM is quite different for that of NSC, and so
error values cannot be compared between models.

A key consideration is how well the model fits the underlying generator of the data. A good-quality
model will generalise well to new data. Generalisation can be measured by running the model with a
test dataset i.e. evaluating the error function on a dataset different to the dataset used for training.
So when training a model, the user will need at least two datasets: one for training (parameter
adjustment) and one for testing (model evaluation). To train a model, a graphical interface (as shown
in Figure 3.1) is provided that assists the user by selecting a training algorithm from the drop down
list provided.

3.1.1 High-Level Network-Architecture Parameters

When training a model, there are certain high-level network-architecture parameters that the user
needs to set for certain algorithms. If the training algorithm selected is the PCA, it does not have
any high-level parameters, and is created by simply using the “Train Model” button (see Figure 3.2).
Adjustable parameter settings for training a model can be seen in Figure 3.4 (GTM, GTM (log-space
version), GTM-FS, GTM-FS (log-space version), LTM and HGTM) and Figure 3.3 (NSC). GTM,
GTM-FS, GTM (with log based Gaussian), LTM and HGTM all have two main high-level parameters:
the number of node centres (Gaussians), and number of RBF centres. The main high-level parameter
for NSC is the number of RBF centres.

Model complexity is a function of the size and structure of the model. The greater the number of
RBF centres and node centres, the more flexible/complex the model. If the numbers are too small,
then the model will be too simple and will have a large error on the training data. If the numbers are
too large, then the model will have a low error on the training data, but a large error on new data
because the model is too specific to the training data — a phenomenon known as overfitting or, less
commonly, overtraining. If overfitting is present, it usually becomes apparent when the number of
points in the test dataset is much less than (say 25%) the number of points in the training dataset.

One way to determine a good value for the high-level parameters is to train several models with a
range of values and compare the generalised performance. A good model will be as simple as possible,
and will fit the data well. Here are some notes on the high-level parameters for the various models:



CHAPTER 3. CREATING AND VISUALISING MODELS

GTM:

LTM:
HGTM:

NSC:

B Trein New Model SHECEL X
— Training Algorithm — Menu
Select Training Algarithm PCA -
|
PCA Training (Eigenvalues Magnitude in descending order)
1 -
Save A

0.8+
s Sa
=
=
& 0.6
= sualize
w
E
=
w (4
z gar A
=
=
i

0.2+

0 1 1 1 1 1 1 Il 1 1 I}
0 0.1 0.2 0.3 04 0.5 0.6 07 08 0.9 1
Dimensions

Figure 3.1: Train new model graphical interface.

GTM, as a model, can be interpreted as being a 2D rubber sheet in data-space: spheres placed
on the sheet capture that fact that the data lies near to, but not exactly on, the sheet. The
two main high-level parameters are: (1) number of node centres; (2) number of RBF centres.
In (1) the Gaussians are the spheres: the more spheres, the better the data can be modelled.
However, the number of training iterations is proportional to the number of Gaussians, so using
too many Gaussians can make training very slow. Overfitting, whilst possible with GTM, is less
likely to happen than with the other models used by DVMS. In (2) the number of RBF centres
governs the complexity of the map from the computer screen to the data-space — effectively
the amount of stretch and curvature of the rubber sheet. The larger the RBF value, the more
complex the map. Different variations of the GTM such as GTM with log based Gaussian model
is implemented to support the high-dimensional data space and use same high-level parameters
as for GTM. GTM-FS also uses same high-level parameters as for GTM.

Use high-level parameters as for GTM.

HGTM consists of a tree of GTM models, the high-level parameters for each GTM model need
to be set as each is trained. In addition, the user will need to choose the number of levels, and
the number of child nodes at each level. To a large degree, this is a matter of how well the
current set of plots fit the data. This is further discussed in Section 3.1.2.

Number of hidden units (RBF centres): the larger the number, the more complex the projection
function can be.

The user will need to choose the maximum number of training iterations the training algorithm
should run for. The method of determining when to stop training the single models (GTM, GTM-FS,
GTM (with log based Gaussian), LTM and NSC) is straightforward: each model should be trained
until the error value has converged. During training, DVMS will plot a logarithmic graph of the error
values. Once the error curve has reached a flat level (Figure 3.4), no more training is required. If
the error curve has not reached a flat level when the maximum number of iterations has been reached,
then the mazimum number of iterations should be increased and the model retrained. The training of
a HGTM model is recursive: once the top-level GTM has been trained, every leaf node in the tree

10



CHAPTER 3. CREATING AND VISUALISING MODELS

u Train New Model . | e[Sl S

— Training Algorithm — henu

Select Training Algorithm PCA -

PCA Training (Eigenvalues Magnitude in descending order)

2 | Clear Axes

Eigenvalues Magnitude
L

Print

Dimensions

@ W
i 14
&

@
I
o

Figure 3.2: Train PCA window.

can be extended with child models. The next section provides more information on training HGTM
models.

