EL2310 — Scientific Programming

Lecture 14: Object Oriented Programming in C++

a

L,
§KTHS

fg VETENSKAP ﬁ}
39 OCH KONST 9%

St

Andrzej Pronobis
(pronobis@kth.se)

Royal Institute of Technology — KTH

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Overview

Overview

Lecture 14: Object Oriented Programming in C++
Wrap Up
Introduction to Object Oriented Paradigm
Classes
More on Classes and Members
Operator Overloading

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Last time

> [ntro to C++
» Differences between C and C++
> Intro to OOP

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

> Object Oriented Programming
> Classes

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14
9000000000

Wrap Up

Lecture 14: Object Oriented Programming in C++
Wrap Up

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14: Object Oriented Programming in C++
0e000000

Wrap Up

C++ Compiler

> Use g++ instead of gcc
> Usage and command line options are the same as for gcc

> Make sure you know how to use make for this part of the
course!

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14: Object Oriented Programming in C++
[e]e] lelelele]e]

Wrap Up

Declaration of variables

v

You no longer need to declare the variable at the beginning of
the function (scope), as was the case for pre C99

Useful rule of thumb: Declare variables close to where they’re
used.

For instance:

\

v

for (int i=0;i<N;i++){...}
i only defined within loop
Use specific names for counters, e.g. i, j, k%, ...

\

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14: Object Oriented Programming in C++
[e]e]e] lelele]e]

Wrap Up

Namespaces

> In C all function share a common namespace

> This means that there can only be one function for each
function name
> In C++ can be placed in namespaces
> Syntax:
namespace NamespaceName {
void fcn () ;

> To access a function fcn in namespace A
A::fcn

> To avid typing namespace name in every statement:
using namespace std

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14: Object Oriented Programming in C++
[e]e]e]e] Telele]

Wrap Up

Printing to Screen

> In C++ we use streams for input and output
> Qutput is handled with the stream cout and cerr

> InC:
printf ("The value is %d\n", value);
> In C++:
cout << "The value is " << value << endl;

> Just like in C you can format the output in a stream
> You can use

cout .width (10) number of characters for output to fill
cout.precision (3) number of digits
cout.fill (" 0’) pad with a certain character

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14: Object Oriented Programming in C++
[e]e]e]ele] lele]

Wrap Up

Getting input from the user

> Use streams also to get input from console
> Use the cin stream
Ex:
int value;
cin >> value;
> If you want to read an entire line, use getline
Ex:
string line;
getline(cin, line);
cout << "The input was " << line << endl;

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

ct Oriented Programming in C++

References

> “Constrained” and “safer” pointers

» Compare
int a; int a;
int *pa = &a; int &ra = a;
int xpa = NULL; -
*pa = 10; ra = 10; => a==10
int b; int b;
pa = &b; -
int *pc; -
pc = paj; -

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14: Object Oriented Programming in C++
0000000e

Wrap Up

Passing Arguments by Reference in C++

> Declaration: void fcn(int &x);
> Any changed to x inside fcn will affect the parameter used in
the function call

> Ex:
void fcn (int &x)
{
x = 42;
}
int main ()
{
int x = 1;
fcn (x);
cout << "x=" << x << endl;
}
> Will change value of x in the scope of main to 42

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14:
00000000

Wrap Up

Dynamic Memory Allocation in C++

> In C++ the new and delete operators are used
» InCwe usedmalloc and free

> If you allocate an array with new you need to delete with
delete []

> Ex:
int *p = new int[10];
pl0] = 42;
delete [] p;

> Typical mistake, forgotten []

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

ented Programming in C++

ct Oriented Paradigm

Lecture 14: Object Oriented Programming in C++

Introduction to Object Oriented Paradigm

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Introduction to Object Oriented Paradigm

The Object-Oriented Paradigm

The motivation:
> We are trying to solve complex problems

> Complex code with many functions and names
> Difficult to keep track of all details

> How can we deal with the complexity?

