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Last time

> [ntro to C++
» Differences between C and C++
> Intro to OOP
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> Object Oriented Programming
> Classes
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Wrap Up
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Wrap Up

C++ Compiler

> Use g++ instead of gcc
> Usage and command line options are the same as for gcc

> Make sure you know how to use make for this part of the
course!
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Wrap Up

Declaration of variables

v

You no longer need to declare the variable at the beginning of
the function (scope), as was the case for pre C99

Useful rule of thumb: Declare variables close to where they’re
used.

For instance:

\

v

for (int i=0;i<N;i++){...}
i only defined within loop
Use specific names for counters, e.g. i, j, k%, ...

\
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Wrap Up

Namespaces

> In C all function share a common namespace

> This means that there can only be one function for each
function name
> In C++ can be placed in namespaces
> Syntax:
namespace NamespaceName {
void fcn () ;

> To access a function fcn in namespace A
A::fcn

> To avid typing namespace name in every statement:
using namespace std
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Wrap Up

Printing to Screen

> In C++ we use streams for input and output
> Qutput is handled with the stream cout and cerr

> InC:
printf ("The value is %d\n", value);
> In C++:
cout << "The value is " << value << endl;

> Just like in C you can format the output in a stream
> You can use

cout .width (10) number of characters for output to fill
cout.precision (3) number of digits
cout.fill (" 0’) pad with a certain character
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Wrap Up

Getting input from the user

> Use streams also to get input from console
> Use the cin stream
Ex:
int value;
cin >> value;
> If you want to read an entire line, use getline
Ex:
string line;
getline(cin, line);
cout << "The input was " << line << endl;
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ct Oriented Programming in C++

References

> “Constrained” and “safer” pointers

» Compare
int a; int a;
int *pa = &a; int &ra = a;
int xpa = NULL; -
*pa = 10; ra = 10; => a==10
int b; int b;
pa = &b; -
int *pc; -
pc = paj; -
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Wrap Up

Passing Arguments by Reference in C++

> Declaration: void fcn(int &x);
> Any changed to x inside fcn will affect the parameter used in
the function call

> Ex:
void fcn (int &x)
{
x = 42;
}
int main ()
{
int x = 1;
fcn (x);
cout << "x=" << x << endl;
}
> Will change value of x in the scope of main to 42
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Wrap Up

Dynamic Memory Allocation in C++

> In C++ the new and delete operators are used
» InCwe usedmalloc and free

> If you allocate an array with new you need to delete with
delete []

> Ex:
int *p = new int[10];
pl0] = 42;
delete [] p;

> Typical mistake, forgotten []
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Introduction to Object Oriented Paradigm
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Introduction to Object Oriented Paradigm

The Object-Oriented Paradigm

The motivation:
> We are trying to solve complex problems

> Complex code with many functions and names
> Difficult to keep track of all details

> How can we deal with the complexity?

> Grouping related things
> Abstracting things away
> Creating hierarchies of things

> This also improves:

> Code re-use
> Reliability and debugging
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Key Concepts of OOP

Classes (types)

Instances (objects)

Methods

Interfaces

Access protection - information hiding
Encapsulation

Composition / aggregation
Inheritance

Polymorphism
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Classes

Classes

v

A class is an “extension” of a st ruct

A class can have both data member and function members
(methods)

> Classes bring together data and operations related to that data
> Like C structs, classes define new data types

Unlike structs, they also define how operators work on the new
types

v

v
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Classes

Class definition

> Syntax:
class ClassName {
public:
void fcn () ;
private:
int m.X;
}; // Do not forget the semicolon!!!
> m_X is a member data
> void fcn () is a member function
> public is an access specifier specifying that everything below
can be access from outside the class
> private is an access specifier specifying that everything
below is hidden from outside of the class
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Classes

Access specifiers

>

There are three access specifiers:
> public

> private

> protected

> No access specifier specified = assumes itis private

Data and function members that are private cannot be
accessed from outside the class

> Ex: m_X above cannot be accessed from outside
protected will be discussed later

v

v
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Classes

C++ Structs

> C++ also uses struct

> In C++ struct is just like a class (much more than the C
struct!)
> The only difference is the default access protection:
class Name {
int m.X; // Private
}i
struct Name {
int mX; // Public

}i
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Classes

Classes and Objects

Classes define data types
Objects are instances of classes
Objects correspond to variables

Declaring an object:
ClassName variableName;

vy v vY
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Classes

Classes and Namespace

> The class defines a namespace

» Hence function names inside a class do not name clash with
other functions

> Example: the member variable m_x above is fully specified as
ClassName: :m.-X
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Classes

Task 1

>
>
>
>

Implement a class the defines a Car

Should have a member variable for number of wheels

Should have methods to get the number of wheels

Write program that instantiate a Car and print number of wheels
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Classes

Constructor

> When an object of a certain class is created the so called
constructor is called

» Constructor is a special kind of method.