3.1.2 Interactive HGTM Training

How are child GTM plots added? When should child GTM plots be added? When should their
addition be stopped? These are the three questions that should be asked when training a HGTM
model, and each is now answered.

How are child GTM plots added? To add the child plots, “HGTM interactive mode” button
must be pressed first on the latent space window. Thereafter, the user selects points in the latent-space
that correspond to centres of the subregions of interest. The points are then transformed via a map f
to the data-space. Then subregions are formed using Voroni compartments [1]. Adding child GTMs
in DVMS is very simple. Click on the parent GTM plot to select centres for the submodels, and right
click to end the selection of submodels. Relevant instructions are provided on screen during training.

When should child GTM plots be added? GTM models the data as a curved and stretched
2D sheet. However, if the data points at a leaf in the tree do not lie close to such a surface, then the
plot will be misleading. The successful addition of child GTMs requires the data to be partitioned so
that it lies locally-close to a 2D sheet. The user should add a child GTM to a leaf model if:

1. The plot is cluttered with too many points and separate clusters cannot be seen.

2. With the help of the curvature plots, the user decides the model is not flat. It is particularly
helpful to put child models on either side of bands of large curvature, as this “slices” the data
into simpler segments.

3. The MF plot shows that some areas of the map are being stretched a long way. Putting child
models in regions of high data-density will create child plots that are less stretched.

When should the addition of child GTM plots be stopped? No futher models should be
added when the plots give enough information. One way of deciding this is by comparing leaf nodes
to their parents; if they look very similar, no further information is available. If the data is simply

11



CHAPTER 3. CREATING AND VISUALISING MODELS

s 53
u Train New Model . =S
— Training Algorith — Menu
Select Training Algorithm Neuroscale (NSC) )
% 10° Error Function Plot for Neuroscale

Save As

7L “““ i Clear Axes

w
Y
3

Error Function Value
@
T

Print

0 2 4 6 i 10 12 14 16 18 20

lteration Mo.
— Training Parameter

Mazimum Mumber Of terstions 20 4 »
Mo. of Certres 4 »

/
/

Figure 3.3: Training Neuroscale (NSC) window.

being visualised, and no predictive modelling is being carried out, then it is not necessary to create
a single GTM plot for each significant data cluster; it is enough if the leaf nodes show well-separated
clusters of data.

Training effectiveness is shown by a graph similar to the error graph of Figure 3.4. The training
error should end with a flat level, which means that the learning algorithm is nearing the minimum
of the learning cost function. At this stage, if required, parameters can be changed and the model
retrained.

3.2 Visualising Trained Models

Models, trained as explained in Section 3.1, can be loaded to visualise the data. FExisting models
can be loaded by simply pressing the “Visualize” button on DVMS’s training window or visualizing
the test dataset by pressing “Visualize” button using primary GUI that brings the “Test Visualize”
window appeared. Previously trained model using different algorithms can be loaded by selecting the
algorithm type from the drop down list and clicking on the “Load Trained Model” and then selecting
and pressing the “Visualize” button . Pressing the “Visualise” button either on the “training window”
or “test visualize window” causes the model to be plotted in latent-space.

3.2.1 Model Visualisation (Non-HGTM)

Figure 3.5 gives the interface for PCA, GTM, GTM-FS, GTM (with log based Gaussian) and LTM
visualisations. By using the interface the user can explore nearest points in data-space, and can even
save the latent-space points as a (.csv) file.

It is very useful to be able to relate the visualisation of latent-space to that of data-space. A facility
to do this is provided by the “Local Parallel Coordinates” (LPC) frame available on the latent-space
visualisation interface (Figure 3.5). The LPC container frame has slider to select the number of
neighbouring points, option button for single or multiple LPC windows appeared for the selected
point/points on the latent space visualization. After the “Click to Activate LPC Mode” button has
been pressed, the user can click on any point/points in the latent-space to produce a chart of the

12



CHAPTER 3. CREATING AND VISUALISING MODELS

lteration Mo

— Training Parameter:

B Train New Model = | B ||

— Training Algorithm — Menu

Select Training Algorithm GTH =
|
« 10 Error Function Plot for GTM
25 T T T T T T T
2 [ 7 =
Save
@
=
m
< 15; .
5 sualize
G
5
o 1 i
s
i
0 1 1 1 Il 1 1 1 1 1
0 2 4 6 i 10 12 14 16 18 20

