



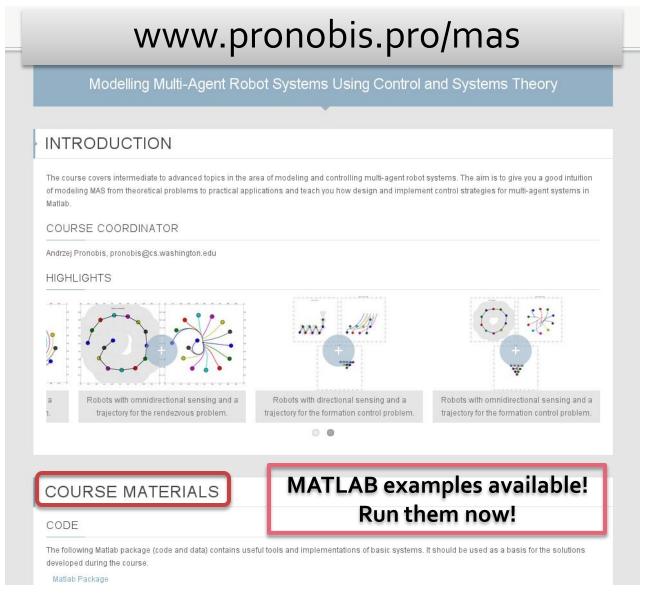
# Modelling Multi-Agent Robot Systems Using Control and Systems Theory

PhD Course, KTH 2013 Lecturer: Andrzej Pronobis

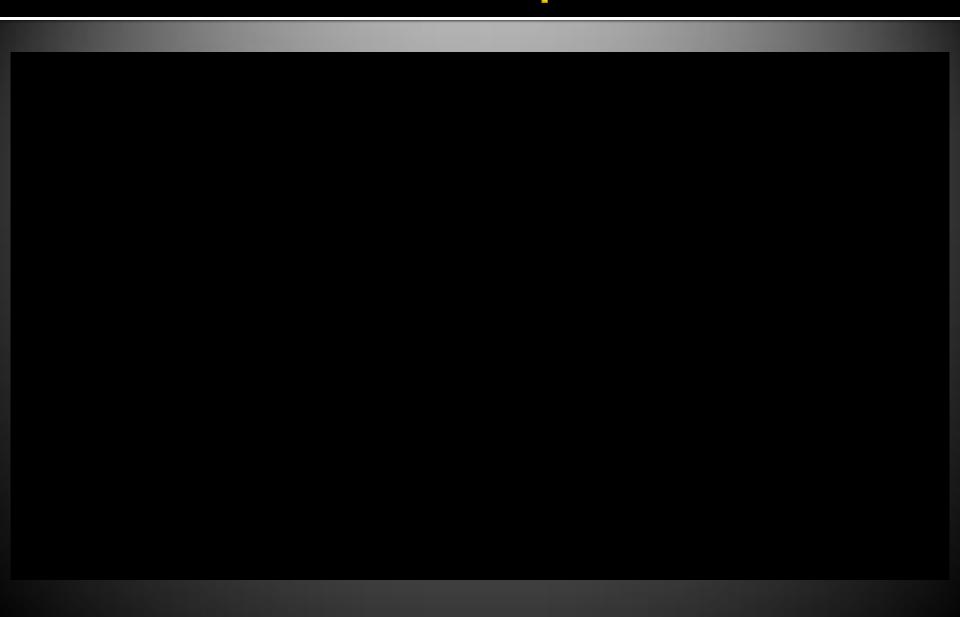
#### Goals of This Lecture

- Introductory lecture to PhD-level course
- Give you a good intuition of Multi-Agent
  Systems (MAS) modeling and control
  - The essential theoretical tools for MAS
  - How to implement and simulate MAS
  - How to solve real-world multi-robots problems
- Boost your interest in MAS
- We will solve and implement two control problems. Code: <u>www.pronobis.pro/mas</u>
- Expand on details in future lectures

