EL2310 — Scientific Programming

Lecture 9: Scope and Pointers

Andrzej Pronobis
(pronobis@kth.se)

Royal Institute of Technology — KTH

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Overview

Overview

Lecture 9: Scope and Pointers
Wrap Up
Splitting code
Makefiles
Scopes
Pointer Basics
Pointers and Arrays

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Scope and Pointers

Last time

Arrays

Functions

Logical expressions
Precedence

vy v.vY

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Splitting into separate files
A first look at a Makefile
Scope rules

Pointers

vy v.vY

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Functions

> Syntax:
return-type function-name ([arguments])
{
declarations
statements
}
> If the function does return anything you give it return-type void
> If you return something you leave the function with statement:
return value;
where value is of the return-type
> If the function has return-type void you leave with return if
you want to leave before the function ends, otherwise you do
not have to give an explicit return

> NOTE: If your function has a return type and you do not have
Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Declaring functions

> A function just like a variable need to be declared before it is
used

> Either put the definition of the function before it is used or,
> add a declaration of it first and then later define it

> File example:
#includes
#defines

function declarations
main() { ...}

function definitions

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Linking to extra libraries

> Often use function defined in other libraries, such as cos,
sin, exp from libm

> Need to tell linker that it should use libm as well
> EX: gcc -o mymathprg mymathprg.c -1lm

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointers

Lecture 9: Scope and Pointers

Splitting code

Splitting code into separate files

> Can split code in a program into many files
> Easier to read large programs
> Makes code reuse easier

> Code is traditionally split into:

> Header files (myunit.h) - contain mostly declarations
> Source files (myunit.c) - contain mostly definitions

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Header files

» Contain declarations of the functions defined in source files
> Are included into other files using #include

> The preprocessor combines all #included files into a single file
before compiling

» Why do we need source files? Why not put all source code to
header files?

> Every time we make a small change in any of the #included files,
the whole program has to be re-compiled

> We clutter our files with all the definitions. For readability, it's better
to split definitions and declarations

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointer:
[o]e] lelelelele

Splitting code

#include

> To include function declarations we use #include

> You can do
#include <file.h>or
#include "file.h"

> The difference is in the order in which directories are searched
"file.h" version starts to look for files in local directory
> <file.h> looks in include the path

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

plitting code

Splitting declarations and definitions

vV V. v Vv Y

v

Create myunit.c and myunit.h files for each code unit
Put definitions of your functions and “private” code to .c
Put declarations and “public” code to .h

The header file becomes the interface of your code unit

Files using the “public” functions of myunit.c contain:
#include "myunit.h"
to get access to declarations and be able to use the unit.

myunit.c should also include myunit.h

> Compile with gcc -0 program main.c myunit.c
> If you change something in myunit.c only myunit.c will be

re-compiled

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 -

Scientific Programming

Lecture 9: Scope and Poi
)OO000@00 O

Avoiding multiple definitions

> Each variable/function can only be defined once

> What if you include a file that includes a file, that includes a file,
etc

> File can be included twice - we might get multiple definitions

Royal Institute of Technology — KTH

Andrzej Pronobis

EL2310 - Scientific Programming

Lecture 9: Scope
00000e

Splitting code

Avoiding multiple definitions

> To avoid multiple declarations use “include guard”:
#ifndef _MYUNITH__
#define _MYUNIT_H__

double functionl (double x);
double function2 (double x, double vy);

#endif
in the header file

> Make sure that the symbol, here _MYUNIT_H__is unique

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope

> Implement a Newton to f(x) = cos(x) — x3

Xn+1 = Xn — %

> Put the functions that evaluate f(x) and f'(x) into a separate file

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointers
000000

Makefiles

Lecture 9: Scope and Pointers

Makefiles

Building project with many files

> Method 1: Build everything on one line

gcc —o program program.c filel.c file2.c —-1m
> Method 2: Compile first, then link

gce —o filel.o -c filel.c

gcc —o file2.0 -c file2.c

gcc —o program program.c filel.o file2.o0 —-1m

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointers

0@0000

The make tool

> When you have many files and larger project it helps to have a
tool when you compile and link your code

> make is such a tool

> File Makefile contains instructions/rules describing how to build
stuff

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointers
[e]e] lelele)

Makefile

A\

VARNAME= declares variable

$ (VARNAME) access variable
rulename: defines rule

> make rulename Makes rule rulename
> make Makes first rule

> 4 starts a comment
A Makefile skeleton is provided with today’s tasks

\

v

A\

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Makefiles

Standard variable names

cc = C compiler

cxx = C++ compiler

LDLIBS = external libraries Ex: —-1m

INCLUDES = path for external declarations Ex: -1
CFLAGS = flags for the C compiler Ex: -wall
CXXFLAGS = flags for the C++ compiler Ex: -wal1l
LDFLAGS = flags for the linker Ex: -L

> If you do not provide a rule, one might be generated for you
> It will use those variables

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointers

00000

» Compiles executable
TASKl=taskl
TASK1 OBJS=taskl.c functions.c
S (TASK1) :
$(CC) —o S$(TASK1l) $(TASK1.0BJS) $(LDLIBS)

> Remove created files
clean:
rm —-f x.o0 $(TASK1)

> ltis possible to specify dependencies
all: $(TASK1l) task3

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointer:

00000e

Task 2

Write a Makefile for Task 1
> Run make multiple times.