Maximum Mumber Of tierations 20 1 »
REBF Grid (M1) 8 4 3

REF Grid Centres (M1 x M1) 64

Latert Space Grid (N2) 12 ] b

Latert Space Grid Centres (M2 x N2) 144

Figure 3.4: Training GTM window.

point’s data-space variables. The LPC plots generated for the two selected points on latent space
plot (see Figure 3.6(a)) with 10 neighbours, as shown in Figure 4.2(b), are interactive plots. The
user can select particular IDs by clicking on the corresponding line or ID. If the column-title row was
given in the data file, right clicking the ID will give a list of property names with data-space values
for the clicked ID. If the column-title row was not given, the data-space values will be displayed but
without any property names. Figure 4.2(b) shows an example of the LPC window. The window can
be removed by right-clicking in the latent-space plot.

One of the main advantages of using GTM-based models is that it is possible to analytically
calculate the magnification factors (MFs) [2] and the directional curvatures (DCs) [11] of the GTM
projection manifold. MFs of a GTM projection manifold, €2, are calculated as the determinant of the
Jacobian of the GTM map f [2]. MF plots are used to observe the amount of stretching in a GTM
manifold at different parts of the latent-space, which helps with data-space interpretation, outlier
detection, and cluster separation. Nabney et al. [11] derived a closed-form formula for the DCs of
the GTM projection manifold () for a latent-space point x € H and a directional vector h € H.
DC plots illustrate the direction and amount of folding in the GTM manifold. This can help the
user detect regions where the GTM manifold does not fit the data well. If folding in the manifold
is particularly high, it is possible for clustered points in the data-space to appear disparate on the
projection manifold. This clustering in the data-space can be spotted as a strong curvature band on
the corresponding DC plot.

The MF is represented by colour shading in the projection manifold (Figure 3.7(a)). The lighter
the colour, the more the stretch in the projection manifold. The direction of folding in the projection
manifold plot is given by a fine line for each part of the projection manifold in the DC plots (Figure
3.7(b)). The line length and the shade of the background colour represents the magnitude of folding.
The longer the line, and the lighter the background colour, the greater the folding.

3.2.2 Model Visualisation (HGTM)

A HGTM data model is visualised as a hierarchy of GTMs as shown in Figure 3.8(a) and Figure
3.8(b). The interface provides an “Options” menu which can be used to display MFs (Figure 3.8(c)),

13



CHAPTER 3. CREATING AND VISUALISING MODELS

B GTM Visualization - [ R =B |
S MERS
Moclel saved in file: oil_gtm mat
Dataset: O Data Set
— Locel Parallel Coordinates (LPC) Options:
l R T s 1o s S A s N S S Nearest-neighour poirts for LPC:
+ “ +| 19 @ Single LPC Plot Mode
+ o o+ o +
© it 5 e e
+ e W+ _{ 45 L. =]
. — Capy (N) Points to Clin Bosrd Options————————————————————
5 ++ P S Nearesi-neighbour points o cliphoard (M)
O ++ n 4 >| 50 | Click To Activate Copy Mode
o . - £ . s+
=} K s GTM Plot Options
N
.
. - s ¥ fon - b3 £ ’7I Generate MF Piot I [ Generate OC Plot ]
LI m o o o —HOTM Ot
Show NF at Sub-Levels
HGTM Interactive Mode
a ¢OF 4 L O+ a Show DC at Sub-Levels
“ @ H [} —Other
o Save Al Foints to Fie (.csv) ] [ Print
=] o o o o o g
o Change Bin Limits Replot
a8 o =]
o MO OO EEEENTOn O
st

Figure 3.5: GTM Visualization space.

and compute and display DCs (Figure 3.8(d)).

3.2.3 Model Evaluation

There are two main ways of evaluating a model. One is to assign a parameter to measure how well the
model fits the data (“goodness of fit”). The other is to make a subjective judgement of the quality of

a plot.

Choosing a parameter to measure goodness of fit is not a problem: the error can be calculated
for a test dataset. In a good-quality model, the error for the test dataset will be similar to the
error for the training dataset. Assessing the quality of a plot is largely subjective, but there are some
objective measures that can help. In a GTM plot, MF and DC subplots can help measure plot quality.
Some experimentation with the high-level network-architecture parameters, particuarly the mazimum
number of training iterations, may help refine a model. A good-quality plot will be easy to interpret.
The ideal plot will reveal some hitherto unknown structures in a dataset — providing new insights,

perhaps, for a piece of research.