#### **Course Materials**



## Robot Soccer (RoboCup)



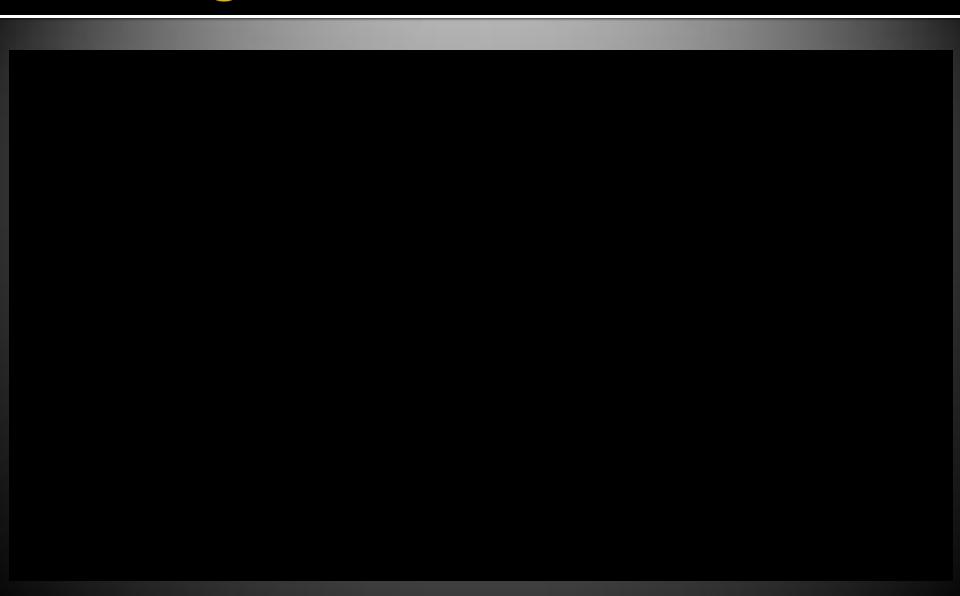
## **Traffic Simulation**



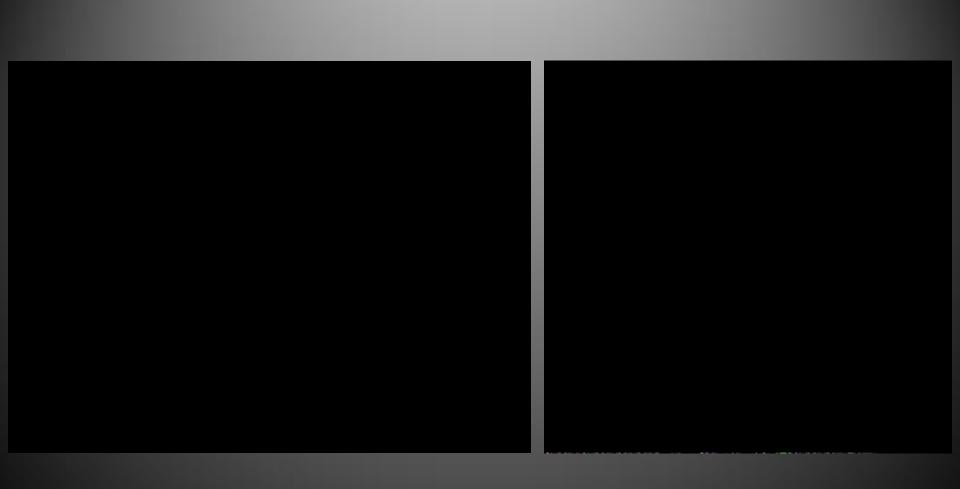
## **Image Rendering**



## **Modeling Crowd Interactions**

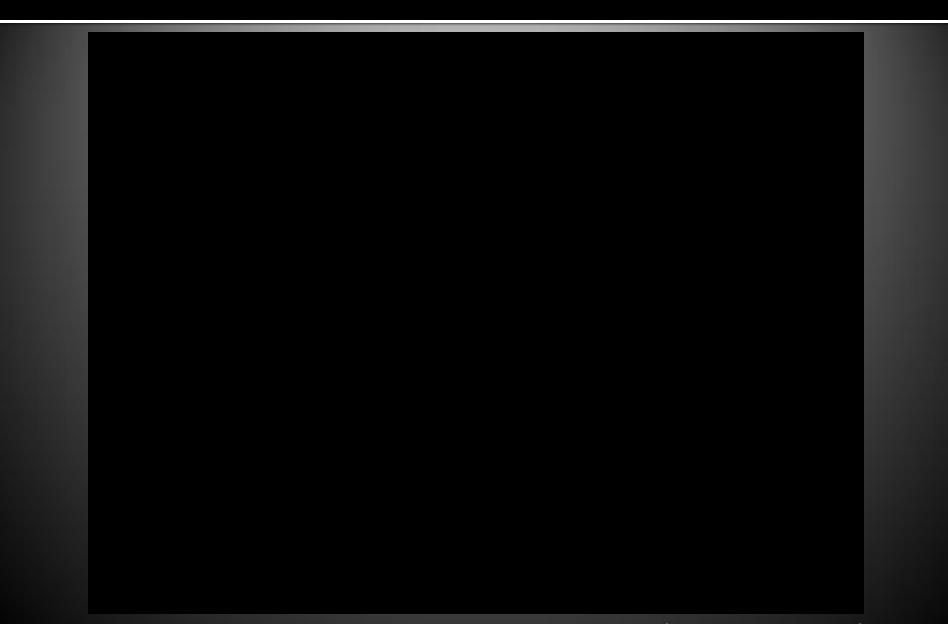


## Modelling Heavy Metal Mosh Dance...



Collective motion of humans in mosh and circle pits at heavy metal concerts. (Silverberg, Bierbaum, Sethna, Cohen.) Physical Review Letters, May 2013.

### **Multi-robot Coordination**



#### **Outline**

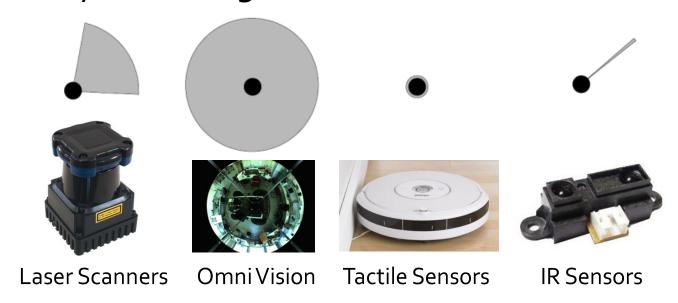
- Intro to Modeling Multi-Agent Systems (MAS)
- Graph Theory for Interaction Graphs
- Agreement Protocol and Rendezvous Problem
  - Simulating in Matlab
- Formation Control Problem
- Summary

## Multi-Agent Systems (MAS)

- Multi-agent systems