> What happens when you run make withouth changing the file?
> Make knows what needs to be re-compiled!

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointers

Scopes

Lecture 9: Scope and Pointers

Scopes

Lecture 9: Scope and Pointer:

Scopes

Variable scope: local variables

> The scope of a variable tells where this variable can be used
> Local variables in a function can only be used in that function

They are automatically created when the function is called and
disappear when the function exits

Local variables are initialized during each function call

v

v

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope

Scopes

Variable scope: extern

> |f you want to use a variable defined externally to a function in
some other file, you need to use the keyword
extern

> extern int value; declares a variable value defined
externally that will now available to us

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope

Scopes

Variable scope: static

> If you want a variable defined outside a function to be hidden in
a file, use the keyword
static

> A variable declared static can be used as any other variable
in that file but will not be seen from outside

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope

Scopes

Initialization

> External and static variables are guaranteed to be 0 if not
explicitly initialized

> Local variables are NOT initialized (contain whatever is in the
memory)

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Scopes

Task 3

>

v

v

v

Write program with two functions: fcn1 and fcn2
Let each function

1. define a variable, but not initialize

2. print the value

3. set the value (different for fcn1 and fcn2)
4. printit again

Call fen1, fent, fcn2 and fen1 and see what you get
Lesson: Initializing your variables is important!!

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 -

Scientific Programming

Lecture 9: Scope and Pointers

Pointer Basics

Lecture 9: Scope and Pointers

Pointer Basics

Lecture 9: Scope

Pointers

Pointers are special kinds of variables
They contain the address of another variable
Pointers are like bookmarks

Used heavily in C:

> To pass reference to big things in memory
> To return multiple values from functions

Have to be used with care

v

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope

Declaring a pointer

> A pointer is declared by a * as prefix to the variable
Can think of it as a suffix to the data type as well
“int« is a pointer to an int”

> Ex: Pointer to an interger
int *ptr;

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope

Assigning a pointer

> You assign a pointer to a value being an address of a memory
location

> The address typically correspond to a variable in memory
> You get the address of a variable with the unary & operator
> Ex:

int a;

int *b = &a;
> We say that b “points” to a

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope

Dereferencing a pointer

> To get the value in the address pointed to by a pointer, use the
operator dereferencing operator *

> Ex:
int a;
intx b = &a;
*b = 4;

> Will set a to be 4

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope

Copying pointers

> Copying the data
*ptrl = *ptr2;

> Copying the pointer address
ptrl = ptr2;

Royal Institute of Technology — KTH

Andrzej Pronobis

EL2310 - Scientific Programming

Lecture 9: Scope and Pointers

Pointer Basics

Passing values by reference

v

Can use pointer to pass something to a function
Ex void func (double x, double xf);

The pointer is a local variable inside function, but it points to
something outside the function

Allows the function to change the variable outside
A way to return “multiple outputs from a function”

v

v

>

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope

> Rewrite the Newton code using a function on the form instead

of f1x and df1dx
void eval_fcn (double x, double xf, double

*dfdx) ;

Royal Institute of Technology — KTH

Andrzej Pronobis

EL2310 - Scientific Programming

Lecture 9: Scope

)®0000000

Pointers and arrays

> Can use pointer to perform operations on arrays
> Ex:

int al] = {1,2,3,4,5,6,7,8};

int xp = &al[0];

> Will create a pointer that points to the first element of a

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointers

ters and Arrays

Stepping forward backward with pointers

> A pointer points to the address of a variable of the given data
type

> |f you say ptr = ptr + 1; you step to the next variable in
memory assuming that they are all lined up next to each other

> Can also use shorthand pt r++ and ptr—- as well as
ptr+=2; and ptr-=3;

» Remember sizeof?

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointers

Pointers and Arrays

Task 5

> Allocate an array and use a pointer to loop through it

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope

Arrays and pointers

> Pointers and arrays are very similar

> Assume
int a[l107];
int *p;
> The following are equivalent
p = &al[0)landp = a;
ali] and x (a+1)
&al[i] and a+i
*x (p+i) and p[i]
fen (int +a) and fcn (int afl])

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

nters and Arrays

More on pointers

> One has to be careful when moving pointers
» Common mistake when using a pointer: you move it outside the
memory space you intended and change unexpected things
> The following is allowed but make it hard to read
int af]l = {6,5,4,3,2,1};
int *p = &al2];
pl-2] = 2;
> What value will change?

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Pointers and Arrays

Constant strings

> The “Hello world” in print £ ("Hello world"); is a constant
string literal

> It cannot be changed

> Consider the two expressions
char amsg[] = "Hello world";
char xpmsg = "Hello world";

> amsg is a character array initialized to “Hello world”. You can
modify the content of the array since it contains a copy of the
string literal.

> pmsg is a pointer that points to a constant string directly. You
cannot change the character in the string but change what
pmsg points to.

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointers

Pointers and Arrays

Task 6

> Write the function
void strcpy2 (char xdest, char =*src);

> Should copy the string src into dest

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 9: Scope and Pointers

Pointers and Arrays

Next Time

> Continue with pointers

	Overview
	Overview

	Content
	Lecture 9: Scope and Pointers
	Wrap Up
	Splitting code
	Makefiles
	Scopes
	Pointer Basics
	Pointers and Arrays