14



B GTM Visualization

CHAPTER 3. CREATING AND VISUALISING MODELS

l=l@] = |

Y L LY

Model saved in fiie; oil_gtm.mat
Dataset: Ol Data Set

— Local Parallel Coordinates (LPC) Options

% o+ # TS IR TR RNT TR + + Mearest-neighiour pairts for LPC:
+ 4 »| 19 ©) Single LPC Plot Mode
+ # o+ o+ o T +
s g 0 g R o
i { — Copy () Paints to Clis Board Options
+ + S @ MNearest-neighbour points to cliphoard (M)
. =l + w 2 @ + o
+ * 4 »| 50 | Click To Activate Copy Mode
R a + +
& o . . E . . +
o K * . GTH Pict Options
. + o g ¥ b t " . Generate MF Plot Generats DC Plot
co4+®H e o m o oo o — HGTM Op
Show MF at Sub-Levels
HGTM Interactive Mode
o LR S +m = o Show DC at Sub-Levels
- 4+ 0 — Cther
a o o o o o g
o Change Bin Limits Replot
e : S—
a O 000 IO W
L
5 "
()
B Local parallel coordinates window 1 [=]@] = B tocal parallel coordinates window2 =|=)]
File Edit View Insert Tools Desktop Window Help || [File Edit View Insert Tools Desktop Window Help
Parallel plot for 10 nearest | Parallel coordinate plat for 10 nearest neighbours
‘ T 351 T 246
| 91 H 247
| 1 A 634 ! 1 ! 258
g 401 102
632 133
0 526 124
538 ot - T : a4
628 | ! v 7
1 637 ; ; P 116
I 408 ' L 72
12 3 4 6 6 7 8 9 101 12 172 3 4 5 6 7 8 9 10 11 12

Property Numbers

=

Property Numbers

Figure 3.6: GTM Visualization (a) 2D Space Visualization.

(b)

(b) LPC windows.

[ Figure 1: Magnification Factor (MF) Plot

P

[} Figure 2: Directional Curvature (DC) Plot

- ol

24

File Edit View Insett Tools Desktop Window Help ~ File Edit View Insert Teols D:skt:p ‘Window Help ~
EEE BRI PR ED: I EEEEIDNEEY R AR EE=]

(|
Magpnification Factor (MF) Plot for the GTM Projection. (Plotted on a log10 scale.) il Directional Curvature (DC) Plot for the GTM Projection Il

bl ‘:

(a)

(b)

Figure 3.7: (a) Magnification Factors for GTM. (b) Directional Curvature for GTM.

15



CHAPTER 3. CREATING AND VISUALISING MODELS

R g— ol BE—=) — _
Vo
B e T B2 “SelcionNode* acvepot: 1 k
LA 3|
i File Edt Ve et Tools Desdep Hirdow e
: VAT
Ty T i DEde }|A84904|B|0E al
+ 2| @ sageLrcPunese
+ &+ # h +
(ommmn] o
+oeovt f s P 0
. e —
0 R - B et eta e Ot
E * . : I ] [ cotToscho vy Freen
¢ M . PO o
LR N e —
re ¥ g o [o——
+:% s o moooc o S — 1++ O'ﬂ’::"
Vi Show WF atSubevess DR R R
R Y LR T - 'IRERPRRPY
-8 4 0 e
o ‘Save Al Pins o Fie (csv). Pt
o o 0o oo B
2 —
8 o o
Lw )
¢ cowmmmo o

file Edit View Insert Tools Desktop Window Help

Submodel 1 Submodel 2

(c)

Figure 3.8: (a) HGTM Mode Latent Space Visualization (b) HGTM childs. (c) Magnification Factors

Submodel 3

ol

Ngds|kh 45094 308/ a0

(d)

for HGTM childs. (d) Directional Curvature for HGTM childs.

16



CHAPTER 3. CREATING AND VISUALISING MODELS

Chapter: Plotting MDL166 fingerprints

17



Chapter 4

Plotting MDL166 Fingerprints with
NeuroScale

A molecular fingerprint is a one-zero bit-string describing the presence/absence of molecular features
within a single molecule. This chapter does not describe molecular fingerprint theory — for some
theory the reader should consult a textbook on chemoinformatics such as [6]. Given a dataset of
molecules, a fingerprint can be generated for each molecule, and these fingerprints can be plotted
using NeuroScale (NSC). Several types of fingerprint are in common use; DVMS can process MDL166
fingerprints, which as their name indicates, are 166 bits in length. This chapter describes how to
produce NSC-based plots of MDL166 fingerprints in DVMS.

