EL2310 — Scientific Programming

Lecture 12: Memory, Files and Bitoperations

iy

Fy,
FKTHS

{B VETENSKAP %
39 OCH KONST 9%

s

Andrzej Pronobis
(pronobis@kth.se)

Royal Institute of Technology — KTH

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Overview

Overview

Lecture 12: Memory, Files and Bit operations
Wrap Up
Main function; reading and writing
Bitwise Operations

Project

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 12: Memory, Files a
0000000000000 O0C

Wrap Up

Lecture 12: Memory, Files and Bit operations
Wrap Up

Project

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 12: Memory, Files and Bit operatlons Project
0000000000000

Wrap Up

Last time

» Complex data structures (struct)
> Memory

Andrzej Pronob

Royal Institute of Technology — KTH

Lecture 12: Memory, Files a
[e]e] lelelelelelelelo]e]e} O0C

Wrap Up

Today

> More on Memory
> Reading/writing files
> Bitwise operations

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 12: Memo es and Bit operations Project
000e00000000

Wrap Up

Pointers and structures

> You can use pointers to structures

> Ex:
struct complex_number x;
struct complex_number xxptr = &Xx;
> To access a member using a pointer we use the “— >” operator
> EX: xptr->real = 2;
> Same as (*xptr) .real = 2;
» and x.real = 2;

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 12: Memo es and Bit operations

Project
0000®0000000

Wrap Up

Structures of structures

> You can have any number of levels of structures of structures
> Ex:
struct position {
double x;
double vy;
}i
struct line {
struct position start;
struct position end;

}i

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 12: Memo s and Bit operations Project
000008000000

Wrap Up

Pointers to structures in structures

> Normally you need to declare a type before you use it.
> You can have a pointer to the structure you define
> EX: struct person {

char name[32];

struct person xparent;

}i

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 12: Memol es and Bit operations Project
000000800000

Wrap Up

cast

Some conversions between types are implicit

Ex: double x = 4; (castfrom intto double)

In other cases you need to tell the compiler to do this
Ex: int a = (int)4.2; (willtruncate to 4)

Often used together with pointers

Ex:

int aj;
unsigned char xbyte = (unsigned charx) &a;

Yy VY vV vV VY

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 12: Memo es and Bit operations Project
0000000 e0000

Wrap Up

Dynamic allocation of memory

> Sometimes you do not know the size of arrays etc.
> |dea: Allocate memory dynamically
> This way you can allocate memory at runtime

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 12: Memo es and Bit operations Project
0000000 0e000

Wrap Up

malloc

> Allocate memory with malloc
Need to #include<stdlib.h>

This function returns a pointer of type void«

Ex: int *p = malloc(100xsizeof (int));

To avoid warnings, add explicit cast

Ex: int *p = (int *)malloc (100xsizeof (int));
Will allocate memory for 100 ints

v

v

v

\

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 12: Memol es and Bit operations Project
000000000800

Wrap Up

free

> You should free the memory that you no longer need!!!
> Ex:
int *p = (int *)malloc (100*xsizeof (int));

free(p);
> If you do not free allocated memory you will get memory leaks
> Your program will crash eventually
> A big problem if you program should run a very long time

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 12: Memory, Files and Bit operations Project
0000000000

Wrap Up

Memory

> When you run your program the memory is divided between the
heap and the stack

> The stack:

> Memory allocated for all parameters and local variables of a
function

> Fast-allocated memory

> Current function at the top of the stack

> When a function returns its memory is removed from the stack

> The heap:

> Used for persistent data
> Dynamically allocated memory

From http://www.csl.mtu.edu/cs3090/wwwy/lecture-notes/Memory Allocation.ppt

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 12: Memol es and Bit operations Project
00000000000 e

Wrap Up

Common mistakes

> Forgetting to free memory (memory leak!!!)

> Using memory that you have not initialized

> Using memory that you do not own

> Using more memory than you allocated

> Returning pointer to local variable (thus no longer existing)

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 12: Memo es and Bit operations Project
000000000000

Wrap Up

Tip when using dynamic memory allocation

> If you have a malloc think about where the corresponding
freeis

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 12: Mem i operations

Main function; re

Lecture 12: Memory, Files and Bit operations

Main function; reading and writing

Project

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 12: Mel Files and Bit operations Project

Main function; rea

Command line arguments

You add parameters to the main function
int main(int argc, char =x*argv)
See the lab in C for more details and examples

First argumentisin argv[1], argv[0] contains program
name

v vV v Y

> atoi and atof are useful to get number from char arrays
> Ex:

int wvalue;

if (argc > 1) wvalue = atoi(argv[1l]);
else value = 42;

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 12: Me| Files and Bit operations Project

Main function; rea

Reading and writing files

v

We have already seen how we can write to the screen with
printf

This writes to a special file called stdout
> Can also write to stderr
Ex: fprintf (stderr, ‘‘Hello world\n”);

v

A\

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Project

Main function; read|

Reading from the keyboard

» Can use char getchar () ; to get a single character
> For more more complex input try scanf (. ..) which is the
“dual” of printf (...)
> The arguments for scanf the same as for printf except that it
wants pointers to where to put the data
> Ex:
int i;
double num[3];
printf ("Enter 3 number: "y,
fflush (stdout) ;
for (i = 0; 1 < 3; i++) {
scanf ("%$1f", &num[i]);

}

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 12: Me| Files and Bit operations Project

Main function; rea

Opening/closing a file

FILE xfopen(char xpath, char =xmode);

mode is “r’: read, “w”: write, “a”:append, ...