> Grouping related things
> Abstracting things away
> Creating hierarchies of things

> This also improves:

> Code re-use
> Reliability and debugging

Andrzej Pronobis

Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14: Object Oriented Programming in C++

Key Concepts of OOP

Classes (types)

Instances (objects)

Methods

Interfaces

Access protection - information hiding
Encapsulation

Composition / aggregation
Inheritance

Polymorphism

Yy YV Y vV VY VY VY VY Y

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

riented Programmil
0000000000000

Classes

Lecture 14: Object Oriented Programming in C++

Classes

Andrzej Pronobis Royal Institute of Technology — KTH

ific Programming

Lecture 14: Object Oriented Programm
000000000000

Classes

Classes

v

A class is an “extension” of a st ruct

A class can have both data member and function members
(methods)

> Classes bring together data and operations related to that data
> Like C structs, classes define new data types

Unlike structs, they also define how operators work on the new
types

v

v

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14: Object Oriented Programm
000000000000

Classes

Class definition

> Syntax:
class ClassName {
public:
void fcn () ;
private:
int m.X;
}; // Do not forget the semicolon!!!
> m_X is a member data
> void fcn () is a member function
> public is an access specifier specifying that everything below
can be access from outside the class
> private is an access specifier specifying that everything
below is hidden from outside of the class

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14: Object Oriented Programm
0@0000000000

Classes

Access specifiers

>

There are three access specifiers:
> public

> private

> protected

> No access specifier specified = assumes itis private

Data and function members that are private cannot be
accessed from outside the class

> Ex: m_X above cannot be accessed from outside
protected will be discussed later

v

v

Royal Institute of Technology — KTH

Andrzej Pronobis

EL2310 - Scientific Programming

Lecture 14: Object Oriented Programm
)O000e000000000

Classes

C++ Structs

> C++ also uses struct

> In C++ struct is just like a class (much more than the C
struct!)
> The only difference is the default access protection:
class Name {
int m.X; // Private
}i
struct Name {
int mX; // Public

}i

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14: Object Oriented Programm
)O0000@00000000

Classes

Classes and Objects

Classes define data types
Objects are instances of classes
Objects correspond to variables

Declaring an object:
ClassName variableName;

vy v vY

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14: Object Oriented Programm
)O00000@0000000

Classes

Classes and Namespace

> The class defines a namespace

» Hence function names inside a class do not name clash with
other functions

> Example: the member variable m_x above is fully specified as
ClassName: :m.-X

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14: Object Oriented Programm
)O000000e000000

Classes

Task 1

>
>
>
>

Implement a class the defines a Car

Should have a member variable for number of wheels

Should have methods to get the number of wheels

Write program that instantiate a Car and print number of wheels

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14: Object Oriented Programm
000000@00000

Classes

Constructor

> When an object of a certain class is created the so called
constructor is called

» Constructor is a special kind of method.

> The constructor tells how to “setup” the objects

> The constructor that does not take any arguments is called the
default constructor

> The constructor has the same name as the class and has no
return type
class A {
public:
A0 {}
}i

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Oriented Programm
0000000 0e0000

Classes

Constructor

> Some types cannot be assigned, only initialized, e.g.
references
> These data members should be initialized in the initializer list of
the constructor
> Try to do as much of the initialization in the initialization in the
list rather than using assignment in the body of the constructor
> Variables are initialized in the order they appear in the list
class A {
public:
A():mX (1) {}
private:
int m.X;

}i

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14: Object Oriented Programming in C++
000000000 e0000

Classes

Constructor

class A {
public:
AQ):mXx (1) {}
int getValue() { return mX; }
private:
int m.X;
}i
A a;
std::cout << a.getValue() << std::endl;

Andrzej Pronobis Royal Institute of Technology — KTH

EL2 cientific Programming

Lecture 14: Object Oriented Programm
)O0O000000000e00

Classes

Constructor

> You can define several different constructors
> class MyClass {
public:
MyClass () :mX (1) {}
MyClass (int value) :m X (value) {}
int getValue() { return mX; }
private:
int mX;
}i
MyClass a; // Default constructor
MyClass aa(42); // Constructor with argument
std::cout << a.getValue () << std::endl;
std::cout << aa.getValue() << std::endl;