> The constructor tells how to “setup” the objects

> The constructor that does not take any arguments is called the
default constructor

> The constructor has the same name as the class and has no
return type
class A {
public:
A0 {}
}i
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Classes

Constructor

> Some types cannot be assigned, only initialized, e.g.
references
> These data members should be initialized in the initializer list of
the constructor
> Try to do as much of the initialization in the initialization in the
list rather than using assignment in the body of the constructor
> Variables are initialized in the order they appear in the list
class A {
public:
A():mX (1) {}
private:
int m.X;

}i
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Classes

Constructor

class A {
public:
AQ):mXx (1) {}
int getValue() { return mX; }
private:
int m.X;
}i
A a;
std::cout << a.getValue() << std::endl;
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Classes

Constructor

> You can define several different constructors
> class MyClass {
public:
MyClass () :mX (1) {}
MyClass (int value) :m X (value) {}
int getValue() { return mX; }
private:
int mX;
}i
MyClass a; // Default constructor
MyClass aa(42); // Constructor with argument
std::cout << a.getValue () << std::endl;
std::cout << aa.getValue() << std::endl;
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Classes

Destructor

When an object is deleted the destructor is called
The destructor should clean up things
For example free up dynamically allocated memory
There is only 1 destructor
If not declared a default one is used which will not free up
dynamic memory
Syntax: TlassName () ;
Class A {
public:

A(); // Constructor

A(); // Destructor

}

vy vYyVvyYyy

vy

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming



bject Oriented Programmi

000000000000

> Write a class Complex for a complex number

> Provide 3 constructors
> default - which should create a complex number with value 0
> having one argument - should create a real value

> having two arguments - should create a complex number with real
and imaginary part
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Source and header file

>
>
>
>

Normally you split the definition from the declaration like in C
The definition goes into the header file .h
The declaration goes into the source file .cpp
Header file ex:
class A{
public:
A();
private:
int mX;
}i
> Source file ex:
#include "A.h"
A::A() :m_X(0)
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More on Classes and Members

Lecture 14: Object Oriented Programming in C++

More on Classes and Members
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Classes and Members

this pointer

> Inside class methods you can refer to the object with this
pointer

> The this pointer cannot be assigned (done automatically)
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More on Classes and Members

const

> Can have const function arguments
> EX: void fcn(const string &s);

> Pass the string as a reference into the function but commit to
not change it

> For classes this can be used to commit to not change an object
as well

> Ex: void fcn(int arg) const;

> The function £cn commits to not change anything in the object
it belongs to

> Can only call const functions from a const function or with a
const object
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More on Classes and Members

Static members

> Members (both functions and data) can be declared static

> A static member is the same across all objects; it's a
member of the class, not any single object

> That is all instantiated objects share the same static member

> You can use a static class member without instantiating any
object

> You need to define static data member

> Ex: (in source file) int A::m Counter = 0; ifm_Counteris
a static data member of class 2
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More on Classes and Members

Task 3

> Start from the Complex class from last time

> Add a static int member

> Every time a new complex number is created the static variable
should be incremented

> Implement the member function
Complex& add(const Complex &c);
which should add c to the object

> How does the number of created objects change if we change
the function to
Complex& add (Complex c);
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Operator Overloading
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Operator Overloadin

Operator overloading

> Operators behave just like functions

» Compare
Complex& add(const Complex &c);
Complex& +=(const Complex &c);

> You can overload (provide your own implementation of) most
operators

> This way you can make them behave in a “proper” way for your
class

> It will not change the behavior for other classes only the one
which overloads the operator

> Some operators are member functions, some are defined
outside class
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Operator Overloa

Task 4

> Use the Complex number class from before.
Overload/implement:

> std::ostream& operator<<(std::ostream &os,
const Complex &c);

> Complex operator+ (const Complex &cl, const
Complex &c2)

> Complex operator+ (const Complex &c); (member
function)

> Complex& operator=(const Complex &c); (member
function)

Andrzej Pronobis Royal Institute of Technology — KTH

EL2310 - Scientific Programming



Operator Overloading

Next Time

> C Help Sessions:

> Wednesday 13-15 Room 304
> Thursday 13-14 Room 523

> Inheritance, Virtual Functions and Templates
> C-project deadline Thursday 4th of October
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