On success returns pointerto file descriptor, else NULL
fclose (FILE=*) ;

v v v Y

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 12: Me| Files and Bit operations

Project

Main function; rea

Writing to a file

> Write to the file with for example

» fprintf (FILEx, ...);

> EX: double x=1, y=2, theta=0.5;
FILE *xfd = NULL;
fd = fopen("test.txt", ‘‘w’’
fprintf (£d, "Robot pose is
x,y,theta);
fclose (fd);

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 12: Mel Files and Bit operations Project

Main function; rea

Reading from a file

> Read from the file with for example
> fscanf (FILE*, ...);
> Ex: double x,vy,theta;
FILE «fd = NULL;
fd = fopen("test.txt", "r"
fscanf (fd, "Robot pose is
&%, &y, &theta) ;
fclose (fd);
> Notice that you need %1 £ when you read a double, % £ for a float

> Function sscanf () is similar but operates on a char array
instead of a file

) ;
$1f $1f %1f\n",

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 12: Memory, Files and Bit operations
0000

wise Operation

Lecture 12: Memory, Files and Bit operations

Bitwise Operations

Project

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 12: Memory, Files and Bit operations Project

Bitwise operations

v

When programming at low level, bitwise operations are
common

Also, if you want to store flags it is very wasteful to use 1 byte
for every flag that can only be 0 or 1.

> Typical construction, use bitmask
Let each bit in the variable be one flag

v

v

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 12: Memory, Files and Bit operations Project

[e]e] le]e}

Bitwise operator

& bitwise AND
| bitwise inclusive OR
" bitwise exclusive OR
<< left shift
>> right shift
~ bitwise NOT

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Bit operations Project
[e]e] e}

Example of bit operations

> mask mask & 0xF Set all but the lower 4 bits to zero

mask | 0x3 Setlower 2 bits

> mask

> short wvalue;

unsigned char lower = (short & OxFF);
unsigned char upper = (short >> 8);
> What is printed?
int x =1, yv = 2;
if (x && y) printf("Case 1\n");
if (x & y) printf("Case 2\n");

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Bit operations Project
[e]ele]]

Shift operators

> Should primarily be used on unsigned data types

> Shifting results in division (right) and multiplication (left) of
integers by 2 times the number of shifts

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Project

Project

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Project

> Simulate Flocking
> Invented by Craig Reynolds 1987
> Based on very simple interaction rules

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

SDL - Simple DirectMedia Layer

framebuffer Xlib b
1 1 1

Linux S,

> Open Source C library for,
> Graphics
> Sound
> Input

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Project

main

1. Define Variables

2. Initialise Screen to draw on
3. Event Loop

4. Cleans up

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Project

Event Loop

> Switch statement

> SDL_KEYDOWN: if key is pressed, check if key is ESC
> SDL_QUIT: Quit using system
> SDL_MOUSEMOTION: If mose is moving

> FPS times per second call

> update_boids ()
> render_screen (screen)

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Project

Skeleton

int render_screen (SDL_Surface* screen);
void update boids (void);
void clean_up (SDL_Surfacex* screen);

void read_mouse (SDL_Event* event);

vy vV vV Vv Y

void put_pixel (SDL_Surfacex screen,int x,int
y,pixelx p);
> void clear_screen (SDL_Surface* screen);

> void render_boids (void);

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 — Scientific Pro

cture 12: Memory, Files and Bit o| ons Project

int render_screen (SDL_Surfacex screen);

1. Creates a white pixel

2. SDL_LockSurface (screen) ; : Opens the screen for
rendering

3. SDL_UnlockSurface (screen) ;: Closes the screen

4. You can only safely write to the screen between these
commands

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Project

void read_.mouse (SDL_Event* event);

> Called if mouse movement triggered
> Prints out mouse pointer coordinates

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

cture 12: Memory, Files and B atio Project

Project

v

Think through how to structure data

> structs

> structs of structs
>

How should the “flow” of the program be

Divide into several functions

Comment code for someone else to understand
Base program is NOT the only solution

vV v vY

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

	Overview
	Overview

	Content
	Lecture 12: Memory, Files and Bit operations
	Wrap Up
	Main function; reading and writing
	Bitwise Operations

	Project