  - Dynamic units (agents)
    - Sense environment and agents
    - Make decisions
    - Communicate with other agent
  - Signal exchange network
    - Determines how information is exchanged between agents
    - Wireless, visual, chemical signals, sociological interactions
- Multi-agent control
  - How to understand and achieve global system behaviors from local agent behaviors

#### **Networks and Local Interactions**

- Networks of local interactions arise due to
  - Locality in sensing



- Locality in communication
  - Range saving energy
  - Bandwidth

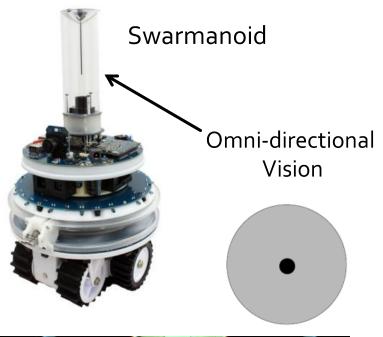
#### **Problems for This Lecture**

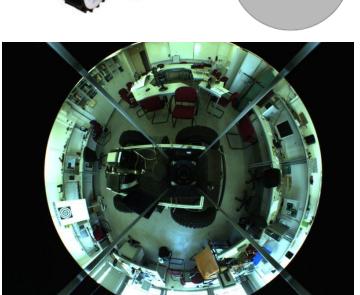
- Agents: mobile robots
- No global map of the environment
  - Example: Rescue scenarios

