
EL2310 – Scientific Programming
Lecture 9: Scope and Pointers

Andrzej Pronobis
(pronobis@kth.se)

Royal Institute of Technology – KTH

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Overview

Overview

Lecture 9: Scope and Pointers
Wrap Up
Splitting code
Makefiles
Scopes
Pointer Basics
Pointers and Arrays

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Wrap Up

Last time

� Arrays
� Functions
� Logical expressions
� Precedence

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Wrap Up

Today

� Splitting into separate files
� A first look at a Makefile
� Scope rules
� Pointers

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Wrap Up

Functions

� Syntax:
return-type function-name([arguments])
{
declarations
statements

}
� If the function does return anything you give it return-type void
� If you return something you leave the function with statement:
return value;
where value is of the return-type

� If the function has return-type void you leave with return if
you want to leave before the function ends, otherwise you do
not have to give an explicit return

� NOTE: If your function has a return type and you do not have
an explicit return the function will return something undefined.Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Wrap Up

Declaring functions

� A function just like a variable need to be declared before it is
used

� Either put the definition of the function before it is used or,
� add a declaration of it first and then later define it
� File example:
#includes
#defines

function declarations

main() { ...}

function definitions

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Wrap Up

Linking to extra libraries

� Often use function defined in other libraries, such as cos,
sin, exp from libm

� Need to tell linker that it should use libm as well
� Ex: gcc -o mymathprg mymathprg.c -lm

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Splitting code

Lecture 9: Scope and Pointers
Wrap Up
Splitting code
Makefiles
Scopes
Pointer Basics
Pointers and Arrays

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Splitting code

Splitting code into separate files

� Can split code in a program into many files
� Easier to read large programs
� Makes code reuse easier

� Code is traditionally split into:
� Header files (myunit.h) - contain mostly declarations
� Source files (myunit.c) - contain mostly definitions

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Splitting code

Header files

� Contain declarations of the functions defined in source files
� Are included into other files using #include
� The preprocessor combines all #included files into a single file

before compiling
� Why do we need source files? Why not put all source code to

header files?
� Every time we make a small change in any of the #included files,

the whole program has to be re-compiled
� We clutter our files with all the definitions. For readability, it’s better

to split definitions and declarations

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Splitting code

#include

� To include function declarations we use #include
� You can do
#include <file.h> or
#include "file.h"

� The difference is in the order in which directories are searched
� "file.h" version starts to look for files in local directory
� <file.h> looks in include the path

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Splitting code

Splitting declarations and definitions

� Create myunit.c and myunit.h files for each code unit
� Put definitions of your functions and “private” code to .c
� Put declarations and “public” code to .h
� The header file becomes the interface of your code unit
� Files using the “public” functions of myunit.c contain:
#include "myunit.h"
to get access to declarations and be able to use the unit.

� myunit.c should also include myunit.h
� Compile with gcc -o program main.c myunit.c
� If you change something in myunit.c only myunit.c will be

re-compiled

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Splitting code

Avoiding multiple definitions

� Each variable/function can only be defined once
� What if you include a file that includes a file, that includes a file,

etc
� File can be included twice - we might get multiple definitions

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Splitting code

Avoiding multiple definitions

� To avoid multiple declarations use “include guard”:
#ifndef MYUNIT H
#define MYUNIT H

double function1(double x);
double function2(double x, double y);

#endif
in the header file

� Make sure that the symbol, here MYUNIT H is unique

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Splitting code

Task 1

� Implement a Newton to f (x) = cos(x)− x3

xn+1 = xn −
f (x)
f ′(x)

� Put the functions that evaluate f (x) and f ′(x) into a separate file

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Makefiles

Lecture 9: Scope and Pointers
Wrap Up
Splitting code
Makefiles
Scopes
Pointer Basics
Pointers and Arrays

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Makefiles

Building project with many files

� Method 1: Build everything on one line
gcc -o program program.c file1.c file2.c -lm

� Method 2: Compile first, then link
gcc -o file1.o -c file1.c
gcc -o file2.o -c file2.c
gcc -o program program.c file1.o file2.o -lm

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Makefiles

The make tool

� When you have many files and larger project it helps to have a
tool when you compile and link your code

� make is such a tool
� File Makefile contains instructions/rules describing how to build

stuff

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Makefiles

Makefile

� VARNAME= declares variable
� $(VARNAME) access variable
� rulename: defines rule

� make rulename Makes rule rulename
� make Makes first rule

� # starts a comment
� A Makefile skeleton is provided with today’s tasks

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Makefiles

Standard variable names

CC = C compiler
CXX = C++ compiler
LDLIBS = external libraries Ex: -lm
INCLUDES = path for external declarations Ex: -I
CFLAGS = flags for the C compiler Ex: -Wall
CXXFLAGS = flags for the C++ compiler Ex: -Wall
LDFLAGS = flags for the linker Ex: -L

� If you do not provide a rule, one might be generated for you
� It will use those variables

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Makefiles

Rules

� Compiles executable
TASK1=task1
TASK1 OBJS=task1.c functions.c
$(TASK1):

$(CC) -o $(TASK1) $(TASK1 OBJS) $(LDLIBS)

� Remove created files
clean:
rm -f *.o $(TASK1)

� It is possible to specify dependencies
all: $(TASK1) task3

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Makefiles

Task 2

Write a Makefile for Task 1

� Run make multiple times.
� What happens when you run make withouth changing the file?
� Make knows what needs to be re-compiled!