4.1 Fingerprint Generation with Pipeline Pilot

The first step in producing an NSC-based fingerprint plot is to generate some fingerprints. This is done
by feeding a dataset of molecules into Pipeline Pilot, a high-quality program from Accelrys Software
Inc. (The Molecular Fingerprint component within Pipeline Pilot produces MDL166 fingerprints.)
Instructions on the use of Pipeline Pilot are not included here (Pipeline Pilot has very good help
pages). The column of fingerprints output by Pipeline Pilot will need to be merged with a DVMS
data file using a simple mini-tool called FPMerge. FPMerge is available by e-mail request from the
NCRG, Aston University.

4.2 Configuration and Data Files for Fingerprint Plotting

No special config. or data files are required for fingerprint plotting; standard DVMS config. and data
files are used. An example config. file for generating a fingerprint plot is shown in Figure 2.3(b) and
Figure 2.3(c).

4.3 The Distance Matrix Used for Fingerprint Plotting

An NSC-based fingerprint-model works by generating a matrix of the distances between all pairs of
molecules in the dataset. The distance matrix is computed as follows. Let z and y be any two
molecules in the dataset. Define d the distance between these two molecules to be:

d(x,y) = Yada(w1,y1) + Vpds (22, y2).
Where:
e 1 is the vector of descriptor data for molecule x
e 1 is the vector of descriptor data for molecule y

e 15 is the MDL166 bit-string for molecule z

18



CHAPTER 4. PLOTTING MDL166 FINGERPRINTS WITH NEUROSCALE

yo is the MDL166 bit-string for molecule y

dg is the descriptor data distance-function

dy is the fingerprint data distance-function
e 7,4 is an arbitrary multiplying-factor
e 7y is an arbitrary multiplying-factor

The vectors of descriptor data and fingerprint data are derived from the dataset. If no descriptor data
is present, dg; = 0, and the NSC plot will be of the fingerprint data only. The distance functions dy
and d; are chosen by the user from menu of possible functions (possible functions include Tanimoto,
Euclidean, and Dixon-Koehler). The multiplying factors v4 and 7 are arbitrarily set by the user to
emphasize either dg or dy. (If no emphasis is required then both of these factors should be set to
1.) The distance matrix is assembled by computing d(z,y) for all molecules. Once all values in the
distance matrix have been computed, the matrix is fed into an NSC model and a plot generated. The
user can set the distance functions, 4, and vy on DVMS’s primary GUI by clicking on the “Set NSC
FP parameters”. NSC Fingerprint parameters window is shown in Figure 4.1.

rn MSC FingerPrint Parameters Window l = | Lﬂh_J

gamma(d) 1.0 | Set gamma(d) |

gammaifl 4.0 [ Set gammalf) ]

distance(d): | tanimoto -
distance(f) | Tanimoto -
Ok

Figure 4.1: Train new model graphical interface.

4.4 An Example NSC-Based Fingerprint Plot

An example NSC-based plot of a fingerprint-containing dataset (i.e. Gaia678 dataset) is in Figure
4.2(a). Another example NSC-based plot of combined fingerprint and descriptors dataset (i.e. rath-
bonel97) is in Figure ??. (These plots are best viewed/printed in colour.) Clustering in these plots
is inconclusive — clustering may have been observed had more points been available. As can be seen
on the GUI, several options exist for the user to choose from including: Change Bin-Limits, Replot,
and Local Parallel Coordinates (LPC) (active if there are descriptors in the data).

19



CHAPTER 4. PLOTTING MDL166 FINGERPRINTS WITH NEUROSCALE

r — — o
B Neuroscale Visusiization R % e ===

S TERS s
Mocel saved in file: gaia?3_1_nsc.mat
Datasel: GaiaG78 Target: NSG_Tarpet
gamma(d): 1 gamma(iy 1 cis(d): tanimoto  dis(F} tanimota
— Local Parallel Conreinates (LPC) Options
Nearest-neighbour points for LPC:
. 4 1@ Single LPC Plot Mode
M () Multiple LPC Piot Hode: '
i
[l — Copy (M) Points to Clip Board Options:
Hearest-neighbour points 1o cliphoard (H)
\ =
I
I GTM Plot Options
[l
I ’7 ‘ Generate MF Plot | | Generate DC Plot ‘
[F]
(M — HGTM Opti
i = [[] Show WF at Sub-Levels.
(M ‘ HGTM Interactive Mode
I [] show DC at Sub-Levels
— Other-
l Save All Points to File .csv) ] [ Print ]
l Change Bin Limits. I ‘ Replot |
Status:
b —W