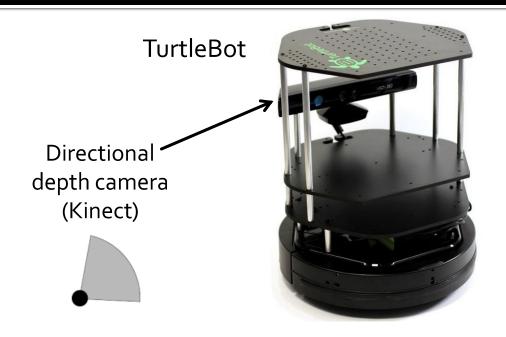


- Robots only perceive distance to other robots
- Communication through sensing
- Two different robot platforms

## **Robot Platforms**



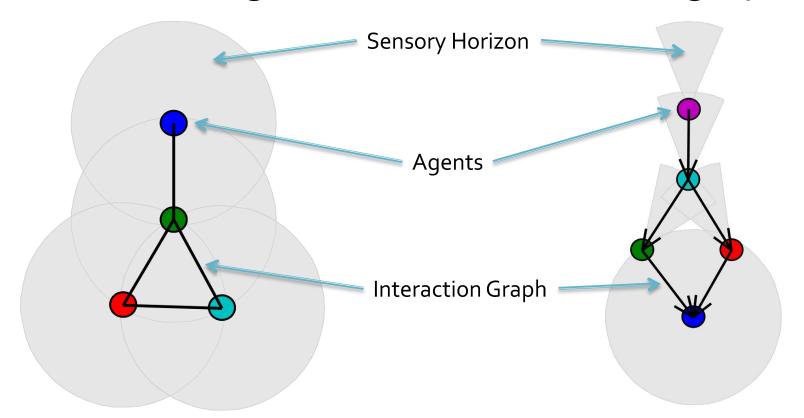






## **Graph-based Interaction Models**

Network of agents can be viewed as a graph

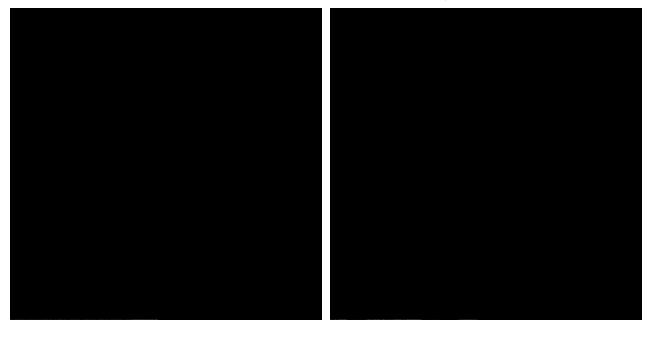


- Omni-directional sensing
- Bi-directional information exchange
- Model: Undirected graph

- Constrained field of view
- Unidirectional information exchange
- Model: Directed graph

#### **Interaction Protocols**

- Several interaction protocols can be formulated and studied theoretically
  - Agreement (Rendezvous Problem)
  - Formation (Formation Control Problem)
  - Coverage
  - Swarming
  - DistributedEstimation

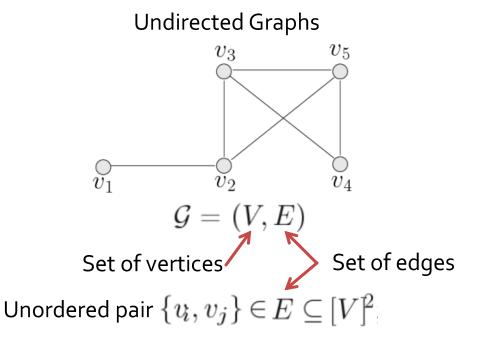


#### **Outline**

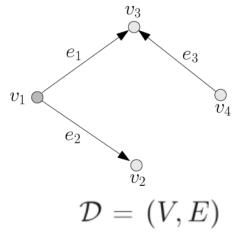
- Intro to Modeling Multi-Agent Systems (MAS)
- Graph Theory for Interaction Graphs
- Agreement Protocol and Rendezvous Problem
  - Simulating in Matlab
- Formation Control Problem
- Summary