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14: Object Oriented Programm
000000000080

Classes

Destructor

When an object is deleted the destructor is called
The destructor should clean up things
For example free up dynamically allocated memory
There is only 1 destructor
If not declared a default one is used which will not free up
dynamic memory
Syntax: TlassName () ;
Class A {
public:

A(); // Constructor

A(); // Destructor

}

vy vYyVvyYyy

vy

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

bject Oriented Programmi

000000000000

> Write a class Complex for a complex number

> Provide 3 constructors
> default - which should create a complex number with value 0
> having one argument - should create a real value

> having two arguments - should create a complex number with real
and imaginary part

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Oriented Program
000000000000

Classes

Source and header file

>
>
>
>

Normally you split the definition from the declaration like in C
The definition goes into the header file .h
The declaration goes into the source file .cpp
Header file ex:
class A{
public:
A();
private:
int mX;
}i
> Source file ex:
#include "A.h"
A::A() :m_X(0)

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture Object Oriented Programming in C++

)0O0®00000000

More on Classes and Members

Lecture 14: Object Oriented Programming in C++

More on Classes and Members

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14: Object Oriented Programm

Classes and Members

this pointer

> Inside class methods you can refer to the object with this
pointer

> The this pointer cannot be assigned (done automatically)

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14: Object Oriented Programming in C++

More on Classes and Members

const

> Can have const function arguments
> EX: void fcn(const string &s);

> Pass the string as a reference into the function but commit to
not change it

> For classes this can be used to commit to not change an object
as well

> Ex: void fcn(int arg) const;

> The function £cn commits to not change anything in the object
it belongs to

> Can only call const functions from a const function or with a
const object

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14: Object Oriented Programming in C++
(o]e]

More on Classes and Members

Static members

> Members (both functions and data) can be declared static

> A static member is the same across all objects; it's a
member of the class, not any single object

> That is all instantiated objects share the same static member

> You can use a static class member without instantiating any
object

> You need to define static data member

> Ex: (in source file) int A::m Counter = 0; ifm_Counteris
a static data member of class 2

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14: Object Oriented Programming in C++
(o]e]

More on Classes and Members

Task 3

> Start from the Complex class from last time

> Add a static int member

> Every time a new complex number is created the static variable
should be incremented

> Implement the member function
Complex& add(const Complex &c);
which should add c to the object

> How does the number of created objects change if we change
the function to
Complex& add (Complex c);

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14: Object Oriented Programming in C++

Operator Overloading

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14: Object Oriented Programming in C++

Operator Overloadin

Operator overloading

> Operators behave just like functions

» Compare
Complex& add(const Complex &c);
Complex& +=(const Complex &c);

> You can overload (provide your own implementation of) most
operators

> This way you can make them behave in a “proper” way for your
class

> It will not change the behavior for other classes only the one
which overloads the operator

> Some operators are member functions, some are defined
outside class

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Lecture 14: Object Oriented Programming in C++

fole] lo}

Operator Overloa

Task 4

> Use the Complex number class from before.
Overload/implement:

> std::ostream& operator<<(std::ostream &os,
const Complex &c);

> Complex operator+ (const Complex &cl, const
Complex &c2)

> Complex operator+ (const Complex &c); (member
function)

> Complex& operator=(const Complex &c); (member
function)

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

Operator Overloading

Next Time

> C Help Sessions:

> Wednesday 13-15 Room 304
> Thursday 13-14 Room 523

> Inheritance, Virtual Functions and Templates
> C-project deadline Thursday 4th of October

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming

	Overview
	Overview

	Content
	Lecture 14: Object Oriented Programming in C++
	Wrap Up
	Introduction to Object Oriented Paradigm
	Classes
	More on Classes and Members
	Operator Overloading

