

Modelling Multi-Agent Robot Systems Using Control and Systems Theory

PhD Course, KTH 2013 Lecturer: Andrzej Pronobis

Goals of This Lecture

- Introductory lecture to PhD-level course
- Give you a good intuition of Multi-Agent
 Systems (MAS) modeling and control
 - The essential theoretical tools for MAS
 - How to implement and simulate MAS
 - How to solve real-world multi-robots problems
- Boost your interest in MAS
- We will solve and implement two control problems. Code: <u>www.pronobis.pro/mas</u>
- Expand on details in future lectures

Course Materials

Robot Soccer (RoboCup)

Traffic Simulation

Image Rendering

Modeling Crowd Interactions

Modelling Heavy Metal Mosh Dance...

Collective motion of humans in mosh and circle pits at heavy metal concerts. (Silverberg, Bierbaum, Sethna, Cohen.) Physical Review Letters, May 2013.

Multi-robot Coordination

Outline

- Intro to Modeling Multi-Agent Systems (MAS)
- Graph Theory for Interaction Graphs
- Agreement Protocol and Rendezvous Problem
 - Simulating in Matlab
- Formation Control Problem
- Summary

Multi-Agent Systems (MAS)

- Multi-agent systems
 - Dynamic units (agents)
 - Sense environment and agents
 - Make decisions
 - Communicate with other agent
 - Signal exchange network
 - Determines how information is exchanged between agents
 - Wireless, visual, chemical signals, sociological interactions
- Multi-agent control
 - How to understand and achieve global system behaviors from local agent behaviors

Networks and Local Interactions

- Networks of local interactions arise due to
 - Locality in sensing

- Locality in communication
 - Range saving energy
 - Bandwidth

Problems for This Lecture

- Agents: mobile robots
- No global map of the environment
 - Example: Rescue scenarios

- Robots only perceive distance to other robots
- Communication through sensing
- Two different robot platforms

Robot Platforms

Graph-based Interaction Models

Network of agents can be viewed as a graph

- Omni-directional sensing
- Bi-directional information exchange
- Model: Undirected graph

- Constrained field of view
- Unidirectional information exchange
- Model: Directed graph

Interaction Protocols

- Several interaction protocols can be formulated and studied theoretically
 - Agreement (Rendezvous Problem)
 - Formation (Formation Control Problem)
 - Coverage
 - Swarming
 - DistributedEstimation

Outline

- Intro to Modeling Multi-Agent Systems (MAS)
- Graph Theory for Interaction Graphs
- Agreement Protocol and Rendezvous Problem
 - Simulating in Matlab
- Formation Control Problem
- Summary

Graph Theory

Great tool for analyzing networks

Directed Graphs

Ordered pair $(v_i, v_j) \in E$

Neighborhood of a vertex

$$N(i) = \{ v_j \in V \mid v_i v_j \in E \}$$

Algebraic Graph Theory

Adjacency matrix

$$[A(\mathcal{G})]_{ij} = \begin{cases} 1 & \text{if } v_i v_j \in E, \\ 0 & \text{otherwise.} \end{cases} \quad [A(\mathcal{D})]_{ij} = \begin{cases} 1 & \text{if } (v_j, v_i) \in E(\mathcal{D}) \\ 0 & \text{otherwise,} \end{cases}$$

Degree matrix (undirected graph)

Degree of vertex $d(v_i)$ represents cardinality of neighborhood set N(i)

$$\Delta(\mathcal{G}) = \begin{pmatrix} d(v_1) & 0 & \cdots & 0 \\ 0 & d(v_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d(v_n) \end{pmatrix}$$

In-degree matrix (directed graph)

 $d(v_i)$ represents the in-degree (counts incoming edges only)

Graph Laplacian

For undirected graphs

$$L(\mathcal{G}) = \Delta(\mathcal{G}) - A(\mathcal{G})$$

$$L(\mathcal{G}) = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & -1 \\ 0 & -1 & 3 & -1 & -1 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & -1 & -1 & -1 & 3 \end{pmatrix}$$

For directed graphs – In-degree Laplacian

$$L(\mathcal{D}) = \Delta(\mathcal{D}) - A(\mathcal{D})$$

Properties of Laplacian

- Symmetric and positive semi-definite
- Eigenvalues can be ordered as

$$\lambda_1(\mathcal{G}) \leq \lambda_2(\mathcal{G}) \leq \cdots \leq \lambda_n(\mathcal{G})$$