## **Graph Theory**

#### Great tool for analyzing networks



Directed Graphs



Ordered pair  $(v_i, v_j) \in E$ 

Neighborhood of a vertex

$$N(i) = \{ v_j \in V \mid v_i v_j \in E \}$$

## Algebraic Graph Theory

Adjacency matrix

$$[A(\mathcal{G})]_{ij} = \begin{cases} 1 & \text{if } v_i v_j \in E, \\ 0 & \text{otherwise.} \end{cases} \quad [A(\mathcal{D})]_{ij} = \begin{cases} 1 & \text{if } (v_j, v_i) \in E(\mathcal{D}) \\ 0 & \text{otherwise,} \end{cases}$$

Degree matrix (undirected graph)

Degree of vertex  $d(v_i)$  represents cardinality of neighborhood set N(i)

$$\Delta(\mathcal{G}) = \begin{pmatrix} d(v_1) & 0 & \cdots & 0 \\ 0 & d(v_2) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d(v_n) \end{pmatrix}$$

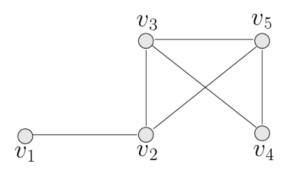
In-degree matrix (directed graph)

 $d(v_i)$  represents the in-degree (counts incoming edges only)

### **Graph Laplacian**

For undirected graphs

$$L(\mathcal{G}) = \Delta(\mathcal{G}) - A(\mathcal{G})$$



$$L(\mathcal{G}) = \begin{pmatrix} 1 & -1 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & -1 \\ 0 & -1 & 3 & -1 & -1 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & -1 & -1 & -1 & 3 \end{pmatrix}$$

For directed graphs – In-degree Laplacian

$$L(\mathcal{D}) = \Delta(\mathcal{D}) - A(\mathcal{D})$$

### **Properties of Laplacian**

- Symmetric and positive semi-definite
- Eigenvalues can be ordered as

$$\lambda_1(\mathcal{G}) \leq \lambda_2(\mathcal{G}) \leq \cdots \leq \lambda_n(\mathcal{G})$$

Smallest eigenvalue is always zero

$$\mathbf{1} \in \mathcal{N}(L(\mathcal{D}))$$
  $\lambda_1(\mathcal{G}) = 0$ 

- Is the graph connected?
  - If for every pair of vertices there is a path
  - IFF  $\lambda_2(\mathcal{G}) > 0$
  - As many connected sub-graphs as zero eigenvalues

#### **Outline**

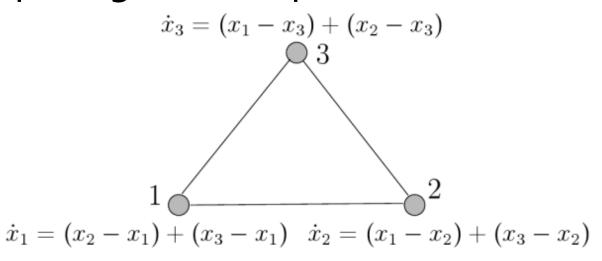
- Intro to Modeling Multi-Agent Systems (MAS)
- Graph Theory for Interaction Graphs
- Agreement Protocol and Rendezvous Problem
  - Simulating in Matlab
- Formation Control Problem
- Summary

## Agreement Protocol

- Agents agree on a value of a parameter
- Definition
  - n dynamic agents
  - Interconnected via relative links
  - Agent's state depends on the sum of its relative states w.r.t. a subset of other agents
- Applications
  - Distributed estimation in sensor networks
  - Flocking/swarming

#### Rendezvous Problem

- Rendezvous problem
  - Agent's state is its location mobile robot
  - Agents should meet at one point in space
- Example: agreement protocol over a triangle



Links pull robots towards each other

### State-space Representation

Continuous-time state-space model

$$\dot{x}_i(t) = \sum_{j \in N(i)} (x_j(t) - x_i(t)), \quad i = 1, \dots, n$$

$$\dot{x}(t) = -L(\mathcal{G}) x(t)$$

For directed graphs: use in-degree Laplacian

$$\dot{x}(t) = -L(\mathcal{D})x(t)$$

How can we guarantee convergence?