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Scopes

Lecture 9: Scope and Pointers
Wrap Up
Splitting code
Makefiles
Scopes
Pointer Basics
Pointers and Arrays

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Scopes

Variable scope: local variables

� The scope of a variable tells where this variable can be used
� Local variables in a function can only be used in that function
� They are automatically created when the function is called and

disappear when the function exits
� Local variables are initialized during each function call

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Scopes

Variable scope: extern

� If you want to use a variable defined externally to a function in
some other file, you need to use the keyword
extern

� extern int value; declares a variable value defined
externally that will now available to us

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Scopes

Variable scope: static

� If you want a variable defined outside a function to be hidden in
a file, use the keyword
static

� A variable declared static can be used as any other variable
in that file but will not be seen from outside

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Scopes

Initialization

� External and static variables are guaranteed to be 0 if not
explicitly initialized

� Local variables are NOT initialized (contain whatever is in the
memory)

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Scopes

Task 3

� Write program with two functions: fcn1 and fcn2
� Let each function

1. define a variable, but not initialize
2. print the value
3. set the value (different for fcn1 and fcn2)
4. print it again

� Call fcn1, fcn1, fcn2 and fcn1 and see what you get
� Lesson: Initializing your variables is important!!

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointer Basics

Lecture 9: Scope and Pointers
Wrap Up
Splitting code
Makefiles
Scopes
Pointer Basics
Pointers and Arrays

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointer Basics

Pointers

� Pointers are special kinds of variables
� They contain the address of another variable
� Pointers are like bookmarks
� Used heavily in C:

� To pass reference to big things in memory
� To return multiple values from functions

� Have to be used with care

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointer Basics

Declaring a pointer

� A pointer is declared by a * as prefix to the variable
Can think of it as a suffix to the data type as well
“int* is a pointer to an int”

� Ex: Pointer to an interger
int *ptr;

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointer Basics

Assigning a pointer

� You assign a pointer to a value being an address of a memory
location

� The address typically correspond to a variable in memory
� You get the address of a variable with the unary & operator
� Ex:
int a;
int *b = &a;

� We say that b “points” to a

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointer Basics

Dereferencing a pointer

� To get the value in the address pointed to by a pointer, use the
operator dereferencing operator *

� Ex:
int a;
int* b = &a;

*b = 4;
� Will set a to be 4

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointer Basics

Copying pointers

� Copying the data
*ptr1 = *ptr2;

� Copying the pointer address
ptr1 = ptr2;

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointer Basics

Passing values by reference

� Can use pointer to pass something to a function
Ex void func(double x, double *f);

� The pointer is a local variable inside function, but it points to
something outside the function

� Allows the function to change the variable outside
� A way to return “multiple outputs from a function”

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointer Basics

Task 4

� Rewrite the Newton code using a function on the form instead
of f1x and df1dx
void eval fcn(double x, double *f, double

*dfdx);

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointers and Arrays

Pointers and arrays

� Can use pointer to perform operations on arrays
� Ex:
int a[] = {1,2,3,4,5,6,7,8};
int *p = &a[0];

� Will create a pointer that points to the first element of a

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointers and Arrays

Stepping forward backward with pointers

� A pointer points to the address of a variable of the given data
type

� If you say ptr = ptr + 1; you step to the next variable in
memory assuming that they are all lined up next to each other

� Can also use shorthand ptr++ and ptr-- as well as
ptr+=2; and ptr-=3;

� Remember sizeof?

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointers and Arrays

Task 5

� Allocate an array and use a pointer to loop through it

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointers and Arrays

Arrays and pointers

� Pointers and arrays are very similar
� Assume
int a[10];
int *p;

� The following are equivalent
p = &a[0] and p = a;
a[i] and *(a+i)
&a[i] and a+i

*(p+i) and p[i]
fcn(int *a) and fcn(int a[])

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointers and Arrays

More on pointers

� One has to be careful when moving pointers
� Common mistake when using a pointer: you move it outside the

memory space you intended and change unexpected things
� The following is allowed but make it hard to read
int a[] = {6,5,4,3,2,1};
int *p = &a[2];
p[-2] = 2;

� What value will change?

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointers and Arrays

Constant strings

� The “Hello world” in printf("Hello world"); is a constant
string literal

� It cannot be changed
� Consider the two expressions
char amsg[] = "Hello world";
char *pmsg = "Hello world";

� amsg is a character array initialized to “Hello world”. You can
modify the content of the array since it contains a copy of the
string literal.

� pmsg is a pointer that points to a constant string directly. You
cannot change the character in the string but change what
pmsg points to.

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointers and Arrays

Task 6

� Write the function
void strcpy2(char *dest, char *src);

� Should copy the string src into dest

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

Lecture 9: Scope and Pointers

Pointers and Arrays

Next Time

� Continue with pointers

Andrzej Pronobis Royal Institute of Technology – KTH

EL2310 – Scientific Programming

	Overview
	Overview

	Content
	Lecture 9: Scope and Pointers
	Wrap Up
	Splitting code
	Makefiles
	Scopes
	Pointer Basics
	Pointers and Arrays