Smallest eigenvalue is always zero

$$\mathbf{1} \in \mathcal{N}(L(\mathcal{D}))$$
 $\lambda_1(\mathcal{G}) = 0$

- Is the graph connected?
 - If for every pair of vertices there is a path
 - IFF $\lambda_2(\mathcal{G}) > 0$
 - As many connected sub-graphs as zero eigenvalues

Outline

- Intro to Modeling Multi-Agent Systems (MAS)
- Graph Theory for Interaction Graphs
- Agreement Protocol and Rendezvous Problem
 - Simulating in Matlab
- Formation Control Problem
- Summary

Agreement Protocol

- Agents agree on a value of a parameter
- Definition
 - n dynamic agents
 - Interconnected via relative links
 - Agent's state depends on the sum of its relative states w.r.t. a subset of other agents
- Applications
 - Distributed estimation in sensor networks
 - Flocking/swarming

Rendezvous Problem

- Rendezvous problem
 - Agent's state is its location mobile robot
 - Agents should meet at one point in space
- Example: agreement protocol over a triangle

Links pull robots towards each other

State-space Representation

Continuous-time state-space model

$$\dot{x}_i(t) = \sum_{j \in N(i)} (x_j(t) - x_i(t)), \quad i = 1, \dots, n$$

$$\dot{x}(t) = -L(\mathcal{G}) x(t)$$

For directed graphs: use in-degree Laplacian

$$\dot{x}(t) = -L(\mathcal{D})x(t)$$

How can we guarantee convergence?

Outline

- Intro to Modeling Multi-Agent Systems (MAS)
- Graph Theory for Interaction Graphs
- Agreement Protocol and Rendezvous Problem
 - Simulating in Matlab
- Formation Control Problem
- Summary

State-space Models in Matlab

 Dynamics of a system specified using continuous time-invariant state-space model

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t)$$
$$\mathbf{y}(t) = C\mathbf{x}(t) + D\mathbf{u}(t)$$

Create state-space model

$$sys = ss(A,B,C,D)$$

In our case:

$$\dot{x}(t) = -L(\mathcal{G}) \, x(t) \qquad \dot{x}(t) = -L(\mathcal{D}) x(t)$$

Simulating

- Simulate
 - Initial condition response

$$[y,t,x] = initial(sys,x0,t)$$

Response to arbitrary inputs

```
[y,t,x] = lsim(sys,u,t,x0)
```

 Basic toolkit for defining and visualizing problems available in course materials

Simulating Trajectories

Outline

- Intro to Modeling Multi-Agent Systems (MAS)
- Graph Theory for Interaction Graphs
- Agreement Protocol and Rendezvous Problem
 - Simulating in Matlab
- Formation Control Problem
- Summary

Formation Control Problem

- Mobile agents move in order to realize a geometrical pattern (formation)
 - Appear often in biological systems (e.g. geese)
- Formations can be specified in several ways
 - Relative state
 - Shape
 - Specified in terms of points

$$\Xi = \{\xi_1, \dots, \xi_n\}, \ \xi_i \in \mathbf{R}^p, \ i = 1, \dots, n,$$

Translationally invariant

$$x_i = \xi_i + \tau$$

State-space Representation

Let's define τ_i as displacement from target

$$\tau_i(t) = x_i(t) - \xi_i, \ i = 1, \dots, n$$

Now, apply the agreement protocol to au_i

$$\dot{\tau}_i(t) = -\sum_{j \in N_f(i)} (\tau_i(t) - \tau_j(t))$$

■ Since $\dot{\tau}_i(t) = \dot{x}_i(t)$, $\tau_i(t) - \tau_j(t) = x_i(t) - x_j(t) - (\xi_i - \xi_j)$:

$$\dot{x}_i(t) = -\sum_{j \in N_f(i)} (x_i(t) - x_j(t)) - (\xi_i - \xi_j)$$

$$\dot{x}(t) = -L(\mathcal{G}) x(t) + L(\mathcal{G}) \Xi$$

Analogous for directed graphs

Simulating Trajectories

Outline

- Intro to Modeling Multi-Agent Systems (MAS)
- Graph Theory for Interaction Graphs
- Agreement Protocol and Rendezvous Problem
 - Simulating in Matlab
- Formation Control Problem
- Summary

Summary

- Intuition about what multi-agent systems are and how to solve control problems
 - From theory to simulations
- Multiple applications in robotics
 - When no global maps and central coordination
- What's next?
 - Dynamic and random networks
 - Switching between formations and control problems
 - Networks as systems (with inputs & outputs)
- Try this at home!

Questions?

Multi-Agent Robot Systems [http://pronobis.pro/mas]