#### **Outline**

- Intro to Modeling Multi-Agent Systems (MAS)
- Graph Theory for Interaction Graphs
- Agreement Protocol and Rendezvous Problem
  - Simulating in Matlab
- Formation Control Problem
- Summary

### State-space Models in Matlab

 Dynamics of a system specified using continuous time-invariant state-space model

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t)$$
$$\mathbf{y}(t) = C\mathbf{x}(t) + D\mathbf{u}(t)$$

Create state-space model

$$sys = ss(A,B,C,D)$$

In our case:

$$\dot{x}(t) = -L(\mathcal{G}) \, x(t) \qquad \dot{x}(t) = -L(\mathcal{D}) x(t)$$

## Simulating

- Simulate
  - Initial condition response

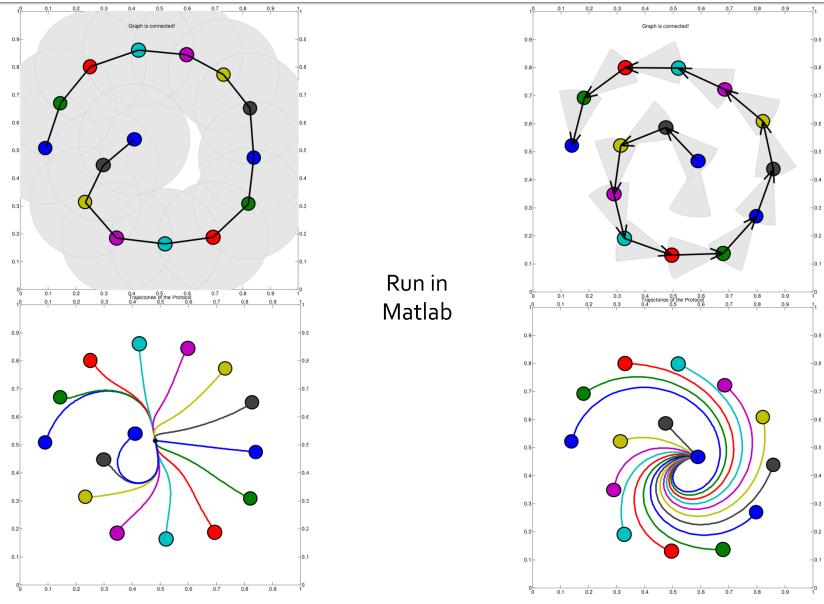
$$[y,t,x] = initial(sys,x0,t)$$

Response to arbitrary inputs

```
[y,t,x] = lsim(sys,u,t,x0)
```

 Basic toolkit for defining and visualizing problems available in course materials

## **Simulating Trajectories**



#### **Outline**

- Intro to Modeling Multi-Agent Systems (MAS)
- Graph Theory for Interaction Graphs
- Agreement Protocol and Rendezvous Problem
  - Simulating in Matlab
- Formation Control Problem
- Summary

#### **Formation Control Problem**

- Mobile agents move in order to realize a geometrical pattern (formation)
  - Appear often in biological systems (e.g. geese)
- Formations can be specified in several ways
  - Relative state
  - Shape
    - Specified in terms of points