(a)

’. Neums(a,eygaﬁm . rf'_[. ) (o
e UER S ~
Model saved in file: rathlone1 97 _df_nsc mat

Detaset Rethbone1S7 Target TB-nhibtion
gamma(el) 1 gamma(f): 1 dis(d)y tanimoto dis(fy tanimeta

—Local Parallel Cooreinates (LPC) Options-
Mearest-neighoour points for LPC:

A ] M @ snge e Aot oce

— Copy (N) Poirts to Clip Board Options:
Nearest-nelghisour points to cliboard (W)

| |- e
. . GTM Plot Options:
.
’7 ‘ Generate MF Plot ‘ ‘ Generate DC Plot ‘
.ot i
. . (— HGTM Opt
.
. . —_— [ Show MF at Sub-Levels
| - ‘ HGTM Interactive Mode ‘

. " [[] show DC at Sub-Levels
— Cther
[ Save All Points to Fike (.csv) ] [ Print ]
.
[ Change Bin Limits ] ‘ Replot |

Status:

(b)

Figure 4.2: NSC visualization. (a) FingerPrints data only i.e. Gaia678. (b) FingerPrints and descrip-
tor dataset combined i.e. Rathbonel97.

20



Chapter 5

Plotting MDL166 Fingerprints with
the Latent Trait Model

This chapter is similar to Chapter 4 on plotting MDL166 fingerprints with NeuroScale. The Latent
Trait Model enables the user to plot datasets of fingerprints (one-zero bit strings). Only fingerprints
can be plotted — the dataset cannot contain any non-fingerprint (i.e. descriptor) data. This chapter
gives a brief introduction to the Latent Trait Model, an example config. file, and an example plot.

5.1 Introduction to the Latent Trait Model

The main reference on the Latent Trait Model (LTM) is a 2001 paper by Kabén and Girolami [4].
DVMS contains NETLAB code which implements the theory given in this paper. This chapter does
not give any theory on LTM — for theory the reader is referred to the paper.

LTM enables the user to plot a dataset of MDL166 fingerprints (against activity value or class). It
is well suited to plotting fingerprints as it was originally designed to model discrete data, and can be
regarded, informally, as a “sort of discrete GTM”. LTM works by using a Bernoulli noise model rather
than a Gaussian noise model as is used in GTM. To use LTM, the user will first need to generate a
dataset of MDL166 fingerprints as described in Section 4.1.

5.2 Configuration and Data Files for LTM

Note: normalisation must be turned off when using LTM. The LTM algorithm has been designed to
process discrete data directly — in the case of fingerprints this data is one-zero columns. An example
config. file for LTM is given in Figure 2.3(b):

The data file will typically consist of only three columns: an ID column, a target (or label) column,
and a fingerprint column. The respective column-type identifiers for these columns are: ID, TARGET
(or LABEL), FINGERPRINT. The best way to understand the format of the config. and data files is
to inspect the example files supplied with DVMS.

5.3 An Example LTM-Based Fingerprint Plot

An example of a dataset of fingerprints plotted with LTM is in Figure 5.1. (The figure is best
viewed /printed in colour.) Clustering in the plot is inconclusive — some clustering of the most active
molecules is present, but this could be purely coincidental. The plot contains 678 molecules — not
enough to identify much in the way of clustering.

21



CHAPTER 5. PLOTTING MDL166 FINGERPRINTS WITH THE LATENT TRAIT MODEL

B

1 — — —
S UERS
Madel saved in file: gaiab78_{_km mat
Dataset Gaia7d DataSet Target NSC_Target
LTM Training Parameters s no. cycles: 20 REF grid: 8 Latert-Space orid: 12
s amiss mrmss ge s e [P
- . . o
e e e e oy s e o
: : .
| : s S
H 3 B . . ‘
* s
. - . - L
P . . . =
- .
¢ H & wpes o . - « w e
s .
P PEEETE
' s, N
wad & e tee e . 5 oy eb
P L. : .
I T T PR -
. * -
.
. . » wed . - - .
) L L
Bee o es Jemm B
Status:

— Local Paraliel Coordinates (LPC) Options
Nearest-neighbour points for LPC:

4 »| 1 @ Single LPC Piot Mode
Click to Activate LPC Hode

— Copy (N) Points ta Clip Board Options.
Nearest-nelghbour points to cliphoard (M)

0 »| 67 | ClickTo Activate Copy Mode

(©) Muttipie LPC Plot Mode

GTM Plat Options
’7 ‘ Generate IF Fiot ‘ | Generate DC Piot |
—HGTM Ot

———— [ show MF at Sub-Levels

‘ HGTM Interactive Mode

[] Show DC at Sub-Levels.