$$\Xi = \{\xi_1, \dots, \xi_n\}, \ \xi_i \in \mathbf{R}^p, \ i = 1, \dots, n,$$

Translationally invariant

$$x_i = \xi_i + \tau$$

#### State-space Representation

Let's define  $\tau_i$  as displacement from target

$$\tau_i(t) = x_i(t) - \xi_i, \ i = 1, \dots, n$$

Now, apply the agreement protocol to  $au_i$ 

$$\dot{\tau}_i(t) = -\sum_{j \in N_f(i)} (\tau_i(t) - \tau_j(t))$$

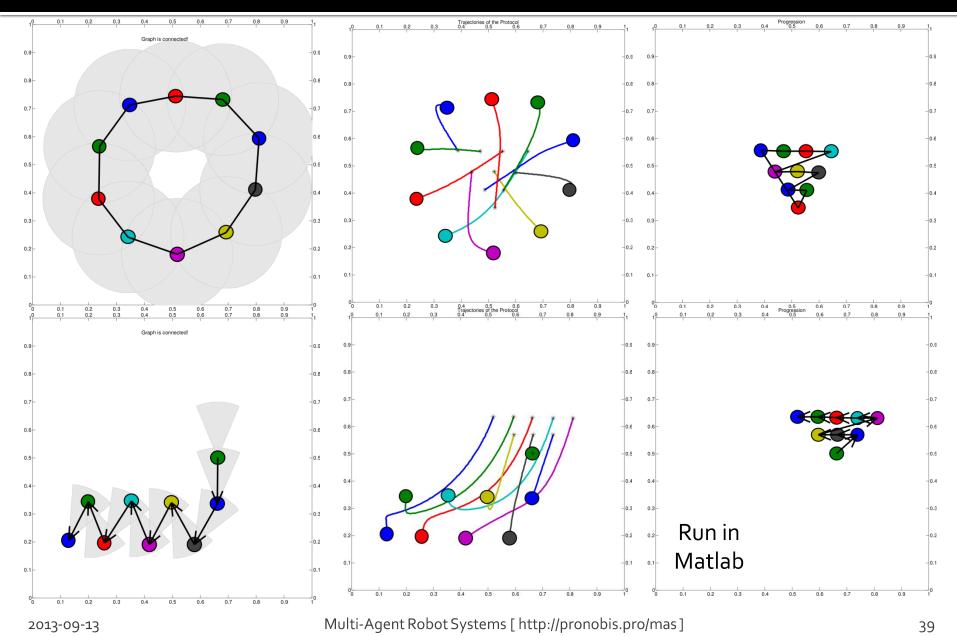
■ Since  $\dot{\tau}_i(t) = \dot{x}_i(t)$ ,  $\tau_i(t) - \tau_j(t) = x_i(t) - x_j(t) - (\xi_i - \xi_j)$ :

$$\dot{x}_i(t) = -\sum_{j \in N_f(i)} (x_i(t) - x_j(t)) - (\xi_i - \xi_j)$$

$$\dot{x}(t) = -L(\mathcal{G}) x(t) + L(\mathcal{G}) \Xi$$

Analogous for directed graphs

## **Simulating Trajectories**



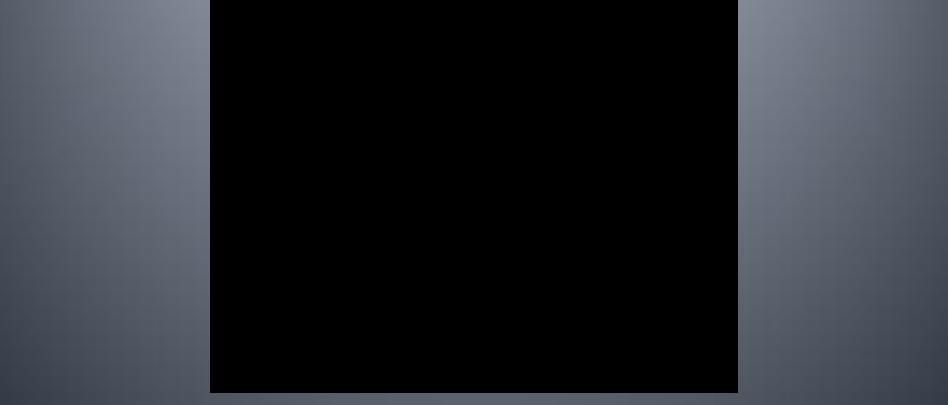
#### **Outline**

- Intro to Modeling Multi-Agent Systems (MAS)
- Graph Theory for Interaction Graphs
- Agreement Protocol and Rendezvous Problem
  - Simulating in Matlab
- Formation Control Problem
- Summary

### Summary

- Intuition about what multi-agent systems are and how to solve control problems
  - From theory to simulations
- Multiple applications in robotics
  - When no global maps and central coordination
- What's next?
  - Dynamic and random networks
  - Switching between formations and control problems
  - Networks as systems (with inputs & outputs)
- Try this at home!

# **Questions?**



Multi-Agent Robot Systems [ http://pronobis.pro/mas ]