— Cther

I Save Al Poinis to Fie (.csv) I I Print ]

[ Change Bin Limits ] ‘ Replot ‘

Figure 5.1: An LTM-based fingerprint plot visualization (A dataset of Gaia678).

22




Appendix A

Configuration File (Using Text
Editor)

2.2 To understand the format of the configuration files is to inspect the example files supplied with
DVMS - the reader is advised to look at these files. Configuration files (extension .cfg) can be read
and writing with any text editor.

A.1 Format of the Configuration File

The first thing to do when building a new model is to write a DVMS configuration file. This file,
commonly called the config. file, is mostly metadata about the dataset. A config. file can be created
with more or less any text editor, and must be saved with the file extension (.cfg). An example config.
file is given below. Blank lines are ignored by DVMS. Comments begin with a hash (#) and must
start on a new line.

# Example No. 1 DVMS Configuration File
# Shahzad Mumtaz, 1 June 2011
# Neural Computing Research Group (NCRG), Aston University, UK

# Indicate start of config. file
$CONFIG_START

# Second row of data file contains column-name strings
$DATASET _NAME

0ilFlow

$NO_VARIABLES

12

$LABEL_NAMES
Homogeneous

Annular

Laminar
$LABELS_COLUMN_INDEX

1

$TITLE_ROW_INDEX

1
$ID_COLUMN_INDEXSTATUS
1

$ID_COLUMN_INDEX

1

$NORMALIZATION

1

CONFIG_END

23



APPENDIX A. CONFIGURATION FILE (USING TEXT EDITOR)

The value for a tag should immediately follow the tag itself. Tags can take 0, 1, or more values. In
this example some of the tags are redundant as they duplicate tag default values (the user may wish,
however, to include them to emphasise values as is done here). The complete set of tags available in
DVMS, together with their default values, are in Table A.1 below. (You are likely to find this table
quite handy when writing config. files.) Another example config. file is given below. This file is for a
dataset that contains a target column and no label column.

# Example No. 2 DVMS Configuration File
# Shahzad Mumtaz, 1 June 2011
# Neural Computing Research Group (NCRG), Aston University, UK

# Indicate start of config. file
$CONFIG_START

$DATASET_NAME

Rathbonel97

$NO_VARIABLES

69

$TITLE_ROW_INDEX

1

$ID_COLUMN_INDEXSTATUS

1

$ID_COLUMN_INDEX

1

$NORMALIZATION

1

$TARGET _COULUMN_INDEX

1

$BIN_LIMITS

100

90

80

70

50

0

$FINGERPRINT_COLUMN_INDEX

72

CONFIG_END

In this example the tags $NORMALISATION and $TITLE_ROW have been omitted as they do not need
to be changed from their default values. Note that the $BIN_LIMITS tag must followed by exactly 5
values, each on a consecutive line.

24



APPENDIX A. CONFIGURATION FILE (USING TEXT EDITOR)

Tag Default Value Possible Values and Description
$CONFIG_START N/A Must be first tag in the config. file.
$CONFIG_END N/A Must be last tag in the config file.
$DATASET_NAME DATASET_NAME | A string holding the dataset’s name.
$NO_LABELS 0 Numeric value to represent the number of variables.
$LABEL_NAMES N/A Label name strings for each data class.
Used in conjunction with $NO_LABELS.
$LABELS _COLUMN_INDEX | O Index of the label’s column.

0: First row of data file does not contain

$TITLE_ROW 1 .
column name strings.

1: First row of data file does contain column
name strings.

$1D_COLUMN_TNDEXSTATUS 1 0: First row of data file does not contain

ID column.
1: First row of data file does contain ID
column.
$ID_COLUMN_INDEX 0 Index of the ID’s column.
0: Apply no transformation to dataset.
$NORMALISATION 1 1: Apply normalisation (mean = 1, var = 0).

2: Apply data whitening.

0: Data does not contain

$TARGET _COLUMN_INDEX | 1
target column.

1: Data does contain
target column.

$BIN_LIMITS [100; 90; 80; 50; 0] | Bin-limits used for NSC plotting when fingerprints
present in dataset. Must have exactly 5 values
with each value on a separate line.

$FINGERPRINT_COLUMN 0: Data does not contain
_INDEX finger print column.

N: “N” represent a number as index of
finger print column.

Table A.1: The complete set of config. file tags.

25



Appendix B

Glossary of Acronyms

This appendix gives brief and informal definitions of the main acronyms used in this user guide.

DC:

DVMS:

GTM:

GTM-FS:

GUI:

HGTM:

LTM:

LPC:

MEF:

NCRG:

NN:

NSC:

Directional Curvature
A parameter that measures curvature in a GTM manifold.

Data Visualisation and Modelling System
DVMS is the subject of this guide. A program developed in the NCRG for visualising and
modelling datasets.

Generative Topographic Mapping

A non-linear mapping of data from n-space to a space of lower dimensions, usually 2-space (for
plotting). GTM is mathematically more complex than PCA and NSC. It was first published in
1998 and is one of the most advanced dimension-reduction techniques available.

Generative Topographic Mapping with Feature Saliencies
Similar to GTM, except that feature saliencies are generated in addition to a GTM model.

Graphical User Interface
A graphics-based user interface — essential for visualisation.

Hierarchical Generative Topographic Mapping
Similar to GTM, except that data is explored using hierarchies of GTM plots.

Latent Trait Model

LTM was designed to model datasets of discrete data — in the case of DVMS, molecular fin-
gerprints (one-zero bit strings) are modelled. LTM is similar to GTM except that a different
noise model is used. GTM uses a Gaussian noise model; the LTM implemented in DVMS uses a
Bernoulli noise model. Other possible LTM noise models (not implemented in DVMS) include
Poisson and multinomial.

Local Parallel Coordinates
Let p be a point in latent-space. Then the LPC of p is the set of its data-space variables.

Magnification Factor
A parameter that measures stretching in a GTM manifold.

Neural Computing Research Group
A research group based at Aston University, Birmingham, UK.

Neural Network
NN is sometimes used as an abbreviation for Neural Network.

NeuroScale
A non-linear mapping of data from n-space to a space of lower dimensions, usually 2-space (for
plotting). First published in 1997.

26



APPENDIX B. GLOSSARY OF ACRONYMS

PCA:

PhiVis:

RBF:

Principal Component Analysis

A linear mapping of data from n-space to a space of lower dimensions, usually 2-space (for
plotting). PCA is one of the simplest dimension-reduction techniques available. It was invented
in 1901 and is still widely used today.

Probabalistic Hierarchical Interactive Visualisation
A MATLAB-based software package for visualisation. PhiVis was developed in the NCRG in the
late-1990s.

Radial Basis Function
Radial basis functions are used in RBF-based neural networks. An RBF ¢ is a real-valued
function whose value at a point x depends only on the magnitude of x:

o(x) = o(lIx[)-

27



Bibliography

[1]

F. Aurenhammer. Voronoi diagrams — survey of a fundamental geometric data structure. ACM
Computing Surveys, 3:345-405, 1991.

C. M. Bishop, M. Svensén, et al. Magnification factors for the GTM algorithm. Proceedings of
the 5th IEE International Conference on Artificial Neural Networks, pages 64—69, 1997.

C. M. Bishop, M. Svensén, et al. GTM: The generative topographic mapping. Neural Computa-
tion, 10:215-234, 1998.

A. Kaban and M. Girolami. A combined latent class and trait model for the analysis and vi-
sualization of discrete data. IEFE Transactions on Pattern Analysis and Machine Intelligence,
23(8):859-872, 2001.

Neil D. Lawrence. Gaussian process latent variable models for visualisation of high dimensional
data. In In NIPS, page 2004, 2004.

A. R. Leach and V. J. Gillet. An Introduction to Chemoinformatics. Springer, The Netherlands,
2007.

D. Lowe and M. E. Tipping. NeuroScale: Novel topographic feature extraction with radial basis
function networks. Advances in Neural Information Processing Systems, 9:543-549, 1997.

I. T. Nabney and A. Kaban. Semisupervised learning of heirarchical latent trait models for data
visualization. IEEE Transactions on Knowledge and Data Engineering, 17(3):384-400, 2005.

I. T. Nabney and D. M. Maniyar. Visual data mining using principled projection algorithms and
information visualization techniques. In Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 643-648, 2006.

I. T. Nabney, D. M. Maniyar, et al. Data visualization during the early stages of drug discovery.
Journal of Chemical Information and Modeling, 46(4):1806-1818, 2006.

I. T. Nabney, Y. Sun, et al. Using directional curvatures to visualize folding patterns of the
GTM projection manifolds. In Proceedings of the International Conference on Artificial Neural
Networks, pages 421-428, 2001.

B. Shneiderman. The eyes have it: A task by data type taxonomy for information visualizations.
Proceedings of the 1996 IEEE Symposium on Visual Languages, 3(6):336-343, 1996.

28



